
318 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

Resource Harvesting in Cognitive Wireless
Computing Networks With Mobile Clouds
and Virtualized Distributed Data Centers:

Performance Limits
Maria Kangas, Savo Glisic, Senior Member, IEEE, Yuguang Fang, Fellow, IEEE, and Pan Li, Member, IEEE

Abstract—We consider a virtualized data center (VDC)
consisting of a set of servers hosting a number of mobile terminals
forming a mobile cloud and study the problem of optimal resource
allocation in the presence of time varying workloads and uncertain
channels. The channel uncertainty may be due to fading and/or
uncertain link availability and reliability in cognitive wireless net-
works. The servers are processing certain applications delegated to
them by the terminals, for either energy saving or due to the lack of
necessary software at the terminal to process the applications. The
control problem is to dynamically adjust resources according to
channel and workload fluctuations in order to maximize the long-
term average throughput and to minimize the energy cost of the
overall system while maintaining network stability. We develop a
unified VDC model for both cognitive and conventional wireless
networks, carry out a unified stability analysis, and character-
ize the joint stability region for the unified VDC model. We also
propose a new dynamic policy that supports every point in the net-
work stability region, outperforms previously proposed network
stabilizing policies without using the information of arrival statis-
tics, and mitigates the mutual impact of primary and secondary
service providers on each other.

Index Terms—Lyapunov drift, network stability, dynamic
programming, stability analysis, value iteration algorithm.

I. INTRODUCTION

D UE TO THE high cost of cloud service data centers,
there is a growing interest in improving the energy effi-

ciency of today’s data centers and cloud computing facilities
[1]. Unfortunately, resources inside the data centers often oper-
ate at low utilization due to the inefficient resource allocation
[2]. For example, a single idle server can draw as much as 65%
of the peak power value if not turned off [3]. In current systems,

Manuscript received May 20, 2015; revised September 4, 2015 and
November 13, 2015; accepted December 1, 2015. Date of publication
December 11, 2015; date of current version March 10, 2016. The work of
Y. Fang and P. Li was supported by U.S. National Science Foundation under
Grant CNS-1343356/CNS-1343220 and Grant CNS-1147813/CNS-1147851.
The work of M. Kangas and S. Glisic was supported by the Finnish Academy
project COCAHANE # 257162. The associate editor coordinating the review
of this paper and approving it for publication was D. Niyato.

M. Kangas and S. Glisic are with the Department of Electrical and
Computer Engineering, University of Oulu, Oulu 90570, Finland (e-mail:
maria.kangas@ee.oulu.fi; savo.glisic@ee.oulu.fi).

Y. Fang is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611 USA (e-mail: fang@ece.ufl.edu).

P. Li is with the Department of Electrical Engineering and Computer
Science, Case Western Reserve University, Cleveland, OH 44106 USA (e-mail:
lipan@case.edu).

Digital Object Identifier 10.1109/TCCN.2015.2508029

servers are also under-utilized most of the time, as applications’
resource demands are easily over-estimated in order to handle
even the most demanding workloads. As a result, applications
hold resources that they hardly need at all, since large work-
loads may be rare. Ideally, unused resources should be released
for other applications to use.

Data center virtualization has been shown to offer great
benefits in reducing the total power consumption and increas-
ing reliability allowing multiple heterogeneous applications to
share resources and run simultaneously on a single server [4].
Virtualization increases server utilization by enabling consol-
idation of multiple applications on the same server and the
sharing of resources among these applications. By using this
technique, it is possible to control the data center so that the
virtual machines (VMs) occupy only the necessary resources
to serve their applications. However, achieving right balance
between consolidation and resource utilization of each appli-
cation is a critical issue for applications with time-varying
demands. Workload adaptive resource allocation is important
to create high performance data centers. In addition, in order
to handle multiple resource competing applications with time
varying demands, implementing efficient power allocation,
scheduling and routing algorithms is important.

In this paper, we consider a virtualized cloud service data
center in the presence of workload fluctuations and uncertain
channels. The cloud consists of a set of terminals with queues
and the data center is composed of a subset of more pow-
erful servers, which are distributed across the network. The
channel uncertainty is due to fading in conventional wireless
networks (CWNs) and/or uncertain link availability and reli-
ability both in primary service provider (PSP) and secondary
service provider (SSP) cognitive networks (CNs). The statistics
of these uncertainties in a SSP cognitive network are studied in
[5]. In order to increase the energy efficiency of cognitive net-
works, the concepts of SSP and PSP cognitive networks have
been recently introduced in [6]. In this concept, SSP provides
channel state information for secondary users (SUs) so that the
complexity is allocated to the network rather than to the ter-
minals. In this way, a wide range of terminals can operate as
SUs and terminals do not need to have cognitive capabilities.
The goal of this work is to maximize a joint utility of the long-
term application processing throughput of the terminals and to
minimize the average total power usage in the overall system

2332-7731 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 319

while keeping the network stable. We believe that our results
can be used as a performance benchmark for comparing various
solutions of different practical resource allocation schemes in
the VDCs.

The remainder of this paper is organized as follows. The
related work is presented in Section II. Section III describes the
system model and Section IV presents the optimization prob-
lem formulation. In Section V, we reformulate the problem as
a Markov decision process (MDP), and propose a new optimal
dynamic control policy. The joint network stability regions for
both SSP and PSP cognitive networks and also for CWNs are
derived in Section VI. The complexity of the dynamic policy
is analyzed in Section VII. In Section VIII, the unified stability
analysis for both PSP and SSP cognitive networks and CWN
is introduced and our dynamic transmission policy is shown to
outperform other existing network stabilizing policies. The sim-
ulations are conducted to validate the theoretical analysis of this
paper and presented in Section IX.

II. RELATED WORK

Dynamic resource allocation in VDCs has been a hot topic
among the researchers [2], [7]–[9]. In [2], [7] and [8] feedback-
driven resource control systems are designed to automatically
adapt to dynamic workload changes and to meet service level
objectives of applications within the shared virtualized infras-
tructure. Such techniques use feedback control loop, where the
goal is to allocate resources to meet its performance target.
However, since feedback techniques require information about
the target performance level, they cannot be used when the
goal is to maximize the utility. In [9], the authors propose a
dynamic live placement scheme for applications in cloud com-
puting environments called EnaCloud, where an energy-aware
heuristic algorithm is proposed to minimize the number of run-
ning VMs. Much of the previous work on resource allocation
in the VDCs is based on proactive workload adaptive resource
provisioning and steady state queuing models [10]–[13]. The
work in [10] defines a dynamic resource provisioning problem
for virtualized server systems as a sequential optimization prob-
lem which is solved using a lookahead control [11]. Such a
technique is quite useful when control actions have deadlines
to meet, but requires estimates of future workloads. In [13],
dynamic resource provisioning in a virtualized service environ-
ment is based on the estimate of the power usage behavior of the
hosted applications. Three online workload adaptive resource
control mechanisms based on steady state queueing analysis,
feedback control theory and the combination of these two are
proposed in [12]. This approach requires the implementation
of the statistical models for the workload, and resource alloca-
tion decisions are then made to meet such a predicted resource
demand. When predictions are accurate, proactive resource
allocation does provide very good performance [14]. In prac-
tice, however, predictions may be inaccurate and expensive
since they require workload data analysis and storage space.
Lyapunov optimization has been used to guarantee network
stability optimal cross-layer control policies for wireless net-
works [15]. The work in [16] uses Lyapunov optimization to
design an online control, routing and resource allocation algo-
rithm for a VDC. While this algorithm adjusts to workload

fluctuations, it does not take into account the possible channel
variations between the terminals and the servers. By consider-
ing the changing user demands, control decisions based on both
the channel variations and the workload, have been shown to be
effective in providing higher throughput and smaller delay in
the presence of time varying channels and resource demands
[17], [18].

In this paper, we maximize the long-term application pro-
cessing throughput of the terminals and minimize the average
total power usage in the overall system while guaranteeing
the network stability. Different from the previous work, our
control problem is formulated as a Markov decision process
(MDP) and solved using dynamic programming and value itera-
tion algorithm (VIA) [19], [20] for both PSP and SSP cognitive
networks as well as for CWNs. The resulting dynamic control
policy is shown to support every point on the network stability
region without requiring the information of arrival statistics and
proved to be stable using the Lyapunov drift theory. In [17] and
[21], a randomized stationary policy and a frame based algo-
rithm were used to analyse the stability of a dynamic algorithm.
It is shown in [17], [21] that the performance of their dynamic
algorithm is fixed amount worse than the performance of the
randomized stationary and the frame based algorithms. In this
paper, we prove that the performance of our dynamic policy is
better than the performance of the stationary policy and propose
a new unified stability analysis for both PSP and SSP cogni-
tive networks as well as for CWNs. In addition, we show that
the frame based policy proposed in [17], [21] cannot guaran-
tee network stability. Different from the works that use steady
state queuing and channel models, our approach makes use of
both the queue length state information (QSI) and the chan-
nel state information (CSI) to dynamically adjust the available
resources to meet the demand and to increase reliability and
resource utilization of the data center. Our approach also differs
from the previous works in the sense that the requests can be
processed either at the terminals or at the virtual machines of
the servers depending on CSI, QSI and computational intensity
of the request. Resource harvesting in this paper refers to the
possibility of opportunistic utilization of the network resources
by a terminal. These resources include:

• Spectrum, when using cognitive links.
• Power of the data center.
• Necessary software in the data center that is not available

at the terminals.
The contributions of this paper can be summarized as fol-

lows: 1. A comprehensive unified model of the virtualized
data center (computing could) for both PSP and SSP cogni-
tive networks as well as for CWNs is developed. 2. The model
decouples performance analysis of PSP and SSP cognitive net-
works although their operations are interdependent. 3. The
mutual impact of PSP and SSP cognitive networks is mitigated
by appropriate adaptation of the access control parameters in
the network. 4. New optimal dynamic control policy is intro-
duced. 5. Unified stability region for PSP and SSP cognitive
networks and CWNs is characterized. 6. Unified stability anal-
ysis for both PSP and SSP cognitive networks as well as for
CWNs is presented. 7. Using the Lyapunov drift theory, it is
shown that our dynamic policy supports every point in the net-
work stability region without requiring information of arrival



320 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

Fig. 1. A cloud with a VDC.

statistics and that the performance of our policy is better than
the performance of the stationary randomized policy propose in
[17], [21]. 8. We show that the frame based policy described in
[17], [21] cannot guarantee system stability.

