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Abstract—Considering a disk of unit area with n nodes, we investigate the capacity of wireless networks using directional antennas.

First, we study the throughput capacity of random directional networks with multihop relay schemes, and find that the capacity gain

compared to random omnidirectional networks is OðlognÞ, which is tighter than previous results. We also show that using directional

antennas can significantly reduce power consumption in the networks. Second, for the first time, we explore the throughput capacity of

random directional networks with one-hop relay schemes. Interestingly and against our intuition, we find that one-hop instead of

multihop delivery schemes can make random directional networks scale. Third, we investigate the trade-offs between transmission

range and throughput in random directional networks and show that using larger transmission range can result in higher throughput.

Finally, we present a lower bound on the transport capacity of arbitrary directional networks, and find that without side lobe directional

antenna gain, arbitrary directional networks can also scale.

Index Terms—Wireless ad hoc networks, throughput capacity, transport capacity, directional antenna, power consumption.

Ç

1 INTRODUCTION

IN wireless networks, users communicate with each other
over a common wireless channel. Due to the wireless

broadcast nature, the capacity of wireless networks is
constrained by the bandwidth and the node densities. Gupta
and Kumar [8] show that when using omnidirectional
antennas, a random network with n nodes can provide a
per-node throughput at �ðW=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

Þ bits per second,
where W is the channel capacity and �ðxÞ indicates a
function on the same order of x. They also show that even
under optimal circumstances, the capacity is only �ðW=

ffiffiffi
n
p
Þ

bit-meters per second for each node. In other words, wireless
networks cannot scale when using omnidirectional antennas.

Inspired by this seminal paper, many researchers have
investigated the capacity issue for wireless networks under
various constraints. Li et al. [10] examine the capacity of
wireless ad hoc networks by using simulations based on
IEEE 802.11 protocols. Agarwal and Kumar [1] revisit the
capacity problem and derive some improved capacity
bounds for wireless networks. All these works still show
that wireless networks using omnidirectional antennas
cannot scale. Later, Ozgur et al. study the throughput
capacity of wireless ad hoc networks in [24] and [25]. Their
results reveal that by intelligent node cooperation and
distributed MIMO communication, wireless networks can
scale linearly with the number of nodes. Besides, some

papers like [2], [4], [6], [12], [18], [21], [22] propose to use
mobility to increase network throughput. A constant per-
node throughput can be obtained at the cost of very large
network delay. Furthermore, some other works such as [9],
[11], [17], [19], [20], [26], [34] study the capacity of hybrid
wireless networks where base stations are placed to help
improve the network performance. They show that hybrid
wireless networks could also provide a constant per-node
throughput at the cost of high infrastructure investment. In
this paper, we focus on the capacity of pure wireless ad hoc
networks, which we call wireless networks for simplicity.

Recently, directional antennas have emerged as a
promising technology due to the higher spatial reuse ratio,
the improved communication distance, and the reduced
interference. Li et al. [15], [16] study the connectivity
problem in wireless networks using directional antennas.
Some other works, such as [3], [5], [13], [14], [28], [30],
explore the MAC protocol design with the use of directional
antennas attempting to improve the network throughput. In
addition, Yap et al. [31] analyze the throughput of several
contention-based MAC protocols when simple directional
antenna models are employed. Some performance gains
have been shown over the omnidirectional antenna case.
However, there is still one open question: how well on earth
can wireless networks using directional antennas do?

Using the max-flow/min-cut theorem in flow networks,
Peraki and Servetto [27] show that random networks with
directional antennas can achieve an increase of �ðlog2ðnÞÞ in
maximum stable throughput compared to random net-
works with omnidirectional antennas. However, as the
authors point out in the paper, the problem considered
there has certain restrictions to the general one considered
in [8] and also in this paper. Yi et al. [32], [33] also study the
capacity improvement of ad hoc networks using directional
antennas. For arbitrary networks, by using a simple
directional antenna model without the side lobe gain, they
show that the capacity gain is

ffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
when using

directional transmission and omnireception,
ffiffiffiffiffiffiffiffiffiffiffi
2�=�

p
when

using omnitransmission and directional reception, and
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2�=
ffiffiffiffiffiffi
��
p

when using both directional transmission and
directional reception (DTDR), respectively. For random
networks, they show that, by ignoring the side lobe gain,
the capacity gain can be 2�=�, 2�=�, and 4�2=��, for
directional transmission and omnireception, omnitransmis-
sion and directional reception, and directional transmission
and directional reception, respectively, where � and � are
the beamwidths of a transmitter and a receiver, respec-
tively. However, no upper bound on the capacity gain is
given. Besides, the analysis in [32] and [33] is still based on
the same Protocol Model proposed in [8], while we contend
that a different interference model should be used to
characterize the interference in directional wireless net-
works. Also, note that Peraki and Servetto [27] and Yi et al.
[32], [33] study the throughput capacity only when multi-
hop relay schemes are used in the network.

In this paper, we revisit the capacity problem in wireless
networks using directional antennas. We employ a more
practical directional antenna model than in [27], [32], and
[33], with the beam number N , the main lobe gain Gm, and
the side lobe gain Gs. According to the transmission and the
reception schemes with the use of directional antennas, we
classify wireless networks into four categories, which are
Directional Transmission and Directional Reception net-
works, Omnidirectional Transmission and Directional Re-
ception (OTDR) networks, Directional Transmission and
Omnidirectional Reception (DTOR) networks, and Omni-
directional Transmission and Omnidirectional Reception
(OTOR) networks. Moreover, we propose a new Directional
Protocol Model based on the Physical Model for the capacity
analysis. Our contribution is fourfold stated as follows:

First, we investigate the throughput capacity in random
directional networks using multihop relay schemes, and
show that the capacity gain compared to random
omnidirectional networks (OTOR networks) is OðlognÞ
when the side lobe gain of directional antennas is very
small, i.e., when Gs=Gm

1=� ¼ oð1Þ where � > 2 is the path
loss exponent, and is on a constant order Gs=Gm ¼ �ð1Þ.
Note that these results are much tighter than those in [27],
[32], and [33] as we introduced before. Besides, previous
works do not take power consumption into consideration,
while here, we find that the use of directional antenna can
significantly reduce power consumption in the network.
In addition, we also show that a lower bound on the per-
node throughput capacity in random DTDR, OTDR, and
DTOR networks is the same as that in random OTOR
networks, i.e., �ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

Þ.
Second, we explore the throughput capacity in random

directional networks using one-hop delivery schemes for the

first time. Let a ¼ ðGs=GmÞ1=�ð0 � a � 1Þ. We find that the

per-node throughput capacity in random OTOR, DTDR,

OTDR, and DTOR networks scales as �ð1=nÞ, �ðN2=nÞ,
�ðN=nÞ, and �ðN=nÞ, respectively, when a ¼ oð1=

ffiffiffiffiffi
N
p
Þ, and

as �ð1=nÞ, �ða�4=nÞ, �ða�2=nÞ, and �ða�2=nÞ, respectively,

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ. Let a ¼ Nx where x � 0. So, random

DTDR, OTDR, and DTOR networks using one-hop delivery

schemes can scale if the beam numberN scales as
ffiffiffi
n
p

, n, and

n, respectively, when x < � 1
2 , or as n�

1
4x, n�

1
2x, and n�

1
2x,

respectively, when� 1
2 � x < 0. Moreover, we show that with

one-hop delivery schemes, the transmission power for each

node in the network can be upper bounded by a constant.

Third, noticing that one-hop delivery schemes can
provide higher throughput than multihop schemes, we
investigate the trade-offs between transmission range and
throughput in random directional networks. We show that
when directional antennas are used, using larger transmis-
sion range can lead to higher throughput, which is very
different from random omnidirectional networks. We also
find the conditions on directional antenna design for the
transmission power to be upper bounded by a constant.

