Training a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features.

TitleTraining a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features.
Publication TypeJournal Article
Year of Publication2017
AuthorsCorredor, G, Whitney J, Arias V, Madabhushi A, Romero E
JournalJournal of medical imaging (Bellingham, Wash.)
Date Published2017 Apr

Computational histomorphometric approaches typically use low-level image features for building machine learning classifiers. However, these approaches usually ignore high-level expert knowledge. A computational model (M_im) combines low-, mid-, and high-level image information to predict the likelihood of cancer in whole slide images. Handcrafted low- and mid-level features are computed from area, color, and spatial nuclei distributions. High-level information is implicitly captured from the recorded navigations of pathologists while exploring whole slide images during diagnostic tasks. This model was validated by predicting the presence of cancer in a set of unseen fields of view. The available database was composed of 24 cases of basal-cell carcinoma, from which 17 served to estimate the model parameters and the remaining 7 comprised the evaluation set. A total of 274 fields of view of size [Formula: see text] were extracted from the evaluation set. Then 176 patches from this set were used to train a support vector machine classifier to predict the presence of cancer on a patch-by-patch basis while the remaining 98 image patches were used for independent testing, ensuring that the training and test sets do not comprise patches from the same patient. A baseline model (M_ex) estimated the cancer likelihood for each of the image patches. M_ex uses the same visual features as M_im, but its weights are estimated from nuclei manually labeled as cancerous or noncancerous by a pathologist. M_im achieved an accuracy of 74.49% and an [Formula: see text]-measure of 80.31%, while M_ex yielded corresponding accuracy and F-measures of 73.47% and 77.97%, respectively.

PDF Link

Alternate JournalJ Med Imaging (Bellingham)

 *IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.