III. SYSTEM MODEL

We consider a network composed of a VDC and a number
of mobile terminals with queues belonging to different clus-
ters of mobile clouds. We use I to denote the set of terminals
within a cloud and the VDC is composed of a set of servers S

hosting the cloud, as illustrated in Fig. 1. The VDC may be
either centralized or distributed across the network as in the
network with caching [22]. However, on purpose, we do not
want to limit our work on a specific network architecture. Our
analysis is valid for any data center with partitioning (virtual-
ization) of the processing resources (centralized or distributed)
and any conventional or PSP/SSP cognitive network character-
ized by the primary user (PU) return probability and secondary
user (SU) channel sampling quality. By definition, mobile cloud
is a set/cluster of terminals that share a certain pool of resources
[23]. In our case, the terminals share the resources located at the
data center.

Let |S| denote the number of servers within the data center
and |I| represent the number of terminals within the cloud. Each
server s is transformed into |I| VMs, each capable of serving
a terminal. For simplicity, we assume that each mobile termi-
nal can request service only from one server at a time, but the
hosting server can change in time. By dividing the time into
frames with index n, we define the following parameter for each
terminal i and server s:

bis(n) =

⎧⎪⎨⎪⎩
1; If terminal i is served on a VM of server s

in frame n.

0; Otherwise.

Let Bi (n) = [bi1(n), . . . , bi |S|(n)] denote the vector of these
parameters in frame n.

Application requests arrive to each terminal i according to
a process ai (n) at the beginning of each frame n. The arrival

processes ai (n) are stationary and ergodic with average rates
λi requests/frame. The external arrivals ai (n) are bounded in
their second moments every frame and E{[ai (n)]2} ≤ (amax

i )2

for all i ∈ I. However, we do not assume any knowledge
of the statistics of ai (n). We let A(n) = [a1(n), . . . , a|I|(n)]
denote the vector of these arrivals. For analysis purpose, we
assume that the application requests are placed into infinite
length transmission buffers qi (n), that are later defined in
Subsection III-C.

A. Channel Model

We use |his(n)|2 to represent the channel gain between ter-
minal i and server s. A block fading model is assumed so that
the channel values remain fixed during a frame and may change
from frame to frame according to a Markov chain. Let Hi (n) =
[|hi1(n)|2, |hi2(n)|2, . . . , |hi |S|(n)|2] ∈ Hi denote the vector of
channel gain processes at terminal i in frame n. The channel
process Hi (n) is stationary and ergodic and takes values on a
finite state space Hi . Since the servers can have different loca-
tions, it is possible that the channels between terminal i and
different servers are different.

If the channel is used within the CWN, the channel gain vec-
tor is given by H(n) in every frame n. Let πHi represent the
steady state probability for the channel state Hi in the CWN.
The channel processes are channel convergent with steady state
probabilities πHi .

If the channel is used within the cognitive network, the
equivalent channel gain process He

i (n) will have the following
form:

He
i (n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hi (n); With probability pP

H for PSP CN or

with probability pS
H for SSP CN.

0; With probability pP
0 for PSP CN or

with probability pS
0 for SSP CN.

For the PSP cognitive network, pP
H = (1 − pS

1 ) + pS
1 ppd and

pP
0 = pS

1 (1 − ppd). We assume that PU transmits a preamble
prior to message transmission to clear the channel in case that
SU is using it (with probability pS

1 ). Secondary user detects
correctly that preamble and clears the channel with probabil-
ity ppd. Let pP

1 represent the probability that a PU is active
and pid is the probability that a SU detects the idling channel.
The derivation of the probability 1 − pP

1 is given in [5]. In the
SSP cognitive network, pS

H is then given as pS
H = (1 − pP

1 )pid,
and the probability that the channel cannot be used is pS

0 =
(1 − pP

1 )(1 − pid) + pP
1 . In other words, SU gets the channel

Hi (n), if the PU is not active and the SU detects the idling chan-
nel. The channel is not used, if PU is not active but the SU fails
to detect the idling channel or the PU is active. Let πe

Hi
denote

the steady state probability for channel state He
i in PSP/SSP

cognitive networks given as

πe
Hi

=
{

pP
H πHi /pS

H πHi ; When He
i = Hi .

1 − pP
H /1 − pS

H ; When He
i = 0.

We use I (n) to denote the channel availability indicator at the
beginning of a frame n. For the SSP cognitive network, I (n) is
defined as



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 321

I (n) =
{

1; If He
i (n) = Hi (n).

0; If He
i (n) = 0.

The probability that I (n) = 1 is p[I (n) = 1] = pS
H and the

probability that I (n) = 0 is p[I (n) = 0] = pS
0 . For the PSP

cognitive network, I (n) is given as

I (n) =
{

1; If He
i (n) = Hi (n).

0; If He
i (n) = 0.

The probabilities for the PSP cognitive network are p[I (n) =
1] = pP

H and p[I (n) = 0] = pP
0 .

In addition, for the given channel in the SSP cognitive net-
work, we define a channel corruption indicator Ir(n) during a
frame n. In the SSP cognitive network, Ir(n) is given as

Ir(n) =
{

0; If PU returns to the channel.

1; Otherwise.

The probabilities p[Ir(n) = 1] = 1 − pP
return and p[Ir(n) = 0]

= pP
return. The PU return probability pP

return is discussed in [5].
The channel corruption indicator Ir(n) in the PSP cognitive
network is

Ir(n) =

⎧⎪⎨⎪⎩
0; If SU returns to the channel and does not

detect the presence of PU (collision).

1; Otherwise.

For the PSP cognitive network, the probabilities are given as
p[Ir(n) = 1] = (1 − pS

return) + pS
return psd and p[Ir(n) = 0] =

pS
return(1 − psd), where pS

return is the probability of SU return-
ing to the channel and psd is the probability that SU correctly
detects the presence of PU.

Additional modification of the channel model includes the
option what we refer to as “partial cognitive networks” (PC net-
works), where the network operator’s overall resources include
both cognitive and conventional (purchased) links [6]. Given
πHi , πe

Hi
, He

i and Hi ∈ Hi , deriving the channel model for the
PC network is straightforward.

B. Power Consumption

Depending on the current workloads, current channel states,
available energy and needed software, the application requests
can be processed either at the terminal or delegated to be per-
formed at one of the servers hosting the terminal. Let μis(n)

denote the number of requests delivered from terminal i to be
processed at the hosting server s in frame n. We use μi (n)

to represent the number of requests processed at terminal i
in frame n, when there is a channel available between termi-
nal i and server s, i.e., Hi (n) ∈ Hi . In addition, let μi0(n)

denote the number of requests that can be processed at termi-
nal i only, when there is no channel available between terminal
i and server s in frame n, i.e., I (n) = 0. When I (n) = 0,
more applications might be processed at terminal i only and
μi0(n) ≥ μi (n).

We use P tot
i (n) = Pi (n) + Pis(n) to represent the total

power consumption of terminal i in frame n, where Pi (n) is the

power required to process application requests at terminal i and
Pis(n) is the power required to deliver requests to be processed
at server s. Let αi and αis denote non-negative parameters. In
the CWN, we have

Pi (n) = μi (n)αi , (1)

Pis(n) = μis(n)αis

|his(n)|2 . (2)

In the PSP/SSP congnitive networks, Pi (n) and Pis(n) are
given as

Pi (n) = I (n)μi (n)αi + [1 − I (n)]μi0(n)αi , (3)

Pis(n) = I (n)μis(n)αis

|his(n)|2 . (4)

Let Pmax denote the maximum power available at terminal i in
frame n.

Each server s has a set of resources that are allocated to the
VMs hosted on it by its resource controller. These resources can
include, for example, the data center power and the necessary
software at the data center that is not available at the terminals.
Both of these resources can be easily added into the system
model as described later in Section IV. However, in this paper,
we only focus on the CPU frequency and power constraints.
All servers are assumed to have identical CPU resources. In
our model, CPUs run at finite number of operating frequencies
fmin < f < . . . < fmax. At each utilization level f , the power
consumption at server s is estimated as P̂s( f ) = P̂min + θ( f −
fmin)

2 [16]. Available techniques such as dynamic frequency
scaling (DFS), dynamic voltage scaling (DVS) and combination
of the two can be used to change the current CPU frequency that
affects the CPU power consumption [24], [25]. The maximum
power at server s is given as P̂max = P̂min + θ( fmax − fmin)

2.
At utilization level f , the maximum supportable service rate
μ̂s( f ) at server s is given as [16]

μ̂s( f ) = P̂s( f )

α̂s
= P̂min + θ( f − fmin)

2

α̂s
, (5)

where α̂s represents a non-negative parameter. The VM’s
resource allocation can be changed dynamically online without
disrupting the running applications within the VMs [26]. The
resources for each VM are adapted to the changing workloads
during its lifetime. In virtualized server environment the vir-
tual machine monitor (VMM) at any physical machine handles
resource multiplexing and isolation between VMs [26].