Fourth, we present a lower bound on the transport cap-

acity in arbitrary directional networks, and find that without

side lobe directional antenna gain, the per-node transport

capacity scales as �ðN= ffiffiffi
n
p Þ, �ð

ffiffiffiffiffiffiffiffiffiffi
N=n

p
Þ, and �ð

ffiffiffiffiffiffiffiffiffiffi
N=n

p
Þ,

respectively, in arbitrary DTDR, OTDR, and DTOR networks.

Note that the capacity for arbitrary directional networks in

[32] and [33] is obtained using the approach in [8] for deriving

an upper bound on the capacity. So, the results there cannot

serve as lower bounds on the capacity.
The rest of this paper is organized as follows: We introduce

our models and definitions in Section 2. Sections 3 and 4
show a lower bound and an upper bound on the throughput
capacity of random directional networks using multihop
relay schemes, respectively. Sections 5 and 6 present a lower
bound and an upper bound on the throughput capacity of
random directional networks employing one-hop delivery
schemes, respectively. Section 7 shows the trade-offs between
transmission range and throughput in random directional
networks. Section 8 presents a lower bound on the transport
capacity of arbitrary directional networks. We finally con-
clude this paper in Section 9.

2 MODELS AND DEFINITIONS

2.1 Directional Antenna Model

As in [16], in this study, we use the switched beam antenna
system which consists of several highly directive, fixed, pre-
defined beams, and each transmission uses only one of the
beams. We assume that every antenna has NðN>1Þ beams
exclusively and collectively covering all directions, and that
the main lobe antenna gain Gm and the side lobe antenna
gain Gs are constant in the transmission direction and
nontransmission directions, respectively. One such direc-
tional antenna with four beam directions is shown in Fig. 1.
Note thatN ,Gm, andGs are design parameters rather than simple
constants. Besides, we have 0 � Gs<1<Gm when directional
antennas work in the directional mode, and Gs¼ Gm¼ 1
when they work in the omnidirectional mode, respectively.

Let P be the transmission power, and S the surface area of
the sphere with center at the transmitter and radius R. As
shown in Fig. 2, the surface area A on the sphere for a
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Fig. 1. Our directional antenna model with four directions.



beamwidth of � is 2�Rh, where h is Rð1� cos �2Þ. As we have

shown in [16], we have

Gm � AþGs � ðS �AÞ ¼ � � S; ð1Þ

where A¼ 2�R2ð1� cos �2Þ, S ¼ 4�R2, and �ð0< � � 1Þ is the
efficiency of the antenna which accounts for losses.

2.2 Power Propagation Model

In this paper, we also employ a general power propagation
model to predict the received signal strength [29]:

PrðdÞ ¼ PtC
GtGr

d�
; ð2Þ

where Pt and Pr are the transmitted power and the received
power, respectively, Gt and Gr are the gain factors for the
transmitter’s antenna and the receiver’s antenna, respec-
tively, C is a constant determined by antenna heights,
wavelength, and so on, d is the distance between a
transmitter and a receiver, and � is the path loss exponent
which is usually bigger than 2.

2.3 Network Model

We consider a dense network with n nodes distributed in a
disk of unit area. In dense random networks, the n nodes are
randomly distributed, i.e., independently and uniformly
distributed. We follow the process in [6] to choose random
sender-receiver pairs so that each node is a source node for
one flow and a destination node for at most Oð1Þ flows. We
assume that all nodes have a common transmission range
rðnÞ and no power control is employed. Besides, all nodes
use switched beam directional antennas which have the
same antenna pattern, and randomly beamform in one of the
N directions with equal probability. While in dense arbitrary
networks, then nodes are arbitrarily placed. The destinations
of source nodes and the transmission power are arbitrarily
chosen. All nodes use the same switched beam directional
antennas which can beamform to an arbitrary direction.

2.4 Interference Model

2.4.1 The Physical Model

Let TT be the subset of nodes simultaneously transmitting at
some time instant and P the common transmission power
level chosen by the nodes in the network. Then, the
transmission from a node Ti 2 TT is successfully received
by a node Ri if

PC GtGr

jTi�Rij�

N0 þ
P

Tk2TT;k6¼i PC
GtGr

jTk�Rij�
� �; ð3Þ

where Ti and Ri also denote nodes’ positions, N0 is the
ambient noise power level at the receiver, and � is the
minimum signal-to-interference plus noise ratio (SINR) for
successful receptions. Note that in most cases, we have � > 1.

2.4.2 The Protocol Model

Suppose a node Ti transmits to a node Ri. Then, in order for
this transmission to be successful, two conditions need to
be satisfied [8]:

. The distance between Ti and Ri is no more than rðnÞ,
i.e., jTi �Rij � rðnÞ.

. The positions of every other transmitters Tj simulta-
neously transmitting should satisfy:

jTj �Rij � ð1þ�ÞrðnÞ: ð4Þ

The quantity � > 0 models situations where a guard
zone is specified by the protocol to prevent a
neighboring node from transmitting at the same
time. It also allows for imprecision in the achieved
range of transmissions.

Note that this Protocol Model will be used in random OTOR
networks only. For the analysis in random DTDR, DTOR,
and OTDR networks, we will use a new Directional
Protocol Model proposed based on the Physical Model,
which will be introduced later.

2.5 Capacity

As defined in the usual way, the time average of the number
of bits that can be transmitted by each node to its destination
is called the per-node throughput, and the total number of bits
per second that can be transmitted by all nodes to their
destinations is called the network throughput, or throughput of
the network. In this paper, we assume that each transmitter
intends to send �ðnÞ bits per second to its destination node.

Besides, as defined in [8], we say a network transports
1 bit-meter when 1 bit has been transported a distance of
1 meter from a source toward its destination. This sum of
products of bits and the distances over which they are
carried is called Transport Capacity.

3 A LOWER BOUND ON THE THROUGHPUT

CAPACITY OF RANDOM

NETWORKS—MULTIHOP RELAY

In this section, we derive a lower bound on the throughput
capacity of random networks using directional antennas
when multihop relay schemes are employed. Recall that
we assume all nodes randomly beamform in one of the
N directions with equal probability. As we will see later, a
lower bound on the network throughput capacity can be
achieved by scheduling the transmission of the nodes in
the interference zone, one by one. Thus, it is reasonable for
us to assume that a transmitter and its corresponding
receiver can beamform to each other at the time when it is
their turn to carry out the transmission.

3.1 Random DTDR Networks

In this section, we derive a lower bound on the throughput
capacity of random DTDR networks. Consider the setting
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on a planar disk. We first introduce some definitions and
results we will use. cis are used to denote deterministic
constants independent of n.

Voronoi tessellation. Given a set of n points in a plane,
Voronoi tessellation divides the domain into a set of
polygonal regions, the boundaries of which are the
perpendicular bisectors of the lines joining the points [23].

Lemma 1. For every " > 0, there is a Voronoi tessellation with
the property that every Voronoi cell contains a disk of radius "
and is contained in a disk of radius 2" [8].

Then, for n nodes, we can construct a Voronoi tessella-
tion Vn for which:

V1. Every Voronoi cell contains a disk of area 100 logn=n.
V2. Every Voronoi cell is contained in a disk of radius

2�ðnÞ, where �ðnÞ :¼the radius of a disk of area 100 logn
n .

We refer to each Voronoi cell V 2 Vn as simply a cell.
Adjacent cells. Two cells are adjacent if they share a

common point (every cell is a closed set).
Since a transmitter and its intended receiver can

beamform to each other to carry out the transmission, we
choose the transmission range, denoted by rmmðnÞ, to be
rmmðnÞ ¼ rðnÞ ¼ 8�ðnÞ, which allows direct communication
within a cell and between adjacent cells.

Interfering cells. A cell is an interfering cell of another
one if two transmissions from the nodes in these two cells,
respectively, interfere with each other.

Remember that the Protocol Model in [8] was proposed
for omnidirectional wireless networks only. Here, in order
to characterize the interference in directional wireless
networks, we propose a new Directional Protocol Model
based on the Physical Model.

