Department of Mechanical and Aerospace Engineering

Kathryn Daltorio

Assistant Professor 

Office Location: Glennan 859



Lab: Biologically-Inspired Robotics Laboratory


Research interests:

Kathryn Daltorio’s robotics research is inspired by animal behaviors that exceed current robot capabilities.  She has studied the locomotion of earthworms, decision-making in cockroaches, and climbing in geckos and insects. Her robots won autonomous lawn mowing competitions, were the first to climb vertically with gecko-inspired adhesives on simple feet, and provided platforms for testing hypotheses about animal locomotion and neurobiologically-inspired control. She and her students build a range of robotic prototypes that use fabrics, mechanical linkages, adhesives, servomotors and shape-memory alloy actuators, various sensors and cameras, soft and hard polymers, and modular 3D printed parts to explore new designs and control strategies.  These provide test-beds for scalable neurobiologically-inspired control networks, abstract mathematical modeling and optimization, and other software tools. Her current goals are to (1) make robots even more capable of traversing through and working in diverse, unknown environments and (2) to better understand animals as model smart physical systems. 



Ph.D., Mechanical and Aerospace Engineering, Case Western Reserve University

Selected Publications:

  1. K. A. Daltorio, B. T. Mirletz, A. Sterenstein, J. C.  Cheng, A. Watson, M. Kesavan, J.A. Bender, J. Martin, R. E. Ritzmann, and R. D. Quinn (2015) How cockroaches exploit tactile boundaries to find new shelters. Invited for special issue of Bioinspiration & Biomimetics. 10(6), 065002. (Featured Article) 
  2. A. D. Horchler, A. Kandhari, K. A. Daltorio, K. C. Moses, J. C. Ryan, K. A. Stultz, E. N. Kanu, K. B. Andersen, J. A. Kershaw, R. J. Bachmann, H. J. Chiel, and R. D. Quinn (2015) Peristaltic Locomotion of a Modular Mesh-based Worm Robot: Precision, Compliance, and Friction. Soft Robotics. 2(4), 135-145. (Featured Article)
  3. A. D. Horchler, K. A. Daltorio, H. J. Chiel, and R. D. Quinn (2015) Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control, Bioinspiration & Biomimetics. 10(2) 026001.
  4. K. A. Daltorio, B. R. Tietz, J. A. Bender, V. A. Webster, N. S. Szczecinski, M. S. Branicky, R. E. Ritzmann, and R. D. Quinn (2013) A model of exploration and goal-searching in the cockroach, Blaberus discoidalis. Adaptive Behavior.  21(5) 404-420.
  5. K. A. Daltorio, A. S. Boxerbaum, A. D. Horchler, K. M. Shaw, H. J. Chiel, and R. D. Quinn (2013) Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspiration & biomimetics. 8. 035003.
  6. R. E. Ritzmann, C. M. Harley, K. A. Daltorio, B. R. Tietz, A. J. Pollack, J. A. Bender, P. Guo, A. L. Horomanski, N. D. Kathman, C. Nieuwoudt, A. E. Brown, and R. D. Quinn (2012) Deciding which way to go: how do insects alter movements to negotiate barriers? Frontiers of Neurosciences. 6. 97.
  7. J. A. Bender, E. M. Simpson, B. R. Tietz, K. A. Daltorio, R. D. Quinn, and R. E. Ritzmann (2011) Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach, Blaberus discoidalis. Journal of Experimental Biology (JEB) 214, 2057-2064.
  8. K. A. Daltorio, T. E. Wei, A. D. Horchler, L. Southard, G. D. Wile, S. N. Gorb, R. E. Ritzmann, and R. D. Quinn (2009) Mini-Whegs™ Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms. International Journal of Robotics Research (IJRR). 28 (2) 285–302.
  9. K. A. Daltorio, S. Gorb, A. Peressadko, A.D. Horchler, T. E. Wei, R. E. Ritzmann, and R. D. Quinn. (2007) Microstructured Polymer Adhesive Feet for Robotic Climbing. Materials Science Research Bulletin (MRS). 32(6) 504–508.
  10. S. N. Gorb, M. Sinha, A. Peressadko, K. A. Daltorio, and R. D. Quinn. (2007) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspiration & biomimetics. 2(4) S117 – S125.  (cover article)