C. Queueing Model

Every frame n in the CWN, μi (n) + μis(n) application
requests are removed from the buffer of terminal i . Let
qi (n) denote the queue length at terminal i and Q(n) =
[q1(n), q2(n), . . . , q|I |(n)] represent the vector of queue
lengths at terminals in frame n. The queuing dynamics in the
CWN are then given as

qi (n + 1) = qi (n) + ai (n) − [μi (n) + μis(n)]. (6)



322 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

For the PSP/SSP cognitive networks, the corresponding equa-
tion is

qi (n + 1) = qi (n) + ai (n) − I (n)[μi (n)

+ Ir(n)μis(n)] + [1 − I (n)]μi0(n). (7)

At each server s, the delegated requests can be stored into
a buffer reserved for terminal i at server s before the requests
are processed at server s. We use q̂i

s(n) to denote the queue
length of terminal i at server s, Q̂(n) = [q̂1

1 (n), q̂1
2 (n), . . . ,

q̂1
|S|(n); . . . ; q̂ |I|

1 (n), q̂ |I|
2 (n), . . . q̂ |I|

|S|(n)] denotes the |I| × |S|
matrix of the queue lengths at each server s and Q̂i (n) =
[q̂i

1(n), q̂ i
2(n), . . . , q̂ i

|S|(n)] represents the i th row of Q̂(n). Let

μ̂i
s(n) represent the service rate [requests/frame] server s pro-

vides to terminal i in frame n. The queueing dynamics for the
application requests of terminal i at server s for both PSP and
SSP cognitive networks is given as

q̂ i
s(n + 1) = q̂i

s(n) + I (n)Ir(n)μis(n) − μ̂i
s(n). (8)

For the CWN, q̂i
s(n + 1) is written as

q̂i
s(n + 1) = q̂i

s(n) + μis(n) − μ̂i
s(n). (9)

Finally, let μ̂s(n) = ∑
i∈I μ̂i

s(n) represent the total service rate
at server s, and q̂s(n) = ∑

i∈I q̂i
s(n) denote the sum of queue

lengths at server s.

IV. UNIFIED PROBLEM FORMULATION

In order to derive a unified optimization problem for both
CWN and PSP/SSP cognitive wireless networks, one should
note that the service rates for the PSP/SSP cognitive networks
can be derived from the service rates of the CWN. When the
number of requests transmitted from terminal i to server s and
the number of requests processes at terminal i in the CWN
are given by μis(n) and μi (n), respectively, the corresponding
service rates for PSP and PSP cognitive networks are defined as

μis(n)∗ = μis(n)p[I (n) = 1]p[Ir(n) = 1] (10)

μ́i (n)∗ = μi (n)p[I (n) = 1] + μi0(n)p[I (n) = 0]

= μi (n)∗ + μi0(n)∗, (11)

where μi (n)∗ = μi (n)p[I (n) = 1] and μi0(n)∗ = μi0(n)

p[I (n) = 0].
Given (10) and (11), the unified power consumption and

queueing dynamics for both PSP and SSP cognitive networks
as well as for CWN are

Pi (n) = αi μ́i (n)∗, (12)

Pis(n) = μis(n)p[I (n) = 1]αis

|his(n)|2 , (13)

qi (n + 1) = qi (n) + ai (n) − [μ́i (n)∗ + μis(n)∗] (14)

for each terminal i and

q̂i
s(n + 1) = q̂i

s(n) + μis(n)∗ − μ̂i
s(n) (15)

for each terminal i at server s.

A specific control action at terminal i is a decision on how
many applications are processed at the terminal, how many
requests are forwarded to server s, and which specific server
s is hosting the terminal i . We let U(n) denote the set of con-
trol actions available at the terminals in frame n, and Ui (n) =
{μ́i (n)∗, μis(n)∗, bis(n)} ∈ U(n) represents a specific control
action at terminal i in frame n. In addition, we use U (n) =
[U1(n), U2(n), . . . , U|I|(n)] to represent the vector of control
actions in frame n.

The control action at each server s includes selecting the
CPU frequency, that affects the power consumption P̂s(n), as
well as CPU resource distribution among different VMs that
host the terminals running on that server. This allocation is
subject to the available control options at each server s. For
example, the controller may allocate different fractions of CPU
to the VMs in that frame. We use Û(n) to denote the set of
all control actions available at server s. Let Ûs(n) = {μ̂s(n)} ∈
Û(n) denote a particular control action taken at server s in frame
n under any policy and P̂s(n) is the corresponding power con-
sumption. The vector of control actions at the data center is
given as Û (n) = [Û1(n), Û2(n), . . . , Û|S|(n)].

Let X (n) = {Q(n) + A(n), Q̂(n), H(n)} represent the
state of the system in frame n with countable state space
X, where H(n) = [|h11(n)|2, |h12(n)|2, . . . , |h1|S|(n)|2;
|h21(n)|2, |h22(n)|2, . . . , |h2|S|(n)|2; . . . , ; |h|I|1(n)|2,
|h|I|2(n)|2, . . . , |h|I||S|(n)|2] denote |I| × |S| channel gain
matrix in frame n. We use DX (n) = {U (n), Û (n)} to denote
the control input, i.e., the action, in fame n, when the state
of the system is X (n). At the beginning of each fame n, the
network controller decides upon the value of DX (n) depending
on the current state of the system X (n). The control input
DX (n) takes values in a general state space DX (n), which
represents all the feasible control options in state X (n). Starting
from state X , let π = {DX (1), DX (2), . . .} denote the policy,
i.e., the sequence of actions. We use � to denote the space of
all such policies and π ∈ �.

It is important to note that the availability of the software
resources could be added here to the system model by simply
introducing a binary variable

ϕi (n) =

⎧⎪⎨⎪⎩
1; If terminal i has the necessary

software to process the applications.

0; Otherwise

and rewriting the state as X (n) = {Q(n) +
A(n), Q̂(n), H(n), ϕ(n)}, where ϕ(n) = [ϕ1(n), . . . , ϕ|I|(n)] is
the vector of variables ϕi (n). If ϕi (n) = 0, application requests
cannot be processed at terminal i in frame n.

Let δi represent a non-negative weight used as a normalizing
parameter. The goal is to map from the current X (n) to an opti-
mal sequence of DX (n), that solves the following optimization
problem:

maximize
π∈�

lim
n→∞

1

n

n−1∑
η=0

∑
i∈I

E
π
X

{
μ́i (η)∗ +

∑
s∈S

bis(η)μis(η)∗

−δi
P tot

i (η)

Pmax

}
− lim

n→∞
1

n

n−1∑
η=0

∑
s∈S

E
π
X

{
P̂s(η)

}
(16)



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 323

subject to

λi ∈ 
T,

qi (η) and q̂i
s(η) stay stable,

P tot
i (η) ≤ Pmax and P̂s(η) ≤ P̂max.

The constraints are valid for all i ∈ I and s ∈ S and 
T repre-
sents network stability region presented later in Section VI. The
objective in (16) is a constrained dynamic optimization problem
and it maximizes the joint utility of the sum throughput of the
applications processed at the terminals and minimizes the over-
all power usage both at the terminals and at the data center. It
allows the design of resource allocation policies that adjust to
workload and channel variations. For example, if the current
workload is small, then this objective encourages scaling down
the instantaneous capacity in the servers in order to achieve
energy savings. Similarly if the current workload is large, the
objective encourages scaling up the instantaneous capacity by
higher power consumption. In addition, (16) encourages to
delay some parts of input traffic by scheduling more packets
in good channel states, and less in poor conditions in order
to achieve the maximum long-term throughput with minimum
power consumption.

V. OPTIMAL CONTROL POLICY

In this section, we propose a dynamic control policy that
solves the constrained dynamic optimization problem in (16).
Every frame n, the policy uses the current QSI and CSI to define
resource allocation decisions Ui (n) and Ûs(n) for each termi-
nal i and server s. However, in order to calculate the control
actions at terminal i , we do not need information about the
input statistics or QSI and CSI of other terminals. Similarly, in
order to calculate the control actions at server s, we do not need
information about the input statistics or QSI of other servers.
As calculating the optimal control actions requires information
of the current QSI and CSI only and do not rely on the statis-
tics governing future arrivals, one should note that (16) can be
solved separately for each terminal i and server s.

A. Resource Allocation at the Terminals

Let Xi (n) = {qi (n) + ai (n), Q̂i (n), Hi (n)} represent the
state of terminal i in frame n with countable state space
Xi . Let yi (n) = qi (n) + ai (n) and rewrite Xi (n) as Xi (n) =
{yi (n), Q̂i (n), Hi (n)}. In addition, we use UXi (n) =
{μ́i (n)∗, μis(n)∗, Bi (n)} to denote the control input, i.e., action,
at terminal i in frame n in state Xi (n). The control input UXi (n)

takes values in a general state space UXi (n), which represents
all the feasible resource allocation options available in state
Xi (n) in frame n. By feasible options we mean the set of con-
trol actions that satisfy the power and the queue constraints,
as we cannot transmit more application requests than there are
in the queue. Let πi = {UXi (0), UXi (1), . . .} denote the policy,
i.e., the sequence of actions, at terminal i , and �i represent the
space of all such policies.

For each terminal i , the goal of this paper is to map from
the current QSI and CSI to an optimal policy π�

i ∈ �i that

stabilizes the system and solves the following optimization
problem:

maximize
πi ∈�i

lim
n→∞

1

n

n−1∑
η=0

E
πi
Xi

{Ti (η) + Si (η)}

subject to lim
n→∞

1

n

n−1∑
η=0

E
πi
Xi

{
P tot

i (η)

Pmax

}
≤ 1. (17)

In (17),

Ti (η)=
[

yi (η)−
∑
s∈S

bis(η)q̂i
s(η)

] ∑
s∈S bis(η)μis(η)∗

μmax
is

, (18)

Si (η)=yi (η)

[
μ́i (η)∗+

∑
s∈S

bis(η)μis(η)∗
]

(19)

and the maximum number of application requests that can be
delivered from terminal i to server s in one frame is

μmax
is = max

{s∈S,Hi ∈Hi }
Pmax|his |2

αis
. (20)

One should note that, based on the definition of H e
i for PSP/SSP

cognitive networks in Section III-A, μmax
is gets the same

value for both the PSP/SSP cognitive network and the CWN.
Equation (17) maximizes the long-term average throughput of
the terminals while keeping the energy cost and queues low.
For example, high power computationally intensive application
requests at the terminal can be delegated to the hosting server
in order to achieve energy savings at the terminal. If the back-
log value at the terminal i is larger than the backlog of terminal
i at server s, the objective in (17) encourages the terminal to
delegate its requests to be processed at the servers.