Now, recall the Physical Model. Suppose a node Ti
transmits to a node Ri and they can beamform to each other
according to our assumptions. Let TT1, TT2, and TT3 denote
three different sets of nodes transmitting at the same time as
Ti, where Tj 2 TT1 and Ri beamform to each other, either
Tk 2 TT2 or Ri beamforms to the other node (but not both),
and neither Tl 2 TT3 nor Ri beamforms to the other node,
respectively. Then, from (3), it follows that

P CGmGm

jTi�Rij�P
Tj2TT1 P CGmGm

jTj�Rij� þ
P

Tk2TT2 P CGmGs

jTk�Rij� þ
P

Tl2TT3 P CGsGs

jTl�Rij�
� �:

Thus, we have

jTj �Rij � �
1
�jTi �Rij; if Tj 2 TT1;

jTk �Rij � �
1
�

�
Gs

Gm

�1
�jTi �Rij; if Tk 2 TT2;

jTl �Rij � �
1
�

�
Gs

Gm

�2
�jTi �Rij; if Tl 2 TT3:

8>><
>>:

Choosing 4 ¼ �1
� � 1 gives us a Protocol Model based on

the Physical Model.
Therefore, we propose a Directional Protocol Model

stated as follows: suppose a node Ti transmits to a node Ri

and jTi �Rij � rðnÞ. Then, the positions of every other
transmitters Tj simultaneously transmitting should satisfy:

jTj �Rij � ð1þ4ÞrðnÞ; if E1;

jTj �Rij � ð1þ4ÞrðnÞ �
�
Gs

Gm

�1
�; if E2;

jTj �Rij � ð1þ4ÞrðnÞ �
�
Gs

Gm

�2
�; if E3;

8><
>:

where E1, E2, and E3 denote the events that Tj and Ri both
beamform to each other, either Tj or Ri beamforms to the
other node (but not both), and neither Tj nor Ri beamforms
to the other node, respectively.

Consider the single hop from a transmitter Ti to a
receiver Ri. Fig. 3 shows an example that Ri is equipped
with a directional antenna with four directions and it is
beamforming in direction 0 where Ti is located. The big
point at the center of the graph denotes the center of the
disk containing the cell in which Ri is located. The distance
from another point in the area to this big point is denoted by
r. We also denote by Rmm, Rms, and Rss the ranges within
which an interfering Voronoi cell containing another
transmitter Tjðj 6¼ iÞ must be located in events E1, E2, and
E3, respectively. Areas I, II, III, and IV denote the areas
where Rms < r � Rmm in direction 0, where 0 < r � Rms in
direction 0, where 0 < r � Rss in directions 1, 2, and 3, and
where Rss < r � Rms in directions 1, 2, and 3, respectively.

Let a ¼ ðGs

Gm
Þ

1
�. By choosing

Rmm ¼ 6�ðnÞ þ ð3þ�ÞrðnÞ;
Rms ¼ 6�ðnÞ þ ð2þ aþ a�ÞrðnÞ;
Rss ¼ 6�ðnÞ þ ð2þ a2 þ a2�ÞrðnÞ;

we can have the following lemma:

Lemma 2. The transmitters in a Voronoi cell not fully contained
in ranges Rmm, Rms, and Rss, cannot interfere with the
reception of Ri in case of E1, E2, and E3, respectively. Besides,
the reception of corresponding receivers of those transmitters is
not interfered by Ti, either.

Proof. Consider a transmission from another transmitter Tj
to another receiver Rj. (Tj and Rj also denote the vectors
from the center of the disk containing the cell where Ri is
located to the two nodes, respectively.) If Tj is in a
Voronoi cell not fully contained in ranges Rmm, then
according to Lemma 1, we have

jTj �Rij � Rmm � 4�ðnÞ � 2�ðnÞ ¼ ð3þ�ÞrðnÞ;

which conforms with the Directional Protocol Model in
case of E1. Besides, we also have

jTj � Tij � jTj �Rij � jTi �Rij � ð2þ�ÞrðnÞ;
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Fig. 3. This is an example when the switched antenna has four
directions, which are numbered from 0 to 3 counterclockwise as shown
in the figure. A receiver Ri is beamforming in direction 0 with main lobe
gain Gm and in other directions with side lobe gain Gs.



and hence,

jTi �Rjj � jTi � Tjj � jTj �Rjj � ð1þ�ÞrðnÞ;

which also satisfies the Directional Protocol Model in
case of E1. Thus, we know that the transmissions from Ti
to Ri and Tj to Rj do not interfere with each other in case
of E1 if Tj is in a Voronoi cell not contained in range Rmm.

Following a similar way, we can also prove that these
two transmissions do not interfere with each other in
case of E2 and E3, if Tj is in a Voronoi cell not contained
in ranges Rms and Rss, respectively. tu

Since each node randomly beamforms in one of the N
directions, we can obtain that the nodes in Areas I and IV
can interfere Ri with a probability of 1

N , and those in
Areas II and III can interfere Ri with a probability of 1,
respectively. Thus, the maximum expected interference
area in random DTDR networks, denoted by SddI , is

SddI ¼
1

N
�R2

ms þ
N � 1

N
�R2

ss

þ 1

N
�
�
R2
mm �R2

ms

�
� 1

N
þN � 1

N
�
�
R2
ms �R2

ss

�
� 1

N
;

which can be simplified as

SddI ¼ O
�
��2ðnÞ

�
1þ aN � 1

N

�2

ð1þ�Þ2
�
:

So, the maximum number of cells in the interference area,
denoted by cdd2 , is

cdd2 ¼
SddI

��2ðnÞ � O
��

1þ aN � 1

N

�2

� ð1þ�Þ2
�
:

Thus, by Lemma 2, we can have the following lemma:

Lemma 3. In random DTDR networks, there is a schedule for
transmitting packets such that in every cdd2 slots, each cell in
the tessellation Vn gets one slot in which to transmit, and such
that all transmissions are successfully received within a
distance rðnÞ from their transmitters.

We choose the routing strategy so that the routes of
packets approximate the straight line connecting the source
and destination. Let Li denote the straight line connecting
the source Xi and the destination Yi. Then, we can have the
following lemma [8]:

Lemma 4. There is a 	0ðnÞ ! 0 such that

Prob

�
sup
V 2Vn
ðNumber of lines Li intersecting V Þ

� c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn

p �
� 1� 	0ðnÞ:

Note that the traffic handled by a cell is proportional to the
number of lines passing through it. Since each line carries
traffic of rate �ðnÞ bits/second, we have the following bound:

Lemma 5. There is a 	0ðnÞ ! 0 such that

Prob

�
sup
V 2Vn
ðTraffic needing to be carried by cell V Þ

� c3�ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn

p �
� 1� 	0ðnÞ:

This means that the rate at which each cell needs to

transmit is less than c3�ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

with high probability. Let

W denote the channel capacity. This rate can be accommo-

dated by all cells if it is less than the rate available, i.e., if

c3�ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn

p
� W

cdd2

: ð5Þ

So, we can have the following theorem:

Theorem 1. For random DTDR networks employing multihop

relay schemes, there is a deterministic constant 0 < c < þ1,

not depending on n, �, or W , such that

�ðnÞ ¼ N2

½N þ aðN � 1Þ�2
� cW

ð1þ�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p bits=second

is feasible with high probability.

3.2 Random OTDR Networks

Different from that in DTDR networks, we use another
Directional Protocol Model in OTDR networks based on the
Physical Model. Specifically, suppose a node Ti omnidir-
ectionally transmits to a node Ri which receives by
beamforming to Ti. Then, the positions of every other
transmitters Tjðj 6¼ iÞ simultaneously transmitting should
satisfy:

jTj �Rij � ð1þ4ÞrðnÞ; if E01;

jTj �Rij � ð1þ4ÞrðnÞ �
�
Gs

Gm

�1
�; if E02;

(

where E01 and E02 denote the events that Ri beamforms to Tj
and that Ri does not beamform to Tj, respectively. The

quantity 4 has the same meaning as before.
Along the line in Section 3.1, we can obtain that the

maximum interference area in random OTDR networks,

denoted by SodI , is

SodI ¼ O ��2ðnÞ 1þ aN � 1

N

� �
ð1þ�Þ2

� �
;

and hence, the maximum number of interfered cells,

denoted by cod2 , is

cod2 ¼
SodI

��2ðnÞ � O 1þ aN � 1

N

� �
� ð1þ�Þ2

� �
:

Substituting cdd2 in (5) by cod2 , we can have the following

theorem:

Theorem 2. For random OTDR networks employing multihop

relay schemes, there is a deterministic constant 0 < c < þ1,

not depending on n, �, or W , such that

�ðnÞ ¼ N

N þ aðN � 1Þ �
cW

ð1þ�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p bits=second

is feasible with a high probability.

