Vulchi, M., El Adoui, M., Braman, N., Turk, P., Etesami, M., Drisis, S., Plecha, D., Benjelloun, M., Madabhushi, A., & Abraham, J.(2019).Development and external validation of a deep learning model for predicting response to HER2-targeted neoadjuvant therapy from pretreatment breast MRI..Journal of Clinical Oncology,37(15_suppl),593-593.
Li, L., Shiradkar, R., Leo, P., Purysko, A., Algohary, A., Klein, E., Magi-Galluzzi, C., & Madabhushi, A.(2019).Association of radiomic features from prostate bi-parametric MRI with Decipher risk categories to predict risk for biochemical recurrence post-prostatectomy..Journal of Clinical Oncology,37(15_suppl),e16561-e16561.
Prasanna, P., Khorrami, M., Gupta, A., Patil, P., Khunger, M., Velu, P., Bera, K., Alilou, M., Velcheti, V., & Madabhushi, A.(2019).Intra and perinodular CT delta radiomic features associated with early response to predict overall survival (OS) in immunotherapy-treated non-small cell lung cancer (NSCLC): A multisite multi-agent study..Journal of Clinical Oncology,37(15_suppl),2588-2588.
Prasanna, P., Karnawat, A., Ismail, M., & Madabhushi, A.(2019).Radiomics-based convolutional neural network for brain tumor segmentation on multiparametric magnetic resonance imaging.Journal of Medical Imaging,6(02).
Braman, N., Prasanna, P., Whitney, J., Singh, S., Beig, N., Etesami, M., Bates, D., Gallagher, K., Bloch, B., Vulchi, M., Turk, P., Bera, K., Abraham, J., Sikov, W., Somlo, G., Harris, L., Gilmore, H., Plecha, D., Varadan, V., & Madabhushi, A.(2019).Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2) �Positive Breast Cancer.JAMA Network Open,2(4),e192561.
Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M., & Madabhushi, A.(2019).HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides.JCO Clinical Cancer Informatics.
Purysko, A., Magi-Galluzzi, C., Mian, O., Davicioni, E., Plessis, M., Buerki, C., Bullen, J., Li, L., Madabhushi, A., Stephenson, A., & Klein, E.(2019).MP28-04 CORRELATION BETWEEN MRI PHENOTYPES AND A GENOMIC CLASSIFIER OF PROSTATE CANCER.The Journal of Urology,201(Supplement 4).
Li, L., Shiradkar, R., Algohary, A., Magi-Galluzzi, C., Klein, E., Purysko, A., Madabhushi, A., & Leo, P.(2019).Radiomic features derived from pre-operative multi-parametric MRI of prostate cancer are associated with Decipher risk score.Medical Imaging: Computer-Aided Diagnosis.
Alilou, M., Bera, K., Vaidya, P., Zagouras, A., Patil, P., Khorrami, M., Fu, P., Velcheti, V., & Madabhushi, A.(2019).Quantitative vessel tortuosity radiomics on baseline non-contrast lung CT predict response to immunotherapy and are prognostic of overall survival.Medical Imaging: Computer-Aided Diagnosis.
Correa, R., Beig, N., Madabhushi, A., Tiwari, P., Hill, V., Mahammedi, A., & Verma, R.(2019).Radiomics of the lesion habitat on pre-treatment MRI predicts response to chemo-radiation therapy in Glioblastoma.Medical Imaging: Computer-Aided Diagnosis.
Patil, P., Bera, K., Velu, P., Khorrami, M., Prasanna, P., Velcheti, V., Madabhushi, A., Alilou, M., & Fu, P.(2019).A combination of intra- and peritumoral features on baseline CT scans is associated with overall survival in non-small cell lung cancer patients treated with immune checkpoint inhibitors: a multi-agent multi-site study.Medical Imaging: Computer-Aided Diagnosis.
Beig, N., Hill, V., Verma, R., Varadan, V., Madabhushi, A., Tiwari, P., & Prasanna, P.(2019).Radiogenomic characterization of response to chemo-radiation therapy in glioblastoma is associated with PI3K/AKT/mTOR and apoptosis signaling pathways.Medical Imaging: Computer-Aided Diagnosis.
Iyer, S., Ismail, M., Tamrazi, B., Margol, A., Verma, R., Correa, R., Prasanna, P., Beig, N., Bera, K., Statsevych, V., Judkins, A., Madabhushi, A., & Tiwari, P.(2019).Deformation heterogeneity radiomics to predict molecular subtypes of pediatric Medulloblastoma on routine MRI.Medical Imaging: Computer-Aided Diagnosis.
Nanda, S., Antunes, J., Selvam, A., Bera, K., Brady, J., Gollamudi, J., Friedman, K., Willis, J., Delaney, C., Paspulati, R., Madabhushi, A., & Viswanath, S. E.(2019).Integrating radiomic features from T2-weighted and contrast-enhanced MRI to evaluate pathologic rectal tumor regression after chemoradiation.Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling.
Yim, M., Wei, Z., Antunes, J., Sehgal, N., Bera, K., Brady, J., Friedman, K., Willis, J., Purysko, A., Paspulati, R., Madabhushi, A., & Viswanath, S. E.(2019).Radiomic characterization of perirectal fat on MRI enables accurate assessment of tumor regression and lymph node metastasis in rectal cancers after chemoradiation.Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling.
Purysko, A., Magi-Galluzzi, C., Mian, O., Sittenfeld, S., Davicioni, E., Du Plessis, M., Buerki, C., Bullen, J., Li, L., Madabhushi, A., Stephenson, A., & Klein, E.(2019).Correlation between MRI phenotypes and a genomic classifier of prostate cancer: preliminary findings.European Radiology,29(9),4861-4870.
Khorrami, M., Khunger, M., Zagouras, A., Patil, P., Thawani, R., Bera, K., Rajiah, P., Fu, P., Velcheti, V., & Madabhushi, A.(2019).Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma.Radiology: Artificial Intelligence,1(2).
Beig, N., Khorrami, M., Alilou, M., Prasanna, P., Braman, N., Orooji, M., Rakshit, S., Bera, K., Rajiah, P., Ginsberg, J., Donatelli, C., Thawani, R., Yang, M., Jacono, F., Tiwari, P., Velcheti, V., Gilkeson, R., Linden, P., & Madabhushi, A.(2019).Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas.Radiology,290(3),783-792.
Corredor, G., WAng, X., Zhou, Y., Lu, C., Fu, P., Syrigos, K., Rimm, D., Yang, M., Romero, E., Schalper, K., Velcheti, V., & Madabhushi, A.(2019).Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non�Small Cell Lung Cancer.Clinical Cancer Research,25(5),1526-1534.
Xue, Z., Gong, L., Wang, G., Lu, C., Gilmore, H., Zhang, S., & Madabhushi, A.(2019).Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images.Journal of Medical Imaging,6(01).
Prasanna, P., Rogers, L., Lam, T., Cohen, M., Siddalingappa, A., Wolansky, L., Pinho, M., Gupta, A., Hatanpaa, K., Madabhushi, A., & Tiwari, P.(2019).Disorder in Pixel-Level Edge Directions on T1WI Is Associated with the Degree of Radiation Necrosis in Primary and Metastatic Brain Tumors: Preliminary Findings.American Journal of Neuroradiology.