1) Formulation as a Markov Decision Process: We first
convert the constrained dynamic optimization problem in (17)
into an unconstrained problem (UP) and then find the optimal
policy for this UP [19], [20], [27], [28].

The set of feasible actions UXi in each state Xi = {yi , Q̂i ,
Hi } is the set of all {μ́∗

i , μ
∗
is, Bi } that satisfy the power and

the queue constraints as we cannot transmit more packets than
there are in the queue, i.e., μ́∗

i + μ∗
is ≤ yi and P tot

i ≤ Pmax.
After taking an action UXi = {μ́∗

i , μ
∗
is, Bi }, the following state

is given as Zi = {qi , Ŷi , Hi }, where Ŷi = [ŷi
1, . . . , ŷi

|S|] and

ŷi
s = q̂i

s + bisμ
∗
is . Based on (6) and (9), we get this by noting

that yi − (μ́∗
i + μ∗

is) = qi and q̂i
s + μ∗

is = ŷi
s . It is important to

note that for each state Xi = {yi , Q̂i , Hi } with equal Q̂i and Hi ,
where qi ∈ {0, 1, . . . , yi }, ai ∈ {0, 1, . . . , yi } and qi + ai = yi ,
the set of feasible actions and following states are the same.
Thus, state Zi = {qi , Ŷi , Hi } is equivalent to a state Xi = {yi ,
Q̂i , Hi }, if the channels are the same and both qi and ai take
values with the set {0, 1, . . . , yi } so that qi + ai = yi and q̂i

s
takes values with the set {0, 1, . . . , ŷi

s} so that ŷi
s = q̂i

s + bisμ
∗
is

for each server s. When ai = 0 and bisμ
∗
is = 0 for all s ∈ S,

we have yi = qi and Q̂i = Ŷi . Then, Xi = {yi , Q̂i , Hi } = {qi ,
Ŷi , Hi } = Zi . For example, let us consider a system with a ter-
minal and 2 servers. In state Xi = {yi , Q̂i , Hi }, we let yi =
3 and Q̂i = [q̂i

1, q̂i
2] = [1, 2]. Then, qi = {0, 1, . . . , 3}, ai =



324 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

{0, 1, . . . , 3}, qi + ai = 3 and [ŷi
1, ŷi

2] = [1, 2]. When ai = 0
and bisμ

∗
is = 0, yi = qi = 3 and q̂i

s = ŷi
s . Now we have Xi =

Zi . This property is important when calculating the optimal
value functions in (28), as W l(Xi ) = W l(Zi ), if Xi is equiv-
alent to Zi . We let p(Zi |Xi , UXi ) to denote the transition
probability from state Xi to state Zi with action UXi .

For a policy πi , define the reward Di and cost functions Ei

as

Di = lim
n→∞

1

n

n−1∑
η=0

E
πi
Xi

{Ti (η) + Si (η)]} (21)

and

Ei = lim
n→∞

1

n

n−1∑
η=0

E
πi
Xi

{
P tot

i (η)

Pmax(η)

}
. (22)

Let �E
i denote the set of all admissible control policies πi ∈

�i , which satisfy the constraint Ei (η) ≤ 1 in every frame
η. Then, (17) can be restated as a constrained optimization
problem given as

maximize Di ; subject to πi ∈ �E
i . (23)

The problem (23) can be converted into a family of uncon-
strained optimization problems through a Lagrangian relaxation
[29]. The corresponding Lagrangian function for any policy
πi ∈ �i and for every βi ≥ 0 can now be defined as

Jπi
β (Xi ) = lim

n→∞
1

n

n−1∑
η=0

E
πi
Xi

{Ti (η) + Si (η) − βi Ei (η)} . (24)

Given βi ≥ 0, the unconstrained optimization problem is
defined as

maximize Jπi
β (Xi ) subject to πi ∈ �i . (25)

An optimal policy for unconstrained problem is also opti-
mal for the original constrained control problem when βi is
appropriately chosen [27], [29].

The problem given in (25) is a standard MDP with the maxi-
mum average reward criterion. For each initial state Xi ∈ Xi ,
define a corresponding discounted reward MDP with value
function

Wα(Xi ) = maximize
πi ∈�i

∞∑
n=0

E
πi
Xi

{
αn R[UXi (n), Xi (n)]

}
(26)

where the discount factor α ∈ (0, 1), and a reward from taking
an action UXi (η) in state Xi (η) is defined as

R[UXi (n), Xi (n)] = Ti (n) + Si (n) − βi Ei (n). (27)

Wα(Xi ) is defined as the optimal total expected discounted util-
ity for discount factor α [30]. One way to solve (26) is to use
value iteration algorithm (VIA) [27], [30], [31].

VIA is the standard dynamic programming approach to
recursively compute the discount optimal sequence π�

i for (26)

[27], [31]. For notational simplicity, we suppress the subscript
α. The solution to (26), i.e., the optimal value functions W �(Xi )

for each initial state Xi and the corresponding discount optimal
sequences π�

i ∈ �i can be solved with the following iterative
algorithm:

W l+1(Xi ) = max
UXi ∈UXi

⎧⎨⎩R(UXi , Xi )

+α
∑

Zi ∈Zi

p(Zi |Xi , UXi )W l(Zi )

⎫⎬⎭ . (28)

In (28), Zi ⊂ Xi is the set of feasible states that follow state Xi

by taking an action UXi , and l denotes the iteration index. For
each initial state Xi , define the optimal action in each state Xi

as

arg max
UXi ∈UXi

⎧⎨⎩R(UXi , Xi ) + α
∑

Zi ∈Zi

p(Zi |Xi , UXi )W �(Zi )

⎫⎬⎭ .

(29)

B. Resource Allocation at the Servers

Let X̂s(n) = [ŷ1
s (n), . . . , ŷ|I |

s (n)] represent the vector of
queue lengths at server s in frame n with countable state space
X̂s . Let ÛX̂s

(n) = {[μ̂1
s (n), . . . , μ̂

|I|
s (n)]} denote the particular

control action in state X̂s(n), and ÛX̂s
(n) is the set of feasi-

ble resource allocation options in each state X̂s(n). In addition,
we use π̂s = {ÛX̂s

(1), ÛX̂s
(2), . . .} to denote the sequence of

control actions at server s and �̂s represents the set of all such
policies.

For each terminal s, map from the current queue and chan-
nel states to an optimal sequence of actions that stabilizes the
system and solves the following optimization problem:

maximize
π̂s∈�̂s

lim
n→∞

1

n

n−1∑
η=0

∑
i∈I

E
π̂s

X̂s

{
ŷi

s(η)μ̂i
s(η)

}

subject to P̂min ≤ lim
n→∞

1

n

n−1∑
η=0

E
π̂s

X̂s
{P̂s(η)} ≤ P̂max. (30)

The objective encourages allocating bigger fractions of CPU to
the VMs of the terminals with the biggest backlog values at the
server. If the current backlog value of terminal i at server s is
inside the instantaneous capacity region, then this objective also
encourages allocating less CPU to the VMs of the terminals
with low backlog values and/or run CPU at slower speeds to
achieve energy savings at the server.

1) Formulation as a Markov Decision Process: The set of
feasible actions in each state X̂s = [ŷ1

s , . . . , ŷ|I |
s ] is the set of

all {[μ̂1
s , . . . , μ̂

|I|
s ]} that satisfy μ̂i

s ≤ ŷi
s and P̂s ≤ P̂max. After

taking an action ÛX̂s
, the following state is given as Ẑs =

{[q̂1
s , . . . , q̂ |I |

s ]}. State Ẑs that is equivalent to a state X̂s , where
q̂i

s ∈ {0, 1, . . . , ŷi
s}, bisμ

∗
is ∈ {0, 1, . . . , ŷi

s} and q̂i
s + bisμ

∗
is =

ŷi
s , as described in Subsection V-A1. Let p(Ẑs |X̂s, ÛX̂s

) denote



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 325

the transmission probability from state X̂s to state Ẑs with
action ÛX̂s

. Just as in Subsection V-A1, (30) can now be solved
by converting it into a MDP and by finding the optimal policy
for this MDP using the VIA.

VI. ACHIEVABLE RATES

The network capacity/stability region is defined as the set of
all arrival rates λ = [λ1, . . . , λ|I|] that the network can stably
support, considering all possible resource allocation policies
that we can have for the system. In this Section, we characterize
the fundamental throughput limitations and present the unified
capacity/stability region of the system given in Fig. 1 for both
SSP and PSP cognitive networks as well as for the CWN. For
precise definition of stability for single queues and for queueing
networks, we refer readers to [17]. As the optimization can be
solved separately for each terminal i and server s, the support-
able arrival rate regions can also be derived separately for the
two cases.

A. Unified Arrival Rate Region at the Terminals

Let gi denote the long-term average number of applica-
tion requests that can be supported at each terminal i in the
CWN. We use ci to denote the long-term average number of
application requests processed at terminal i , cis represents the
long-term average number of application requests delivered
from terminal i to server s and gi = ci + ∑

s∈S cis .
Given ci and cis for the CWN, the long-term average number

of application requests processed at terminal i and the long-
term average number of application requests delivered from
terminal i to server s for the cognitive wireless networks are
respectively given as

c∗
is = cis p(I = 1)p(Ir = 1) (31)

ć∗
i = ci p(I = 1) + ci0 p(I = 0) = c∗

i + c∗
i0, (32)

where c∗
i = ci p(I = 1) and c∗

i0 = ci0 p(I = 0). Here c∗
i0 rep-

resents the long-term average number of requests processed at
terminal i , when there is no channel available between terminal
i and server s, i.e., He

i = 0. Let g∗
i = ć∗

i + ∑
s∈S c∗

is denote the
long-term average number of application requests that can be
supported at terminal i in PSP/SSP cognitive networks.