3.3 Random DTOR Networks

In this case, the results are the same as in Section 3.2.

3.4 Random OTOR Networks

By setting N to 1 in Theorem 1 or Theorem 2, we can obtain
the feasible throughput in OTOR networks.
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Theorem 3. For random OTOR networks employing multihop
relay schemes, there is a deterministic constant 0 < c < þ1
not depending on n, �, or W , such that

�ðnÞ ¼ cW

ð1þ�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p bits=second

is feasible with high probability.

Note that the result in Theorem 3 is consistent with the
result obtained in [8].

4 AN UPPER BOUND ON THE THROUGHPUT

CAPACITY OF RANDOM

NETWORKS—MULTIHOP RELAY

In this section, we derive an upper bound on the
throughput capacity of random networks using directional
antennas, when multihop relay schemes are employed.

4.1 Random DTDR Networks

Recall the Protocol Model mentioned in Section 3. Suppose
that Ti and Tj transmit to Ri and Rj, respectively, at the
same time. Then, we have

jRi �Rjj � jTi �Rjj � jTi �Rij
� ð1þ�ÞjTj �Rjj � jTi �Rij:

Similarly,

jRj �Rij � jTj �Rij � jTj �Rjj
� ð1þ�ÞjTi �Rij � jTj �Rjj:

Adding these two inequalities together, we can get

jRi �Rjj �
�

2
ðjTi �Rij þ jTj �RjjÞ ¼

�

2
� 2rðnÞ:

This means that the disks of radius �
2 rðnÞ centered at the

receivers are essentially disjoint, which we define as
“Disjoint Disks.”

Thus, SE , the area occupied by a single-hop’s transmis-
sion, which we call “Exclusion Area,” is

SE ¼ �
�

�

2
rðnÞ

�2

¼ ��2

4
r2ðnÞ:

Note that the Protocol Model can only be used in OTOR
networks and that in OTOR networks, Exclusion Area is
equal to the area of disjoint disks. However, we contend
that this is not necessarily true when directional antennas are
used. Instead, in directional networks, Exclusion Area could
be much smaller than the area of disjoint disks.

Consider the single hop from Ti to Ri. We use Fig. 3 as an

example where a receiver Ri denoted by the big point at the

center beamforms in direction 0. Let Rmm, Rms, and Rss

denote the ranges within which this receiver Ri would be

interfered by another transmitter Tj’s ðj 6¼ iÞ transmission in

events E1, E2, and E3, respectively. Referring to the

Directional Protocol Model for random DTDR networks

introduced in Section 3.1, we haveRmm ¼ ð1þ�ÞrðnÞ,Rms ¼
ð1þ�ÞrðnÞ � ð Gs

Gm
Þ

1
�, and Rss ¼ ð1þ�ÞrðnÞ � ð Gs

Gm
Þ

2
�. Note that

the nodes in Areas I and IV can interfereRi with a probability

of 1
N , and those in Areas II and III can interfere Ri with a

probability of 1, respectively. Since the transmitters located in

Areas I-IV can possibly interfere with the reception ofRi, we

define these areas as “Interference Area.” Intuitively, Exclusion

Area is contained in Interference Area. So, we choose the

intersection part of Disjoint Disk and Interference Area1 as

Exclusion Area in DTDR networks, which we denote by SddE
and calculate as follows:

Let a ¼ ðGs

Gm
Þ

1
�.

1. When a > 1ffiffi
2
p , i.e., �

2 rðnÞ < Rss, we have

SddE ¼ �
�

2
rðnÞ

� �2

¼ ��2

4
r2ðnÞ:

2. When 1
2 < a � 1ffiffi

2
p , we have

a. If � > 2a2

1�2a2 , i.e., Rss � �
2 rðnÞ < Rms, then

SddE ¼
1

N
�

�

2
rðnÞ

� �2

þN � 1

N
�R2

ss

þN � 1

N
�

�

2
rðnÞ

� �2

�R2
ss

" #
1

N
:

b. If 0 < � < 2a2

1�2a2 , i.e., �
2 rðnÞ < Rss, then we get

the same result as that in 1.
3. When 0 < a < 1

2 , we have

a. If � > 2a
1�2a , i.e., Rms � �

2 rðnÞ < Rmm, then

SddE ¼
1

N
�R2

ms þ
1

N
�

�

2
rðnÞ

� �2

�R2
ms

" #
� 1

N

þN � 1

N
�R2

ss þ
N � 1

N
�
�
R2
ms �R2

ss

�
� 1

N
:

b. If 0 < � < 2a
1�2a , i.e., Rss � �

2 rðnÞ < Rms, then we
arrive at same result as that in 2a.

Thus, we have the following lemma:

Lemma 6. In random DTDR networks, the number of

simultaneous transmissions on the channel is no more than

Nmax ¼ 1=SddE under the Directional Protocol Model.

Note that each transmission is of W bits/second. By
adding all the transmissions taking place at the same time,
we can find that the network can at most accommodate
Nmax �W bits per second.

Let L denote the mean length of a line connecting two

independently and uniformly distributed points on the disk

plane. Then, the mean length of the path of packets is at

least L� oð1Þ since there is always a node within a distance

oð1Þ of a point with high probability. Thus, the mean

number of hops taken by a packet is at least L�oð1Þ
rðnÞ . Since

each source generates �ðnÞ bits/second, there are n sources,

and the total number of bits per second served by the entire

network needs to be at least ðL�oð1ÞÞn�ðnÞrðnÞ . To ensure that all

the required traffic is carried, we therefore need
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ðL� oð1ÞÞn�ðnÞ
rðnÞ � NmaxW:

Recall that rðnÞ>
ffiffiffiffiffiffiffi
logn
�n

q
is necessary for OTOR networks to

guarantee connectivity with high probability [7]. Since we

assume a transmitter and its intended receiver can beamform

to each other to carry out the transmission when needed, then

rðnÞ>
ffiffiffiffiffiffiffi
logn
�n

q
is also necessary for DTDR networks to guar-

antee connectivity. Thus, after simple calculations, we have

�ðnÞ �

c0W

�2
ffiffiffiffiffiffiffiffiffiffi
n logn
p

when a > 1ffiffi
2
p ;

or when 1
2 < a � 1ffiffi

2
p ; 0 < � < 2a2

1�2a2 ;
1

4 a4 N�1
Nð Þ

2ð1þ�Þ2þ2N�1
N2

�2

4

� � c0Wffiffiffiffiffiffiffiffiffiffi
n logn
p

when 1
2 < a � 1ffiffi

2
p ; � > 2a2

1�2a2 ;

or when 0 < a < 1
2 ; 0 < � < 2a

1�2a ;
1

4 a2N�1
N þ 1

Nð Þ2ð1þ�Þ2�ð2þ3�Þð2þ�Þ
4N2

� � c0Wffiffiffiffiffiffiffiffiffiffi
n logn
p

when 0 < a < 1
2 ; � > 2a

1�2a ;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

where 0 < c0 < þ1, not depending on n, �, or W .
Moreover, since there are at most n

2 transmissions that
can be carried out at the same time, we have Nmax � n

2 .
Thus, we can obtain

ðL� oð1ÞÞn�ðnÞ
rðnÞ � n

2
W;

i.e.,

�ðnÞ � c0W
ffiffiffiffiffiffiffiffiffiffi
logn

n

r
: ð7Þ

We finally arrive at the following theorem:

Theorem 4.

