Fluids and Thermal Sciences

International Space Station with earth visible in the background

Our expertise in fluid mechanics, complex fluids, thermodynamics, heat transfer, fire science and combustion have been an anchor for the Department of Mechanical and Aerospace Engineering for decades.

And, with NASA Glenn as a long-time partner and Cleveland neighbor, it’s no wonder why. From the thermodynamics of two-phase flow to turbulence simulations, to research in microgravity and fire dynamics in space, we have a longstanding history of exploring science beyond the earth’s atmosphere. We’re focused on understanding combustion and burning behavior of solids in space—where gravity and buoyancy flow are absent. Our research portfolio includes material flammability and fire safety in microgravity, and we’ve conducted experiments everywhere from drop towers and parabolic flights to space shuttles and the International Space Station.  

We translate that research to the terrestrial sphere as well—the study of fire and combustion in gravity-free environments eliminates the confounding factors of buoyancy flows, allowing us to better understand the underlying physics of fire dynamics. And in addition to analyzing material flammability and fire safety on Earth, we conduct research in other areas of fire science such as the detonation, conduction and explosion of fires in both large areas and confined spaces; the development of start-of-art combustion models, mesh-free technique simulations; smoke toxicity detection; fire extinguishing with minimal environmental harm; and the burn patterns of modern, energy-efficient buildings.

Across the full breadth of fluid and thermal sciences, we’re exploring multi-phase simulations for all manner of applications, including the growing field of additive manufacturing; the thermal management of electronics like laptops and batteries; and even the assessment of the human heart as a fluid.

Institutes, centers and labs related to Fluids and Thermal Sciences

Firefighter putting out fire

Computational Fire Dynamics Laboratory

Advances fundamental fire science (e.g. microgravity combustion, solid pyrolysis) and studies the fire behaviors in unique conditions (e.g. aircraft, spacecraft, forest fire).

Tad Blocks

nanoEngineering Laboratory

Conducts heat transfer and data analytics related research pertaining to areas such as thermal insulation, thermal management and building energy efficiency

Faculty who conduct research in Fluids and Thermal Sciences

Profile Photo

Alexis Abramson

Milton and Tamar Maltz Professor of Energy Innovation
Director, Great Lakes Energy Institute

Uncovers innovative solutions in energy, including smart materials for thermal management and software for virtual building efficiency audits

Anon Photo

R Balasubramaniam

Research Associate Professor, Mechanical and Aerospace Engineering

Enables the development and understanding of thermal and fluid systems to advance space exploration

Anon Photo

Uday Hegde

Research Associate Professor, Mechanical and Aerospace Engineering

Develops supercritical water oxidation technologies for waste management and water reclamation for extended duration space missions

Profile Photo

Yasuhiro Kamotani

Professor, Mechanical and Aerospace Engineering

Designs and conducts two-phase flow experiments for space stations

Anon Photo

Olga Kartuzova

Research Assistant Professor, Mechanical and Aerospace Engineering

Studies and develops computational models for cryogenic storage tanks, and investigates zero boil-off tanks

Anon Photo

Mohammad Kassemi

Research Professor, Mechanical and Aerospace Engineering

Researches microgravity fluid physics and combustion research, including ZBOT, cryogenic fluid management, propellant tank models and gravity’s impact on systems

Profile Photo

Chirag Kharangate

Assistant Professor, Mechanical and Aerospace Engineering

Explores energy, thermal management of electronics and computational fluid dynamics

Profile Photo

Bo Li

Assistant Professor, Mechanical and Aerospace Engineering

Develops HPC-based computational methods for the dynamic behavior and failure processes in materials and structures under extreme conditions

Profile Photo

Ya-Ting Liao

Assistant Professor, Mechanical and Aerospace Engineering

Creates computational models of combustion, fire and fire behavior and develops fire-resistant structures

Profile Photo

Brian Maxwell

Assistant Professor, Mechanical and Aerospace Engineering

Develop next-generation propulsion systems and develop advanced theory of supersonic and reactive systems

Profile Photo

Fumi Takahashi

Professor, Mechanical and Aerospace Engineering

Develops fire safety technologies and investigates combustion phenomena for practical applications

Profile Photo

Jim Tien

Leonard Case Jr. Professor of Engineering
Professor Emeritus, Mechanical and Aerospace Engineering

Researches the effect of gravity on combustion and flammability of solid materials with applications in space exploration