Due to the time varying channel conditions between terminal
i and the servers, g∗

i must be averaged over all possible channel
states. Moreover, for the given channel states, g∗

i is not fixed
and depends on control policy πi ∈ �i for choosing the control
actions. Thus, numerical calculation of all supportable rates g∗

i
is computationally very challenging.

However, based on (1) and (2), the supportable arrival rate
region at the terminals can also be defined by considering only
the set of policies, where each terminal transmits at full power
in each frame n. Let OHi ⊂ UXi represent the set of possible
options to allocate the total power Pmax at each terminal i in
channel state Hi . In addition, we use OHi ∈ OHi to denote a
total power allocation action at terminal i , when the system is
in channel state Hi . The long-term average transmission rate of
terminal i for the full power policies is given by g∗

maxi
. The set

of all full power long-term average transmission rates g∗
maxi

that
a terminal can be configured to support is now given as

∗ =
∑

Hi ∈Hi

πH Conv{μi (OHi , Hi )
∗

+
∑
s∈S

bisμis(OHi , Hi )
∗|OHi ∈ OHi }+p(I=0)μmax

i0 , (33)

where

μmax
i0 = Pmax/αi (34)

is the maximum number of requests that can be processed at
terminal i , when there is no channel available between termi-
nal i and server s. For the PSP and SSP cognitive networks,
p(I = 0) = pP

0 and p(I = 0) = pS
0 , respectively. In the CWN,

p(I = 0) = 0. In (33), addition and scalar multiplication of
sets are used, and Conv{B} represents the convex hull of the
set B that is defined as the set of all convex combinations
p1v1 + p2v2 + . . . + p j v j of elements v j ∈ V, where p j s are
probabilities summing to 1.

The throughput region ∗ can be viewed as the set of all long-
term full power average service rates g∗

maxi
that the terminal

can be configured to support. Thus, the unified supportable rate
region 
T at the terminals for both the PSP and SSP cognitive
networks as well as for the CWN is the set of all average arrival
rates vectors λ = [λ1, λ2, . . . , λ|I|] for which there exists a
control policy πi that satisfies

λi ≤ lim
n→∞

1

n

n−1∑
η=1

E
πi
Xi

{
μi (η)∗ +

∑
s∈S

bis(η)μis(η)∗
}

+ p(I = 0)μmax
i0 ≤ g∗

maxi
(35)

for some g∗
maxi

∈ ∗, as rates below each point in ∗ can like-
wise be supported. Specifically, λ is in the region 
T if there
exists a average service rate vector g∗

i such that there exists a
control process which supports the rates λ.

For the CWN, we write λi as λi = λt
i + ∑

s∈S λts
is , where

λt
i denotes the average number of supported input requests at

terminal i that are processed at terminal i , and λts
is represents

the average number of supported input requests at terminal i
that are forwarded from terminal i to server s. In addition, let
λ

ts
i denote the average number of supportable input requests

processed at terminal i , when bis = 1, and λt
i = ∑

s∈S λ
ts
i . In

order to avoid multidimensional illustration of the results, we
fix |I| = |S| = 2. For the channel model given in Section IX,
the supportable rate region λ

t2
i + λts

i2 vs. λ
t1
i + λts

i1 is plotted as
a dashed line in Fig. 2 and denoted as 
Ti . For comparison,
the subset of the region 
Ti in Fig. 2, illustrates the support-
able arrival rate region for the channels between terminal i and
servers, i.e., λ

t1
i = λ

t2
i = 0.

Let λmax
i denote the maximum average number of requests

that can be supported at terminal i in the CWN. It can be seen
in Fig. 2, that λmax

i = 8 + 7 = 15. We have λmax
i = λt

maxi
+∑

s∈S λts
maxis

, where λt
maxi

denote the maximum number of sup-
ported input requests at the terminal i processed at terminal i
and λts

maxis
represents the maximum number of supported input

requests at terminal i forwarded from terminal i to server s.



326 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

Fig. 2. The rate region λ
t2
i + λts

i2 vs. λ
t1
i + λts

i1 and the subregion λts
i2 vs. λts

i1.

Fig. 3. The unified supportable arrival rate region at the terminals (
T) and at
the server (
S).

In Fig. 2, it can be seen that λt
maxi

= 0.5 and
∑

s∈S λts
maxis

=
8 + 6.5 = 14.5. Given λmax

i , the maximum supportable arrival
rate at terminal i for the PSP and SSP cognitive networks is
given as

λcn
maxi

= λt
maxi

p(I = 1) +
∑
s∈S

λts
maxis

p(I = 1)p(Ir = 1)

+ p(I = 0)μmax
i0 . (36)

For the channel model of the CWN given in Section IX, the
unified supportable arrival rate region at terminals (
T) for both
the PSP and SSP cognitive networks as well as for the CWN is
now illustrated in Fig. 3.

B. Unified Arrival Rate Region at Servers

Let ĝi
s denote the long-term average number of application

requests of terminal i processed at server s, and ĝs = ∑
i∈I ĝi

s
is the long-term average supportable rate at server s. The long-
term average number of application requests ĝs is not fixed and
depends on control policy for choosing the actions.

Let 
S represent the supportable arrival rate region at server
s. In order to calculate 
S, we consider only the set of poli-
cies that consume the whole P̂max at server s in each frame
n. We use Ôs to represent the set of possible full power allo-
cation options at server s, and Ôs ∈ Ôs denotes a full power
allocation action at server s. One should note that Ôs ⊂ Ûs .
Let ĝmax

s denote the long-term full power average number of

requests processed at server s. The set of full power average
number of requests that can be supported at server s is

̂ = Conv{μ̂1
s (Ôs) + μ̂2

s (Ôs) + . . . ,+μ̂|I|
s (Ôs)|Ôs ∈ Ôs}.

(37)

Specifically, the throughput region ̂ can be viewed as the set of
all full power long-term average service rates ĝmax

s that a server
can be configured to support. Thus, the supportable arrival rate
region 
S at server s is the set of all average arrival rates∑

i∈I λts
is for which there exists a control policy π̂s that satisfies

∑
i∈I

λts
is ≤ lim

n→∞
1

n

n−1∑
η=1

E{μ̂s(η)} ≤ ĝs ≤ ĝmax
s (38)

for some ĝmax
s ∈ ̂ as rates below each point in ̂ can likewise

be supported.
For comparison, the supportable arrival rate region at server

s, 
S, is illustrated in Fig. 3 together with 
T. Since 
T is a
subset of 
S, it is clear that server s can support all arrival rates
λ inside 
T. Thus, the network stability region 
 is equal to

T. Stability region is unique for each network and it should
not be mixed up with the stability region of a specific resource
allocation policy. The stability region of a resource allocation
policy is a closure of the set of arrival rate vectors λ that the pol-
icy can stably support and it is a subset of the network capacity
region [17].

VII. COMPLEXITY ANALYSIS

In this section, we analyse the complexity of the dynamic
control policy proposed in Section V. The complexity of solv-
ing MDPs using VIA has been also considered, for example,
in [27] and [32]. However, unlike in [27], we would like to
emphasize that our policy does not require any knowledge
of the statistics of ai (n) which significantly decreases the
computational complexity of the VIA.

In order to calculate the optimal policy in (29), we first need
to calculate the rewards in (27) and then the optimal value func-
tions in (28). It is easy to see that the complexity of calculating
the optimal control policy depends not only on the sizes of Xi

and X̂s but also on the number of feasible control options in
each state Xi ∈ Xi and X̂s ∈ X̂s . We start with defining the
cardinality of Xi and X̂s .

Let |Xi | and |X̂s | denote the number of states in Xi and X̂s ,
respectively. In addition, let |Hi | denote the number of chan-
nel states in state space Hi . For arrival rates inside 
T, we
have lim supn→∞ yi (η) = ymax

i and lim supn→∞ ŷi
s(η) = ŷmax

s
for all i ∈ I and s ∈ S. The total number of states at terminal i
is

|Xi | = (ymax
i + 1)|Hi |(ŷmax

s + 1)|S| (39)

and the total number of states at servers s

|X̂s | = (ŷmax
s + 1)|I|. (40)

The rewards in (27) need to be calculated for each action
UXi ∈ UXi in each state Xi ∈ Xi . Let |UXi | and |ÛX̂s

| denote



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 327

the number of feasible control actions in each state Xi ∈ Xi and
X̂s ∈ X̂s , respectively. In addition, we use μmax

Xi
to represent the

maximum number of application requests that can be removed
from the buffer of terminal i with power Pmax in state Xi . The
number of feasible actions in state Xi is then given as

|UXi | = (|S| + 1) min{yi , μ
max
Xi

} + 1, (41)

and the number of feasible actions in state X̂s as

|ÛX̂s
| = |I| min

{∑
i

ŷi
s, μ̂

max
s

}
+ 1, (42)

where μ̂max
s = P̂max/αs . The total number of calculated

rewards at terminal i and server s are now given as
∑

|Xi | |UXi |
and |X̂s ||ÛX̂s

|, respectively.
After calculating all the rewards, we get the optimal value

functions W � by calculating the value function in (28) l times
for each state Xi ∈ Xi until the convergence happens. Thus, in
order to get the optimal value functions, the value functions
need to be calculated in total of l|Xi | times for terminal i and
l|X̂s | times for server s. Given the optimal value functions, the
optimal actions for each state Xi ∈ Xi (X̂s ∈ X̂s) can now be
calculated from (29).

It is important to note that if the dynamic policy required the
knowledge of the arrival rate statistics, we could not calculate
the optimal actions separately for each terminal i and server s.
Then, the total number of network states would be given as

(ymax
i + 1)|I||Hi |(ŷmax

s + 1)|S|(ŷmax
s + 1)|I||S|(amax

i + 1)|I|.
(43)

When compared to (39) and (40), the number of states in (43)
is considerably higher.