1. For random DTDR networks employing multihop
relay schemes, an upper bound on the per-node
throughput capacity is �ðnÞ ¼ minf�1ðnÞ; �2ðnÞg
bits/second, where �1ðnÞ and �2ðnÞ are shown in (6)
and (7), respectively.

2. An upper bound on the per-node throughput capacity is

min
c0N2W

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p ; c0W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p	 

bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c0a�4W

4ð1þ�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p ; c0W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p( )
bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively, where 0< c0<þ1,

not depending on n, �, or W .

4.2 Random OTDR Networks

Let a ¼ ðGs

Gm
Þ

1
�. Similarly, we can obtain that

�ðnÞ ¼

c0W

�2
ffiffiffiffiffiffiffiffiffiffi
n logn
p

when a > 1
2 ;

or when 0 < a � 1
2 ; 0 < � � 2a

1�2a ;
1

4 N�1
N a2ð1þ�Þ2þ�2

4N½ �
c0Wffiffiffiffiffiffiffiffiffiffi
n logn
p

when 0 < a � 1
2 ; � > 2a

1�2a ;

8>>>>>><
>>>>>>:

ð8Þ

and

�ðnÞ � c0W
ffiffiffiffiffiffiffiffiffiffi
logn

n

r
: ð9Þ

Thus, we can have the theorem below:

Theorem 5.

1. For random OTDR networks employing multihop
relay schemes, an upper bound on the per-node
throughput capacity is �ðnÞ ¼ minf�1ðnÞ; �2ðnÞg
bits/second, where �1ðnÞ and �2ðnÞ are shown in (8)
and (9), respectively.

2. An upper bound on the per-node throughput capacity is

min
c0NW

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p ; c0W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p	 

bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c0a�2W

4ð1þ�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p ; c0W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p( )
bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively, where 0< c0<þ1,

not depending on n, �, or W .

4.3 Random DTOR Networks

For random DTOR networks, the results are the same as
those for random OTDR networks shown in Section 4.2.

4.4 Random OTOR Networks

By setting N to 1 in Theorem 4 or Theorem 5, we can have
the following result:

Theorem 6. For random OTOR networks employing multihop
relay schemes, an upper bound on the per-node throughput
capacity is

�ðnÞ ¼ c0W

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

bits/second, where 0 < c0 < þ1, not depending on n, �, orW .

Note that the result in Theorem 6 is also consistent with
the result obtained in [8].

4.5 More Discussions

From Theorems 1-2 and Theorems 4-5, we observe that if
directional antennas have nonnegligible side lobe gain, i.e.,
when a ¼ �ð1Þ, the per-node throughput capacity in
random DTDR, in OTDR, and in DTOR networks is
bounded by �ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

Þ. But, if directional antennas
have very small side lobe gain, i.e., when a ¼ oð1Þ, the per-
node throughput capacity of DTDR networks, of OTDR
networks, and of DTOR networks, is all upper bounded byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logn=n
p

, a gain factor of logn compared to that of OTOR
networks shown in Theorem 6.

Thus, combining with the results in Section 3, we arrive
at the following corollary:

Corollary 1. The throughput capacity of random DTDR, OTDR,

and DTOR networks cannot scale as the number of nodes

when using multihop relay. Furthermore, the per-node

throughput capacity when using directional antennas is

upper bounded by Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p
Þ when ðGs=GmÞ1=� ¼ oð1Þ,
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i.e., when Gs=Gm ¼ oð1Þ, and is bounded by �ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

Þ
when Gs=Gm ¼ �ð1Þ.

Moreover, we notice that although using directional
antennas in random networks with multihop relay schemes cannot
make the networks scale, it can help save a lot of energy in the
networks. Recall the power propagation model introduced in
Section 2.2. Transmission range rðnÞ is defined as follows:

PtC
GtGr

ðrðnÞÞ� ¼ RXth;

where RXth is the receiver sensitivity. Let PDD, PDO, POD,
and POO denote the transmission power in DTDR, DTOR,
OTDR, and OTOR networks, respectively. Then, we can
obtain that

PDD ¼
1

G2
m

POO;

PDO ¼ POD ¼
1

Gm
POO:

Recall the directional antenna model in Section 2.1.
According to (1), we can have

Gm � xþGs � ð1� xÞ ¼ �; ð10Þ

where x ¼ 1
2 ð1� cos �

NÞ. As a result, we obtain that Gm � �
x ,

and hence,

PDD ¼ � sin4 �

2N

� �
POO; ð11Þ

PDO ¼ POD ¼ � sin2 �

2N

� �
POO: ð12Þ

In addition, as N goes large, we have

PDD ¼ �
1

N4

� �
POO;

PDO ¼ POD ¼ �
1

N2

� �
POO:

The lower bounds become tighter as the side lobe gain Gs

gets smaller.

5 A LOWER BOUND ON THE THROUGHPUT

CAPACITY OF RANDOM

NETWORKS—ONE-HOP DELIVERY

We have shown in Sections 3 and 4 that using directional
antennas cannot make the throughput capacity of the
network scale as the number of nodes if we employ multihop
relay schemes. In this section and next section, we
investigate whether enabling only single-hop transmissions
directly from a transmitter to a receiver can achieve this goal.
Here, we begin by presenting a lower bound on the
throughput capacity when using one-hop relay schemes.
As in Section 3, we also assume a transmitter and a receiver
can beamform to each other to carry out the transmission.

5.1 Random DTDR Networks

To ensure direct transmissions between an arbitrary
transmitter-receiver pair, we choose the transmission range
when a transmitter and a receiver both beamform to each
other, denoted by rmm, to be

rmm ¼ rðnÞ ¼ 2=
ffiffiffi
�
p

:

Thus, the transmission range when either a transmitter or a

receiver (but not both) beamforms to the other, and when

neither of them beamforms to the other, denoted by rms and

rss, respectively, can be obtained by

rms ¼
�
2=

ffiffiffi
�
p �

� a ¼ 2a=
ffiffiffi
�
p

;

rss ¼
�
2=

ffiffiffi
�
p �

� a2 ¼ 2a2=
ffiffiffi
�
p

;

where a ¼ ðGs

Gm
Þ

1
�.

Consider a single hop from Ti to Ri. Fig. 3 shows an

example when a receiver denoted by the big point at the

center beamforms in direction 0. Denote by Rmm, Rms, and

Rss the ranges within which this receiver Ri would be

interfered by another transmitter Tj’s ðj 6¼ iÞ transmission in

events E1, E2, and E3, respectively. According to the

Directional Protocol Model, we have

Rmm ¼ ð1þ�Þ � ð2=
ffiffiffi
�
p
Þ;

Rms ¼ ð1þ�Þ � ð2a=
ffiffiffi
�
p
Þ;

Rss ¼ ð1þ�Þ � ð2a2=
ffiffiffi
�
p
Þ:

Note that the nodes in Areas I and IV can interfere Ri with a

probability of 1
N , and those in Areas II and III can interfere

Ri with a probability of 1, respectively. Thus, the maximum

interference area in random DTDR networks within which

the transmitters in other transmissions will interfere with

Ri, denoted by SddIR, can be calculated by

SddIR ¼
1

N
�R2

ms þ
N � 1

N
�R2

ss

þ 1

N
�
�
R2
mm �R2

ms

�
� 1

N
þN � 1

N
�
�
R2
ms �R2

ss

�
� 1

N

¼ 4
1

N
ð1þ�Þ þN � 1

N
ð1þ�Þa2

 �2

:

Similarly, we can have that the maximum interference area

in random DTDR networks within which the receivers in

other transmissions will be interfered by Ti, denoted by SddIT ,

is equal to SddIR. Thus, the interference area of the

transmission from Ti to Ri, denoted by SddI , is

SddI � SddIR þ SddIT ¼ 8
1

N
ð1þ�Þ þN � 1

N
ð1þ�Þa2

 �2

:

So, the maximum number of nodes in the interference

area, denoted by mdd, is

mdd ¼ n � SddI ¼ 8n
1

N
ð1þ�Þ þN � 1

N
ð1þ�Þa2

 �2

:

Recall that in Section 2.3, we choose random source-
destination pairs so that each node is a source node for one
flow and a destination node for at most Oð1Þ flows. So, the
maximum number of transmissions engaged by the nodes in
the interference area, denoted by tdd, is tdd � ð1þ c0Þmdd,
where c0 is a deterministic constant, i.e., c0 ¼ Oð1Þ.

