Xue, Z., Gong, L., Wang, G., Lu, C., Gilmore, H., Zhang, S., & Madabhushi, A.(2019).Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images.Journal of Medical Imaging,6(01),1.
Bui, M., Riben, M., Allison, K., Chlipala, E., Colasacco, C., Kahn, A., Lacchetti, C., Madabhushi, A., Pantanowitz, L., Salama, M., Stewart, R., Thomas, N., Tomaszewski, J., & Hammond, M.(2019).Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline From the College of American Pathologists.Archives of Pathology and Laboratory Medicine.
Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M., & Madabhushi, A.(2019).HistoQC: An open-source quality control tool for digital pathology slides.JCO Clinical Cancer Informatics,3
Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M., & Madabhushi, A.(2019).HistoQC: An open-source quality control tool for digital pathology slides.JCO Clinical Cancer Informatics,3
Li, L., Shiradkar, R., Algohary, A., Leo, P., Magi-Galluzzi, C., Klein, E., Purysko, A., & Madabhushi, A.(2019).Radiomic features derived from pre-operative multi-parametric MRI of prostate cancer are associated with Decipher risk score.,10950
Chen, Y., Janowczyk, A., & Madabhushi, A.(2019).Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis.JCO Clinical Cancer Informatics,3, 221-233.
Xue, Z., Gong, L., Wang, G., Lu, C., Gilmore, H., Zhang, S., & Madabhushi, A.(2019).Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images.Journal of Medical Imaging,6(1),017501.
WAng, X., Barrera, C., Lu, C., Yang, M., Velcheti, V., & Madabhushi, A.(2019).Computerized nuclear morphometric features from H\&E slide images are prognostic of recurrence and predictive of added benefit of adjuvant chemotherapy in early stage non-small cell lung cancer.,99
Leo, P., Elliott, R., Shih, N., Gupta, S., Feldman, M., & Madabhushi, A.(2018).Stable and discriminating features are predictive of cancer presence and Gleason grade in radical prostatectomy specimens: a multi-site study.Scientific Reports,8(1).
Shiradkar, R., Ghose, S., Jambor, I., Taimen, P., Ettala, O., Purysko, A., & Madabhushi, A.(2018).Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings.Journal of Magnetic Resonance Imaging,48(6),1626-1636.
Beig, N., Patel, S., Prasanna, P., Hill, V., Gupta, A., Correa, R., Bera, K., Singh, S., Partovi, S., Varadan, V., Ahluwalia, M., Madabhushi, A., & Tiwari, P.(2018).Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma.Scientific Reports,8(1).
Lu, C., Romo-Bucheli, D., WAng, X., Janowczyk, A., Ganesan, S., Gilmore, H., Rimm, D., & Madabhushi, A.(2018).Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers.Laboratory Investigation,98(11),1438-1448.
Corredor, G., WAng, X., Zhou, Y., Lu, C., Fu, P., Syrigos, K., Rimm, D., Yang, M., Romero, E., Schalper, K., Velcheti, V., & Madabhushi, A.(2018).Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer.Clinical Cancer Research.
Algohary, A., Viswanath, S. E., Shiradkar, R. E., Ghose, S. E., Pahwa, S. E., Moses, D. E., Jambor, I. E., Shnier, R. E., Böhm, M. E., Haynes, A. E., Brenner, P. E., Delprado, W. E., Thompson, J. E., Pulbrock, M. E., Purysko, A. E., Verma, S. E., Ponsky, L. E., Stricker, P. E., & Madabhushi, A. E.(2018).Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings.Journal of Magnetic Resonance Imaging,48(3),818-828.
Penzias, G., Singanamalli, A., Elliott, R., Gollamudi, J., Shih, N., Feldman, M., Stricker, P., Delprado, W., Tiwari, S., B�hm, M., Haynes, A., Ponsky, L., Fu, P., Tiwari, P., Viswanath, S. E., & Madabhushi, A. E.(2018).Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings.PLoS ONE,13(8).
Leo, P., Shankar, E., Elliott, R., Janowczyk, A., Janaki, N., MacLennan, G., Madabhushi, A., & Gupta, S.(2018).Abstract LB-021: Combination of quantitative histomorphometry with NF?B/p65 nuclear localization is better predictor of biochemical recurrence in prostate cancer patients.Cancer Research,78(13 Supplement),LB-021-LB-021.
Lu, C., Romo-Bucheli, D., WAng, X., Janowczyk, A., Ganesan, S., Gilmore, H., Rimm, D., & Madabhushi, A.(2018).Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers.Laboratory Investigation.
Carleton, N., Lee, G., Madabhushi, A., & Veltri, R.(2018).Advances in the computational and molecular understanding of the prostate cancer cell nucleus: CARLETON et al..Journal of Cellular Biochemistry.
Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Madabhushi, A., & Gonz�lez, F.(2018).High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection.PLoS ONE,13(5).