VIII. STABILIZING CONTROL POLICIES

In this section, we compare the performance of our dynamic
policy with the performance of the randomized stationary pol-
icy presented in [17], [21]. We show that the performance of our
dynamic policy is better than the performance of the stationary
policy and prove that the frame based policy, that was argued
to provide performance better than the stationary policy in [17],
[21] cannot guarantee network stability.

A. Lyapunov Drift

Our stability analysis relies on Lyapunov drift that specifies
a sufficient condition for the stability of a system with queues.
This method is used to prove the stability of different policies
in several publications, such as [15], [17], [21], [33], [34] and
[35].

1) Lyapunov Drift at Terminal i: The maximum service
rate at terminal i is given as

μ∗
maxi

= max{μmax
i , μmax

i0 }, (44)

where μ∗
maxi

= max{s∈S,Hi ∈Hi } μi (Pi ) + μis(Pis, his) and
μmax

i0 is given in (34). Such a value exists because the arrival
rates are bounded [15], [17], [21].

Consider the K-step dynamics of unfinished work at termi-
nal i :

qi (K )=qi (0)+
K−1∑
n=0

ai (n)−
K−1∑
n=0

[
μ́i (n)∗+

∑
s∈S

bis(n)μis(n)∗
]

.

(45)
We can write (45) as

qi (K )=yi (0)+
K−1∑
n=1

ai (n)−
K−1∑
n=0

[
μ́i (n)∗+

∑
s∈S

bis(n)μis(n)∗
]

,

(46)

where yi (0) = qi (0) + ai (0). By adding ai (K ) on both sides of
(46), we get

yi (K )=yi (0)+
K∑

n=1

ai (n)−
K−1∑
n=0

[
μ́i (n)∗+

∑
s∈S

bis(n)μis(n)∗
]

,

(47)

where yi (K ) = qi (K ) + ai (K ). Inserting yi = yi (0), μ́∗
i +

μ∗
is = 1

K

∑K−1
n=0 μ́i (n)∗ + ∑

s∈S bis(n)μis(n)∗ and ai =
1
K

∑K
n=1 ai (n) into (47), we have

yi (K ) = yi + K ai − K (μ́∗
i + μ∗

is). (48)

Squaring both sides of (45), defining the Lyapunov func-
tion as L(yT) = y2

i and taking conditional expectations of the
inequality given yT(0), the K-step Lyapynov drift is given as:

E{L[yT(K )] − L[yT(0)]|yT(0)} ≤ K 2 M − 2K yi (0)
1

K

×
[

K−1∑
n=0

E

{
μ́i (n)∗ +

∑
s∈S

bis(n)μis(n)∗|yT(0)

}

−
K∑

n=1

E{ai (n)|yT(0)}
]

. (49)

The above equation represents Lyapunov drift for any resource
allocation policy that we can have for the system and

M = (μ∗
maxi

+ amax
i )2. (50)

Since yi (K ) = qi (K ) + ai (K ), where qi (K ) is given in (45),
the policy that minimizes 1

K+1

∑K
n=0 E{yi (n)} also minimizes

1
K+1

∑K
n=0 E{qi (n)}.

We now define K as the number of frames required to reach
the steady state behavior so that

K∑
n=0

E{yi (n)} =
K+k∑
n=0

E{yi (n)}, ∀ i ∈ I, (51)

where k = {1, . . . ,∞}.
2) Lyapunov Drift at Server s: The maximum service rate

of terminal i at server s is

μ̂maxi
s � max

{i∈I}
μ̂i

s(P̂max). (52)



328 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

The K-step dynamics of unfinished work at server s are given
by

q̂ i
s(K ) = q̂s(0) +

K−1∑
n=0

μis(n)∗ −
K−1∑
n=0

μ̂i
s(n), (53)

that can be written as

ŷi
s(K ) = ŷi

s(0) +
K∑

n=1

μis(n)∗ −
K−1∑
n=0

μ̂i
s(n). (54)

By defining Lyapunov function as L(ŷST) = (ŷi
s)

2, the K-step
Lyapunov drift is then given as

E{L[ŷST(K )] − L[ŷST(0)]|ŷST(0)} ≤ K 2 M̂ − 2K ŷi
s(0)

1

K

×
[

K−1∑
n=0

E{μ̂i
s(n)|ŷST(0)} −

K∑
n=1

E{μis(n)∗|ŷST(0)}
]

,

(55)

where M̂ is given as

M̂ = (μ̂maxi
s + μmax

is )2 (56)

and μmax
is is defined in (20). Equation (55) represents the

Lyapunov drift for any resource allocation policy yielding ser-
vice rate μ̂i

s at server s. Since ŷi
s(K ) = q̂ i

s(K ) + μis(K )∗,

the policy that minimizes maxi∈I
{

1
K+1

∑K
n=0 E{ŷi

s(n)}
}

, also

minimizes maxi∈I
{

1
K+1

∑K
n=1 E{q̂i

s(n)}
}

.

B. Randomized Stationary Policy

In order to support every point in the network stability region
described in Section VI, it is sufficient to consider only the
class of stationary, randomized policies that take control deci-
sions based on the current channel states only and does not
consider current workloads. The randomized stationary policy
was presented in [17] and it can be implemented only if the
channel steady state probabilities and both the external arrival
rates λ and the internal arrival rates c∗

is are known in advance.
In this paper, the stationary policy will be used to analyze the
performance of our dynamic control policy. The details on the
stability analysis and the implementation of a stationary policy
can be found in [17], [21].

The average arrival rates of each terminal i and the average
arrival rates of each terminal i at servers s are assumed to be
within 
, so that λi + θ ∈ 
 and λts

is + θ ∈ 
. Then, λi ≤ g∗
i −

θ and λts
is ≤ ĝi

s − θ . For the stationary policy, we can now have
[17], [21]

1

K

K−1∑
n=0

E

{
μ́i (n)∗+

∑
s∈S

bis(n)μis(n)∗
}

− 1

K

K∑
n=1

E{ai (n)}≥ 2θ

3

(57)

for each terminal i and

1

K

K−1∑
n=0

E{μ̂i
s(n)} − 1

K

K∑
n=1

E{μis(n)∗} ≥ 2θ

3
. (58)

for each terminal i at server s. Inserting (57) and (58) into right
hand side of (49) and (55), respectively, the queuing bounds for
the stationary policy are given as

lim sup
n→∞

1

n + 1

n∑
η=0

E{qi (η)}

≤ lim sup
n→∞

1

n + 1

n∑
η=0

E{yi (η)} ≤ 3K M

4θ
(59)

for all i ∈ I and

lim sup
n→∞

1

n + 1

n∑
η=0

E{q̂i
s(η)}

≤ lim sup
n→∞

1

n + 1

n∑
η=0

E{ŷi
s(η)} ≤ 3K M̂

4θ
(60)

for all i ∈ I and s ∈ S.

C. Frame Based Policy

Frame based policy works like the dynamic policy, but
updates the backlog information every K frames. Given (17)
and (30), the frame based policy is then designed to maximize

1

K

K−1∑
n=0

E

{
[yi (0) − q̂i

s(0)]

∑
s∈S bis(n)μis(n)∗

μmax
is

+ yi (0)[μ́i (n)∗

+
∑
s∈S

bis(n)μis(n)∗]

}
(61)

at each terminal i and

1

K

K−1∑
n=0

∑
i∈I

E{ŷi
s(0)μ̂i

s(n)} (62)

at each servers s.
It was argued in [17], [21] that since the frame based policy

maximizes

1

K

K−1∑
n=0

yi (0)E

{
μ́i (n)∗ +

∑
s∈S

bis(n)μis(n)∗
}

(63)

and (62), the frame based policy is stable and its performance
is better than the performance of any other network stabilizing
policy.

Theorem 1: Frame based policy is not the best policy and it
cannot guarantee network stability.

Proof: In order for a system to be stable, all the queues
both at the terminals and servers must be stable [17]. It is easy to
see that by maximizing the sum in (63), the frame based policy
maximizes the right hand side of the Lyapunov drift in (49).
However, when there are shared resources in the network, by
maximizing only the sum in (62), the frame based policy cannot
guarantee that the right hand side of (55) is maximized for each
virtual queue of terminal i at server s.



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 329

Let us consider a simple example of a system with two ter-
minals and a server s. By assuming that for the best network
stabilizing policy we have

K∑
n=1

2∑
i=1

μis(n)∗−
K−1∑
n=0

2∑
i=1

μ̂i
s(n)=40, (64)

K∑
n=1

μ1s(n)∗−
K−1∑
n=0

μ̂1
s (n)=0+10+5+8−10+2+8−4+1=20

(65)

and
K∑

n=1

μ2s(n)∗−
K−1∑
n=0

μ̂2
s (n)=0+10+5+8−10+2+8−4+1=20.

(66)

It can be seen that if
∑n

η=1 μis(η)∗ − ∑n−1
η=0 μ̂i

s(η) = 23,

ŷi
s(η + 1) − ŷi

s(η) = μis(η + 1)∗ − μ̂i
s(η) is negative prevent-

ing (65) and (66) to get bigger than 23. However, since the
frame based policy is designed to maximize only the sum in
(62), it can allocate the resources so that

K∑
n=1

μ1s(n)∗−
K−1∑
n=0

μ̂1
s (n)=0+10+5+8−0+2+8−0+1=34

(67)

and
K∑

n=1

μ2s(n)∗−
K−1∑
n=0

μ̂2
s (n)=0+10+5+8−20+2+8−8+1=6.