Besides, note that tdd � 2 since there are at least two
transmissions engaged by the nodes in the interference area,
i.e., the transmission from Ti to Ri and the transmission
from Ri to Ti. So, we have
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tdd ¼ max 8ð1þ c0Þn
1

N
ð1þ�Þ þN � 1

N
ð1þ�Þa2

 �2

; 2

( )
:

Lemma 7. In random DTDR networks, there is a schedule for

transmitting packets such that in every tdd slot, each node in

the network gets one slot in which to transmit, and such that

all transmissions are successfully received within a distance

rðnÞ from their transmitters.

Thus, we can obtain that

�ðnÞ � W

tdd
¼ min

c00W

n 1
N ð1þ�Þ þ N�1

N ð1þ�Þa2
� �2 ;W2

( )
:

This leads to the following theorem:

Theorem 7.

1. For random DTDR networks employing one-hop
delivery schemes, the per-node throughput

�ðnÞ ¼ min
c00W

n 1
N ð1þ�Þ þ N�1

N ð1þ�Þa2
� �2 ;W2

( )

bits/second is achievable, where 0 < c00 < þ1 is a

deterministic constant not depending on n, �, or W .
2. An achievable per-node throughput is

min
c00N2W

ð1þ�Þ2n
;
W

2

( )
bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c00a�4W

ð1þ�Þ2n
;
W

2

( )
bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively.

5.2 Random OTDR and DTOR Networks

Similarly, we can have the following theorem. The detailed

proof is omitted due to space limit.

Theorem 8.

1. For random OTDR and DTOR networks employing
one-hop delivery schemes, the per-node throughput

�ðnÞ ¼ min
c00W

nð1þ�Þ2 1
N þ N�1

N a2
� � ;W

2

( )

bits/second is achievable, where 0 < c00 < þ1 is a

deterministic constant not depending on n, �, or W .
2. An achieveable per-node throughput is

min
c00NW

ð1þ�Þ2n
;
W

2

( )
bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c00a�2W

ð1þ�Þ2n
;
W

2

( )
bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively.

5.3 Random OTOR Networks

By setting N to 1 in Theorem 7 or Theorem 8, we can have
the following theorem:

Theorem 9. For random OTOR networks employing one-hop
delivery schemes, the per-node throughput

�ðnÞ ¼ c00W

nð1þ�Þ2
bits=second

is feasible, where 0 < c00 < þ1 is a deterministic constant not
depending on n, �, or W .

6 An UPPER BOUND ON THE THROUGHPUT

CAPACITY OF RANDOM DIRECTIONAL

NETWORKS—ONE-HOP DELIVERY

6.1 Random DTDR Networks

In random DTDR networks, the Exclusion Area denoted by
SddE can be calculated in the same way as that in Section 4.1.
Substituting rðnÞ by 2=

ffiffiffi
�
p

, we obtain that

SddE ¼

�2

when a > 1ffiffi
2
p ;

or when 1
2 < a � 1ffiffi

2
p ; 0 < � < 2a2

1�2a2 ;

4 a4 N�1
N

� �2ð1þ�Þ2 þ 2N�1
N2

�2

4

h i
when 1

2 < a � 1ffiffi
2
p ; � > 2a2

1�2a2 ;

or when 0 < a < 1
2 ; 0 < � < 2a

1�2a ;

4 N�1
N a2 þ 1

N

� �2ð1þ�Þ2 � ð2þ3�Þð2þ�Þ
4N2

h i
when 0 < a < 1

2 ; � > 2a
1�2a :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Since each node does not need to relay packets for other
nodes, to ensure all the required traffic can be carried by the
networks, we need

n�ðnÞ � W

SddE
;

i.e.,

�ðnÞ �

c0W
n�2

when a > 1ffiffi
2
p ;

or when 1
2 < a � 1ffiffi

2
p ; 0 < � < 2a2

1�2a2 ;
c0W

n a4 N�1
Nð Þ

2ð1þ�Þ2þ2N�1
N2

�2

4

� �
when 1

2 < a � 1ffiffi
2
p ; � > 2a2

1�2a2 ;

or when 0 < a < 1
2 ; 0 < � < 2a

1�2a ;
c0W

n N�1
N a2þ 1

Nð Þ2ð1þ�Þ2�ð2þ3�Þð2þ�Þ
4N2

� �
when 0 < a < 1

2 ; � > 2a
1�2a :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð13Þ

Besides, we also have 1=SddE � n
2 , i.e., SddE � 2

n , because
there are at most n2 concurrent transmissions. So, we have that

�ðnÞ �W
2
: ð14Þ

Finally, we arrive at the following theorem:

Theorem 10.

1. For random DTDR networks employing one-hop
delivery schemes, an upper bound on the per-node
throughput capacity is �ðnÞ ¼ minf�1ðnÞ; �2ðnÞg
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bits/second, where �1ðnÞ and �2ðnÞ are shown in (13)
and (14), respectively.

2. An achieveable per-node throughput is

min
c0N2W

�2n
;
W

2

	 

bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c0a�4W

�2n
;
W

2

	 

bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively, where 0< c0<þ1,

not depending on n, �, or W .

6.2 Random OTDR and DTOR Networks

Following the steps in Section 6.1, we can have

�ðnÞ �

c0W
n�2

when a > 1ffiffi
2
p ;

or when 0 < a � 1ffiffi
2
p ; 0 < � < 2a

1�2a ;
c0W

n �2

4NþN�1
N a2ð1þ�Þ2½ �

when 0 < a � 1
2 ; � > 2a

1�2a ;

8>>>>>><
>>>>>>:

ð15Þ

and

�ðnÞ �W
2
: ð16Þ

So, we can obtain the following theorem:

Theorem 11.

1. For random OTDR and DTOR networks employing
one-hop delivery schemes, an upper bound on the per-
node throughput capacity is�ðnÞ ¼ minf�1ðnÞ; �2ðnÞg
bits/second, where �1ðnÞ and �2ðnÞ are shown in (15)
and (16), respectively.

2. An upper bound on the per-node throughput capacity is

min
c0NW

�2n
;
W

2

	 

bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ and

min
c0a�2W

�2n
;
W

2

	 

bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively, where 0<c0<þ1,

not depending on n, �, or W .

6.3 Random OTOR Networks

By setting N to 1 in Theorem 10 or Theorem 11, we have the
following theorem:

Theorem 12. For random OTOR networks employing one-hop
delivery schemes, an upper bound on the per-node throughput
capacity is

�ðnÞ ¼ c0W

n�2
bits=second;

where 0 < c0 < þ1, not depending on n, �, or W .

6.4 More Discussions

Combining with the results derived in Section 5, we find
that with one-hop delivery schemes, using directional

antennas can make the per-node throughput capacity
scale as �ðN2W

n Þ and �ðNWn Þ in random DTDR networks,
respectively, when a ¼ oð1=

ffiffiffiffiffi
N
p
Þ and as �

�
a�4W
n

�
and

�
�
a�2W
n

�
in random DTDR networks and random DTOR,

OTDR networks, respectively, when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ. How-

ever, if the side lobe gain cannot be neglected, the per-node
throughput capacity of random DTDR, DTOR, and OTDR
networks can only scale as �ðWn Þ, and the use of directional
antennas can only improve the throughput capacity by a
constant factor compared to that of random OTOR net-
works. Thus, we have the following corollary:

Corollary 2. Let a ¼ Nx, where x � 0. With one-hop delivery
schemes, the throughput capacity of random DTDR, OTDR,
and DTOR networks can scale as the number of nodes n if the
beam number N scales as

ffiffiffi
n
p

, n, and n, respectively, when
x < � 1

2 , or as n�
1

4x, n�
1

2x, and n�
1

2x, respectively, when
� 1

2 � x < 0.

Besides, similar to (11) and (12) in Section 4.5, we show in
the following that using directional antennas can save a lot
of energy compared to using omnidirectional antennas.
Moreover, we will also show that no matter in random dense
networks or in random extended networks where n nodes are
randomly distributed in a disk of area n, the power consumption
of directional antennas with one-hop delivery can be upper
bounded by a constant.

Consider one-hop direct transmissions in dense net-
works. The average transmission range would be �ð1Þ.
Thus, according to the power propagation model, we have

PtC
GtGr

1�
¼ RXth:

Let Pd
DD, Pd

DO, and Pd
OD denote the transmission power in

dense DTDR, DTOR, and OTDR networks, respectively.

Then,

Pd
DD ¼ �

1

G2
m

� �
; Pd

DO ¼ Pd
OD ¼ �

1

Gm

� �
:

According to (10), we have

Pd
DD ¼ � sin4 �

2N

� �
¼ Oð1Þ;

Pd
DO ¼ Pd

OD ¼ � sin2 �

2N

� �
¼ Oð1Þ:

The lower bounds become tighter as Gs gets smaller.
Next, consider the same problem in extended networks.

The average transmission range would be �ð ffiffiffinp Þ. Let Pe
DD,

Pe
DO, and Pe

OD denote the transmission power in extended

DTDR, DTOR, and OTDR networks, respectively. Then, we

can obtain that

Pe
DD ¼ �

n
�
2

G2
m

� �
;

P e
DO ¼ Pe

OD ¼ �
n
�
2

Gm

� �
:

Especially when side lobe directional antenna gain is
negligible, we have

Gm �
�

sin2 �
2N

� 4�N2

�2
: ð17Þ
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Thus,

Pe
DD ¼ O

n
�
2

N4

� �
; P e

DO ¼ Pe
OD ¼ O

n
�
2

N2

� �
;

which means

Pe
DD ¼ Oð1Þ; when N ¼ �

�
n
�
8

�
;

P e
DO ¼ Pe

OD ¼ Oð1Þ; when N ¼ �
�
n
�
4

�
:

7 TRADE-OFFS BETWEEN TRANSMISSION RANGE

AND THROUGHPUT IN RANDOM DIRECTIONAL

NETWORKS

In random OTOR networks, it has been shown that the

maximum throughput is achieved when the transmission

range is chosen to be the smallest one which can ensure the

network connectivity, i.e., �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p
Þ. On the contrary, as

we have shown in Sections 3-6, in DTDR, OTDR, and DTOR

networks, using larger transmission range can give us

higher throughput. In this section, we investigate the trade-

offs between transmission range and throughput in random

directional networks.

7.1 Random DTDR Networks

Recall the results in Section 4.1, we have

ðL� oð1ÞÞn�ðnÞ
rðnÞ � W

SddE
;

where

SddE ¼

��2

4 r2ðnÞ
when a > 1ffiffi

2
p ;

or when 1
2 < a � 1ffiffi

2
p ; 0 < � < 2a2

1�2a2 ;

� a4 N�1
N

� �2ð1þ�Þ2 þ 2N�1
N2

�2

4

h i
r2ðnÞ

when 1
2 < a � 1ffiffi

2
p ; � > 2a2

1�2a2 ;

or when 0 < a < 1
2 ; 0 < � < 2a

1�2a ;

� N�1
N a2 þ 1

N

� �2ð1þ�Þ2 � ð2þ3�Þð2þ�Þ
4N2

h i
r2ðnÞ

when 0 < a < 1
2 ; � > 2a

1�2a :

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Thus, we can obtain that

�ðnÞ �

c0W
nrðnÞ�2

when a > 1ffiffi
2
p ;

or when 1
2 < a � 1ffiffi

2
p ; 0 < � < 2a2

1�2a2 ;
c0W

nrðnÞ a4 N�1
Nð Þ

2ð1þ�Þ2þ2N�1
N2

�2

4

� �
when 1

2 < a � 1ffiffi
2
p ;� > 2a2

1�2a2 ;

or when 0 < a < 1
2 ; 0 < � < 2a

1�2a ;
c0W

nrðnÞ N�1
N a2þ 1

Nð Þ2ð1þ�Þ2�ð2þ3�Þð2þ�Þ
4N2

� �
when 0 < a < 1

2 ;� > 2a
1�2a :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð18Þ

Besides, since there are at most n2 concurrent transmissions,

we also have that

ðL� oð1ÞÞn�ðnÞ
rðnÞ � n

2
W;

i.e.,

�ðnÞ � rðnÞW
2

: ð19Þ

Finally, we arrive at the following theorem:

Theorem 13.

1. For random DTDR networks, an upper bound on the
per-node throughput capacity is �ðnÞ ¼ minf�1ðnÞ;
�2ðnÞg bits/second, where �1ðnÞ and �2ðnÞ are shown
in (18) and (19), respectively.

2. An upper bound on the per-node throughput capacity is

min
c0N2W

�2nrðnÞ ;
rðnÞW

2

	 

bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c0a�4W

ð1þ�Þ2nrðnÞ
;
rðnÞW

2

( )
bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively, where 0<c0<þ1,

not depending on n, �, or W .

7.2 Random OTDR and DTOR Networks

Similarly, we can obtain that

�ðnÞ �

c0W
nrðnÞ�2

when a > 1ffiffi
2
p ;

or when 0 < a � 1ffiffi
2
p ; 0 < � < 2a

1�2a ;
c0W

nrðnÞ �2

4NþN�1
N a2ð1þ�Þ2½ �

when 0 < a � 1
2 ; � > 2a

1�2a ;

8>>>>>><
>>>>>>:

ð20Þ

and

�ðnÞ � rðnÞW
2

: ð21Þ

So, we can obtain the following theorem:

Theorem 14.

1. For random OTDR and DTOR networks employing
one-hop delivery schemes, an upper bound on the per-
node throughput capacity is �ðnÞ ¼minf�1ðnÞ; �2ðnÞg
bits/second, where �1ðnÞ and �2ðnÞ are shown in (20)
and (21), respectively.

2. An upper bound on the per-node throughput capacity is

min
c0NW

�2nrðnÞ ;
rðnÞW

2

	 

bits=second

when a ¼ oð1=
ffiffiffiffiffi
N
p
Þ, and

min
c0a�2W

ð1þ�Þ2nrðnÞ
;
rðnÞW

2

( )
bits=second

when a ¼ �ð1=
ffiffiffiffiffi
N
p
Þ, respectively, where 0<c0<þ1,

not depending on n, �, or W .

7.3 Random OTOR Networks

By setting N to 1 in Theorem 13 or Theorem 14, we have the

following theorem:
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Theorem 15. For random OTOR networks employing one-hop
delivery schemes, an upper bound on the per-node throughput
capacity is

�ðnÞ ¼ c0W

nrðnÞ�2
bits=second;

where 0 < c0 < þ1, not depending on n, �, or W .

7.4 More Discussions

According to the results derived above, we have the
following corollary:

Corollary 3. In random directional networks, we can have higher
throughput if we use larger transmission range and keep the
side lobe antenna gain low at the same time.

Besides, according to the power propagation model,
we have

PtC
GtGr�
rðnÞ

�� ¼ RXth:

Let PDD, PDO, and POD denote the transmission power in
DTDR, DTOR, and OTDR networks, respectively. Then,

PDD ¼ �
r�ðnÞ
G2
m

� �
;

PDO ¼ POD ¼ �
r�ðnÞ
Gm

� �
:

When side lobe directional antenna gain is negligible,
according to (17), we have

PDD ¼ O
r�ðnÞ
N4

� �
; PDO ¼ POD ¼ O

r�ðnÞ
N2

� �
;

which leads to

PDD ¼ Oð1Þ; when N ¼ �
�
r
�
4ðnÞ

�
;

PDO ¼ POD ¼ Oð1Þ; when N ¼ �
�
r
�
2ðnÞ

�
:

8 A LOWER BOUND ON THE TRANSPORT CAPACITY

OF ARBITRARY NETWORKS

In this section, by presenting an achievable throughput in a
certain scenario, we derive a lower bound on the transport
capacity of arbitrary networks using directional antennas.
We assume there are n nodes on a planar disk of unit area
which use the same transmission power. As we will show
later, the transmitter-receiver pairs are fixed after placing
the nodes. So, we can make the transmitters and their
corresponding receivers beamform to each other to carry
out the transmission.