(68)

The frame based policy maximizes the sum
∑K

n=1
∑2

i=1

μis(n)∗ − ∑K−1
n=0

∑2
i=1 μ̂i

s(n) = 34 + 6 = 40, but it cannot
guarantee that the right hand side of (55) is maximized for each
virtual queue of terminal i at server s. The frame based policy
provides very small delay for terminal 2, but prevents terminal
1 to reach its steady state and stability. �

D. Dynamic Control Policy

In this section, we show that our dynamic control policy
offers performance better than the stationary policy and pro-
vides bounds on average delays at each terminal i and server s
without requiring information of arrival statistics.

Theorem 2: Dynamic policy supports every point on the net-
work stability region without requiring information of arrival
statistics. The performance of the dynamic policy is bet-
ter than the performance of the randomized stationary algo-
rithm.

Proof: Dynamic control policy is designed to maxi-
mize (17) at each terminal i and (30) at each servers
s. Inserting yi (n) = yi (0) + ∑n

η=1 ai (η) − ∑n−1
η=0[μ́i (η)∗ +∑

s∈S bis(η)μis(η)∗] into (19) in (17) and ŷi
s(n) = ŷi

s(0) +∑n
η=1 μis(η)∗ − ∑n−1

η=0 μ̂i
s(η) into (30), we see that the

dynamic policy maximizes

1

K

K−1∑
n=0

E

{
[yi (n) − q̂ i

s(n)]

∑
s∈S bis(n)μis(n)∗

μmax
is

+ yi (0)

[
μ́i (n)∗ +

∑
s∈S

bis(n)μis(n)∗
]

+ [
μ́i (n)∗

+
∑
s∈S

bis(n)μis(n)∗
] ⎡⎣ n∑

η=1

ai (η) −
n−1∑
η=0

[
μ́i (η)∗

+
∑
s∈S

bis(η)μis(η)∗
]]}

(69)

at each terminal i and

1

K

K−1∑
n=0

∑
i∈I

E

⎧⎨⎩ŷi
s(0)μ̂i

s(n)+μ̂i
s(n)

⎡⎣ n∑
η=1

μis(η)∗−
n−1∑
η=0

μ̂i
s(η)

⎤⎦⎫⎬⎭
(70)

at each servers s.
It can be seen in (69) that dynamic policy maximizes the right

hand side of the Lyapunov drift in (49). In addition, it is easy
to see in (70) that dynamic policy is designed to maximize the
right hand side of (55) for each user i at server s. The dynamic
policy allocates more CPU to a terminal with the longest

queue and thus minimizes maxi∈I
{

1
K

∑K−1
n=0 E{q̂i

s(n)}
}

at

server s. By comparing (62) and (70) it can also be seen
that, unlike the frame based policy, our dynamic policy max-
imizes 1

K

∑K−1
n=0

∑
i∈I E{μ̂i

s(n)} so that 1
K

∑K−1
n=0 E{μ̂i

s(n)} −∑K
n=1 E{μis(n)∗} on the right hand side of (55) is maximized

for each virtual queue of terminal i at server s. Thus, the
dynamic policy stabilizes the network and its performance is
better that the performance of the stationary policy. The queue-
ing bounds for the dynamic policy can now be given as in (59)
and (60). �

IX. PERFORMANCE EVALUATION

For illustration purposes, we have evaluated the performance
of the dynamic control policy via simulations. The performance
of the optimal dynamic transmission policy is illustrated in
the presence of time varying workloads and uncertain chan-
nels both for CN and PC network as well as for CWN. It is
shown that by adapting to the changes in network conditions,
our control policy mitigates the effect of PSP and SSP cog-
nitive networks on each other. The simulations support our
stability analysis presented in Sections VI and VIII, and are
implemented using Matlab.

A. Experiment Setup

Due to the complexity of the problem, we set |I| = |S| = 2.
Although the simulations are run only for a small system, we
would like to point out that the stability has been proven ana-
lytically for any size of the system in Section VIII. The channel



330 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

process is generated according to a Markov chain and state tran-
sition matrix for the channel between terminal i and the hosting
servers in the CWN is given as

T =

⎡⎢⎢⎣
T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.3 0.5 0.2 0
0.1 0.6 0.2 0.1
0.1 0.3 0.5 0.1
0 0.1 0.25 0.65

⎤⎥⎥⎦ , (71)

where Tkl is the probability of transitioning from channel state
k to l, and the corresponding stationary probabilities p{Hi =
(|h11|2, |h12|2)} are given as p{Hi = (10, 10)} = 0.1, p{Hi =
(10, 20)} = 0.4, p{Hi = (20, 10)} = 0.3, p{Hi = (20, 20)} =
0.2.

For the SSP cognitive network, the probability that the
channels between terminal i and the servers are available
for communication is pS

H = 0.9 or pS
H = 0.7. The station-

ary probabilities are then given as p{Hi = (10, 10)} = 0.09,
p{Hi = (10, 20)} = 0.36, p{Hi = (20, 10)} = 0.27, p{Hi =
(20, 20)} = 0.18, p{Hi = (0, 0)} = 0.1 or p{Hi = (10, 10)} =
0.07, p{Hi = (10, 20)} = 0.28, p{Hi = (20, 10)} = 0.21,
p{Hi = (20, 20)} = 0.14, p{Hi = (0, 0)} = 0.3. The probabil-
ity that PU returns to the given channel is pP

return = 0.05.
In the PC network, where the overall resources include both

cognitive and conventional links, we assume that the channel
between terminal i and server 1 is cognitive and the channel
between terminal i and server 2 is a non-cognitive channel. The
probability that the channel between terminal i and server 2
is available for communication is pS

H = 0.9 or pS
H = 0.7. The

stationary probabilities are given as p{Hi = (10, 10)} = 0.09,
p{Hi = (10, 20)} = 0.36, p{Hi = (20, 10)} = 0.27, p{Hi =
(20, 20)} = 0.18, p{Hi = (0, 10)} = 0.05, p{Hi = (0, 20)} =
0.05 or p{Hi = (10, 10)} = 0.07, p{Hi = (10, 20)} = 0.28,
p{Hi = (20, 10)} = 0.21, p{Hi = (20, 20)} = 0.14, p{Hi =
(0, 10)} = 0.15, p{Hi = (0, 20)} = 0.15. The probability that
PU returns to the given channel between terminal i and server
2 is pp

return = 0.05.
For a Poisson process, the second moment of arrivals in each

frame is finite [17]. Thus, each terminal is assumed to receive
requests from applications according to a Poisson process at an
average rate of λi . In the simulations, λi takes values between
1 to 8 requests/frame, and λ1 = λ2. The maximum available
power at each terminal is Pmax = 4W . We use αi = 0.6 in (1),
the discount factor α = 0.7 in (26) and αis = 100 in (2). The
Lagrangian multiplier is fixed to βi = 1. The long-term average
sum power, sum delay, and sum throughput are calculated over
N = 20000 frames.

Each CPU is assumed to follow a quadratic power-frequency
relationship. Specifically, CPU is assumed to have a discrete
set of frequency options in the interval [1.6GHz, . . . , 2.6GHz]
at increments of 0.2 GHz and the corresponding power con-
sumption (in watts) at frequency f is given by P̂min + θ( f −
1.6G H z)2 where P̂min = 10W and θ = 10W/(G H z)2. Thus,
the CPU power consumption at the highest frequency is 20W .
At each utilization level f , the maximum supportable service
rate μmax

is ( f ) is given in (5), where α̂s = 0.4. Thus, on average,
a server running at the minimum (maximum) speed can process
25 (50) requests/frame.

B. Numerical Results and Discussions

In the figures we have used the following notations: ‘CWN’ -
conventional wireless network, ‘CN’ - cognitive network, ‘PC’
- partial cognitive network, ‘T’- terminals, ‘S’- servers, ‘TS’-
transmission from terminals to servers and ‘NW’ - entire net-
work. In addition, ‘10%’ and ‘30%’ represent the probabilities
that the channel between terminal i and server 1 is not available
for communication.

The average sum service rates at the terminals (T) and the
average sum rates from terminals to servers (TS) are plotted as
a function of λ1 + λ2 for both the CWN and the PC network in
Fig. 4(a). It can be seen in the figure, that the average sum ser-
vice rates at the terminals both in the CWN and the PC network
equal λ1 + λ2. In the CWN, almost all application requests are
forwarded to be processed at the servers. In the PC network,
the effect of PSP and SSP cognitive networks on each other
is mitigated by processing considerably more requests at the
terminals. If the channel between the terminal and server 1 is
not available for communication, and if the channel between
the terminal and server 2 is bad, the more requests are pro-
cessed at the terminal, especially when the arrival rates are low.
However, it also can be seen in Fig. 4(a), that the number of
requests forwarded to the servers gets higher with the increase
of λ1 + λ2. This is due to the smaller processing capabilities at
the terminals than at the servers.

The average sum delays at the terminals (T) and the average
sum delays over the entire network (NW) are plotted as a func-
tion of λ1 + λ2 for both CWN and PC network in Fig. 4(b). It
can be seen, that for the given system parameters the process-
ing delay at the servers decreases as λ1 + λ2 increases, when
λ1 + λ2 < 9. This is because, at low arrival rates, the queues
at the servers are short. Thus, in order to maximize (30), it is
more advantageous to delay some of the requests in order to
achieve energy savings at the server. When λ1 + λ2 is large,
there is no much processing delay at the servers, because high
arrival rates from the terminals encourage servers to empty their
queues by increasing their processing capabilities. Due to the
uncertain availability and reliability of the channel between the
terminals and server 1 in the PC network, the delay at server 1
is longer in the PC network than in the CWN. Thus, also the
overall network delay in the PC network is longer than that of
the CWN. It can also be seen, that the overall network delay in
the PC 30% network is a bit shorter than in the PC 10% net-
work. This is due to the fact that, even if the channel between
the terminals and server 1 is not available for communication,
the channel between the terminals and server 2 is. In addition,
the probability that the transmission over the given channel
between terminal i and server 1 fails is smaller in the PC 30%
network than in the PC 10% network, since p(I = 1)p(Ir =
0) = 0.7 × 0.5 = 0.35 and p(I = 1)p(Ir = 0) = 0.9 × 0.5 =
0.45.