8.1 Arbitrary DTDR Networks

Theorem 16. There is a placement of nodes and an assignment of
traffic patterns such that, under the Protocol Model, arbitrary
DTDR networks can achieve

nW

4ð1þ�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
2NbN3 cþ4N

q
þ

ffiffiffiffiffiffi
2�
p� � bit-meters per second;

when we neglect the side lobe gain.

Proof. Recall that the domain is a disk of unit area, i.e., of

radius 1ffiffi
�
p in the plane. Let L ¼ 2ð1þ�Þr, r1 ¼ �

4 r,

r2 ¼ 3�
4 r, and r3 ¼ rþ r1. With the center of disk located

at the origin, place transmitters at locations
pLþ r1 cos

�
�

2
þ ð2i� 1Þ�

N

�
;

qLþ r1 sin

�
�

2
þ ð2i� 1Þ�

N

��
;

and
pLþ L

2
cos
ð3N þ 4i	 4j� 2Þ�

2N
þ r1 cos

ðN þ 4i� 2Þ�
2N

;

qLþ L
2

sin
ð3N þ 4i	 4j� 2Þ�

2N
þ r1 sin

ðN þ 4i� 2Þ�
2N

�
;

and place receivers at locations
pLþ r3 cos

�
�

2
þ ð2i� 1Þ�

N

�
;

qLþ r3 sin

�
�

2
þ ð2i� 1Þ�

N

��
;

and
pLþ L

2
cos
ð3N þ 4i	 4j� 2Þ�

2N
þ r3 cos

ðN þ 4i� 2Þ�
2N

;

qLþ L
2

sin
ð3N þ 4i	 4j� 2Þ�

2N
þ r3 sin

ðN þ 4i� 2Þ�
2N

�
;

where p, q, i, and j are integers, and i 2 ½0; N � 1�,
j 2 ½0; N6 �. One example with N ¼ 6 is shown in Fig. 4.

Transmitters use power control to make rmm ¼ r, where

rmm is the transmission range when a transmitter and a

receiver beamform to each other. Thus, each transmitter

can transmit to the receiver which is exactly at a distance

of r away, without interference from any other transmit-

ter-receiver pairs.

By doing this, the nodes are arranged in squares

with length L, where NUM ¼ N 
 ð2þ bN3 cÞ pairs of

transmitter-receiver are located. All such squares that
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intersect with a disk of radius 1ffiffi
�
p �

ffiffiffi
2
p

L are entirely

contained in the domain disk of radius 1ffiffi
�
p . So, we have

� 1ffiffi
�
p �

ffiffiffi
2
p

L
� �2

L2
�NUM ¼ n

2
;

which gives r ¼ 1
2ð1þ�Þð

ffiffiffiffiffiffiffiffiffi
n

2�NUM
p

þ
ffiffiffiffi
2�
p
Þ
. Thus, the transport

capacity for this configuration is

n

2
Wr ¼ nW

4ð1þ�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
2NbN3 cþ4N

q
þ

ffiffiffiffiffiffi
2�
p� �

bit-meters per second, which completes the proof. tu

8.2 Arbitrary OTDR Networks

Theorem 17. There is a placement of nodes and an assignment of
traffic patterns such that, under the Protocol Model, OTDR
networks can achieve

nW

8ð1þ �
2 Þ

ffiffiffiffiffi
n

2N

p
þ

ffiffiffiffiffiffi
2�
p� � bit-meters per second;

when we neglect the side lobe gain.

Proof. Let L ¼ 4ðrþ r1Þ, and r1 ¼ �
2 r. With the center of

disk located at the origin, place transmitters at locations
pLþ ðrþ r1Þ cos

�
�

2
þ ð2i� 1Þ�

N

�
;

qLþ ðrþ r1Þ sin
�
�

2
þ ð2i� 1Þ�

N

��
;

and place receivers at locations
pLþ r1 cos

�
�

2
þ ð2i� 1Þ�

N

�
;

qLþ r1 sin

�
�

2
þ ð2i� 1Þ�

N

��
;

where p, q, and i are integers, and i 2 ½0; N � 1�. One
example with N ¼ 6 is shown in Fig. 5. Transmitters use
power control to make rm ¼ r, where rm is the transmis-
sion range when a receiver beamforms to a transmitter.
Each transmitter can transmit to the nearest receiver

which is exactly at a distance of r away, without
interference from any other transmitter-receiver pairs.

Placed in this way, the nodes are arranged in squares
with length L, where N pairs of transmitter-receiver are
located. Following the process in Section 8.1, we can get

r ¼ 1ffiffiffiffiffi
n

2N

p
þ

ffiffiffiffiffiffi
2�
p� �

ð4þ 2�Þ
:

So, the transport capacity is

n

2
Wr ¼ nW

8
�
1þ �

2

� ffiffiffiffiffi
n

2N

p
þ

ffiffiffiffiffiffi
2�
p� � :

tu

8.3 Arbitrary DTOR Networks

In this case, exchanging the positions of transmitters and
receivers, we can obtain the same result as that in OTDR
networks.

8.4 Arbitrary OTOR Networks

Theorem 18. There is a placement of nodes and an assignment of
traffic patterns such that, under the Protocol Model, OTOR
networks can achieve ([8])

W

ð1þ 2�Þ
2
�
n
4

�
ffiffiffiffiffiffiffiffiffi�
n
4

�q
þ

ffiffiffiffiffiffi
2�
p� � bit-meters per second:

8.5 More Discussions

We show in this section that without side lobe gain, the

lower bounds on transport capacity per node for arbitrary

DTDR, OTDR, DTOR, and OTOR networks are �ð Nffiffi
n
p WÞ,

�ð
ffiffiffi
N
n

q
WÞ, �ð

ffiffiffi
N
n

q
W Þ, and �ðWffiffi

n
p Þ, respectively. Thus, we have

the following corollary:

Corollary 4. Without side lobe gain, arbitrary DTDR, OTDR,
and DTOR networks can scale when the beam number N of
directional antennas increases as fast as

ffiffiffi
n
p

, n, and n,
respectively.

9 CONCLUSION

In this paper, we study the throughput capacity in random
networks and the transport capacity in arbitrary networks
when directional antennas are used. In random directional
networks, on the one hand, we find that if multihop relay
schemes are used in the network, the per-node throughput
capacity cannot be improved much by using directional
antennas compared to that using omnidirectional antennas.
The capacity gain is at most log n compared to the
omnidirectional case. On the other hand, we also show
that if one-hop delivery schemes are used, the per-node
throughput capacity in DTDR, OTDR, and DTOR networks
can scale if directional antennas have very small side lobe
gain so that Gs=Gm ¼ oð1Þ, and the beam number N
increases as the number of nodes goes large in the network.
Moreover, we also investigate the trade-offs between
transmission range and throughput when directional
antennas are used, and find that we can have higher
throughput if we use larger transmission range. In addition,
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Fig. 5. An example for illustrating the locations of the nodes in arbitrary
OTDR networks when N ¼ 6.



we also show that using directional antennas can help save

a lot of energy, and that even when one-hop delivery

schemes are used, the transmission power for each node can

be upper bounded by a constant.
In arbitrary directional networks, we present a lower

bound on the transport capacity by deriving an achievable
throughput in a certain scenario. We find that arbitrary

directional networks can scale if without side lobe
antenna gain.

Finally, we notice that in order for both random and
arbitrary networks to scale, the number of beams of

directional antennas needs to increase as the number of
nodes increases. We hope this can be realized as the
directional antenna technology progresses although the

current technology can only accommodate a limited
number of beams.
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