The average sum power consumptions both at terminals
(T) and servers (S) are plotted as a function of λ1 + λ2 for
CWN and PC network in Fig. 4(c). As most of the requests
are processed at the servers in the CWN, the power con-
sumption at the servers is significantly higher than the power
consumption at the terminals. Due to the uncertain availabil-
ity and reliability of the channel between the terminals and



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 331

Fig. 4. Average sum rates, average sum delays and average sum powers of the
optimal policy as a function of λ1 + λ2 for both CWN and PC network.

server 1 in the PC network, terminals consume more power
in the PC network than in the CWN. If the channel between
terminal i and server 1 is not available for communication,
or if the channel between terminal i and server 2 is bad, it is
more advantageous in terms of saving the transmission power
to process more requests at the terminal. For the given range
of λ1 + λ2, the power consumption at the servers in the CWN
is smaller when λ1 + λ2 ≥ 13 than when 7 < λ1 + λ2 < 13.
As mentioned earlier in this paper, the server consumes at
least P̂min even to process only a small amount of data. Thus,
the active servers do not necessarily always process the max-
imum number of requests that could be processed with the
used power, when 7 < λ1 + λ2 < 13. If λ1 + λ2 is large, the
used power can be better utilized in every frame, and more
data can be processed with the lower power consumption. It
can also be seen, that the average sum power in the PC 30%
network is very close to the average sum power in the PC
10% network. This is because the channel between the termi-
nal and server 2 is non-cognitive and the probability that the
transmission over the given channel between terminal i and
server 1 fails is smaller in the PC 30% network than in the PC
10% network, i.e., p(I = 1)p(Ir = 0) = 0.7 × 0.5 = 0.35 and
p(I = 1)p(Ir = 0) = 0.9 × 0.5 = 0.45. In addition, due to the
uncertain link availability and reliability between server 1 and
the terminals, server 1 does not receive as many requests as
server 2. However, as severs consumes at least P̂min to process
any amount of data, server 1 consumes almost equal amount of
power as server 2. For the given arrival rates there is not enough
requests to fully exploit the available power at server 1 and that
is why the sum power consumption at the servers increases for
all λ1 + λ2.

The average sum service rates at the terminals (T) and the
average sum rates from terminals to servers (TS) are plotted as
a function of λ1 + λ2 for both CWN and SSP cognitive network
(CN) in Fig. 5(a). It can be seen that the average sum service
rates at the terminals equal λ1 + λ2 for both networks support-
ing our stability analysis in Sections VI and VIII. However, due
to the different network stability regions, the maximum sup-
portable arrival rates in cognitive wireless networks is smaller
than in the CWN. It can be seen, that the probability to process
requests at the terminals is slightly higher in the CN than in the
CWN, when arrival rates are low. This is due to the uncertain
channel availability and reliability between the terminals and
the servers. However, for high arrival rates, most of the requests
are processed at the server only also in cognitive wireless net-
work. For high arrival rates, it is more beneficial in terms of
decreasing the transmission power and the delay to forward the
application requests to the servers.

The average sum delays at the terminals (T) and average sum
delays over the entire network (NW) are plotted as a function of
λ1 + λ2 for both CWN and CN in Fig. 5(b). Due to the uncer-
tain channel availability and reliability between the terminals
and the servers, the delay in the CN is significantly longer than
in the CWN. It can also be seen, that the processing delay at
the servers decreases as λ1 + λ2 increases, when λ1 + λ2 is
small. This is because, at low arrival rates, the queues at the
servers are short. Thus, it is more advantageous to delay some
of the requests in order to achieve energy savings at the server.



332 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

Fig. 5. Average sum rates, average sum delays and average sum powers of
the optimal policy as a function of λ1 + λ2 for both CWN and SSP cognitive
network.

When λ1 + λ2 is large, there is not much processing delay at the
servers, because high arrival rates from the terminals encour-
age servers to empty their queues by increasing the capability
to process the requests.

The average sum power consumptions both at the terminals
(T) and the servers (S) are plotted as a function of λ1 + λ2 for
CWN and CN in Fig. 5(c). It can be seen in the figure, that in
the cognitive network our policy consumes approximately 10%
or 30% less power at the servers than the policy consumes in the
CWN. That is due to the uncertain channel availability between
the terminal and the servers in the cognitive wireless network.
It can also be seen, that the power consumption at the terminals
in the cognitive network is slightly smaller or equal to power
consumption in the CWN. The delay in the CN is significantly
longer than in the CWN, since the terminals delay its requests
waiting for the available channels or better channel conditions.
Thus, the average power consumption at the terminals in the
cognitive network is slightly smaller than in the CWN.

X. CONCLUSION

In this paper, we have considered a virtualized data cen-
ter (computing cloud) consisting of a set of servers hosting
a number of mobile terminals (a mobile cloud) and studied
the problem of optimal resource allocation in the presence
of time varying workloads and uncertain channels. The chan-
nel uncertainty is either due to fading and/or uncertain link
availability and reliability in PSP/SSP cognitive networks.
We have designed an optimal resource allocation policy that
maximizes jointly utility of the long-term average throughput
and minimizes the energy consumption, both at terminals and
servers, while maintaining network stability. We have char-
acterized the unified network stability region for both SSP
and PSP cognitive networks as well as for the CWN, and
presented a new unified stability analysis for the three net-
works. Under this model we have provided a new dynamic
resource allocation policy that is shown to support every point
on the network stability region without requiring information
of arrival statistics. Performance evaluation has been carried
out in order to compare the performance of optimal dynamic
policy in the CWN with the performance of dynamic pol-
icy in the SSP/PSP cognitive wireless networks, and to val-
idate the theoretical analysis of the paper. The results have
shown that by adapting to the changes in network condi-
tions, our dynamic policy can mitigate the impact of PSP
and SSP cognitive networks on each other. We believe that
the presented approach can be used as a performance bench-
mark and lays the foundation for future solutions of different
simplified resource allocation schemes in VDC computing
clouds.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” in Proc. Wireless
Commun. Mobile Comput. (WCMC), 2013, pp. 1587–1611.

[2] P. Padala et al., “Adaptive control of virtualized resources in utility
computing environments,” in Proc. EuroSys, 2007, pp. 289–302.



KANGAS et al.: RESOURCE HARVESTING IN COGNITIVE WIRELESS COMPUTING NETWORKS 333

[3] A. Greenberg, J. Hammilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Jan. 2009.

[4] A. Wolke, M. Bichler, and T. Setzer, “Planning vs. dynamic control:
Resource allocation in corporate clouds,” IEEE Trans. Cloud Comput.,
2015, to be published.

[5] S. Glisic, B. Lorenzo, I. Kovacevic, and Y. Fang, “Modeling dynamics of
complex wireless networks,” in Proc. Int. Conf. High Perform. Comput.
Simul. (HPCS), Helsinki, Finland, Jul. 2013, pp. 694–704.

[6] H. Yue, M. Pan, Y. Fang, and S. Glisic, “Spectrum and energy efficient
relay station placement in cognitive radio networks,” IEEE J. Sel. Areas
Commun., vol. 31, no. 5, pp. 883–893, May 2013.

[7] P. Padala et al., “Automatic control of multiple virtualized resources,” in
Proc. EuroSys, 2009, pp. 13–26.

[8] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal, “Optimal multivariate
control for differentiated service on a shared hosting platform,” in Proc.
IEEE Conf. Decision Control (CDC), Dec. 2007, pp. 3792–3799.

[9] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An
energy-saving application live placement approach for cloud comput-
ing environments,” in Proc. IEEE Int. Conf. Cloud Comput., 2009,
pp. 17–24.

[10] D. Kusic and N. Kandasamy, “Power and performance management of
virtualized computing environments via lookahead control,” in Proc. Int.
Conf. Auton. Comput. (ICAC), Jun. 2008, pp. 3–12.

[11] S. Abdelwahed, N. Kandasamy, S. Singhal, and Z. Wang, “Predictive con-
trol for dynamic resource allocation in enterprise data centers,” in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), 2004.

[12] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam,
“Managing server energy and operational cost in hosting centers,” in
Proc. SIGMERICS, Jun. 2005, pp. 303–314.

[13] S. Govindan, J. Choi, B. Urgaongar, A. Sivasubramanian, and A. Baldini,
“Statistical profiling-based techniques for effective power provisioning in
data centers,” in Proc. EuroSys, Apr. 2009.

[14] W. Xu, X. Zhu, and S. Neema, “Online control for self-management in
computing systems,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp.
(NOMS), 2006, pp. 368–375.

[15] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Now Publisher, 2006.

[16] R. Urgaonkar, U. L. Kozat, K. Igarashi, and M. J. Neely, “Dynamic
resource allocation and power management in virtualized data cen-
ters,” in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), 2010,
pp. 479–486.

[17] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D dissertation, Dept.
Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA,
USA, 2003.

[18] B. E. Collins and R. L. Cruz, “Transmission policies for time vary-
ing channels with average delay constraints,” in Proc. Allerton Conf.
Commun. Control Comput., Monticello, IL, USA, 1999, pp. 709–717.

[19] D. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, 3rd
ed. Belmont, MA, USA: Athena Scientific, 2005.

[20] D. Bertsekas, Dynamic Programming and Optimal Control, vol. 2, 3rd
ed. Belmont, MA, USA: Athena Scientific, 2007.

[21] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power alloca-
tion and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[22] C. Yang, Z. Chen, Y. Yao, B. Xia, and H. Liu, “Energy efficiency in wire-
less cooperative caching networks,” in Proc. IEEE Int. Conf. Commun.
(ICC), 2014, pp. 4975–4980.

[23] R. Kaewpuang, D. Niytao, P. Wang, and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing,” IEEE J.
Sel. Areas Commun., vol. 31, no. 12, pp. 2685–2700, Dec. 2013.

[24] J. Kephart et al., “Coordinating multiple autonomic managers to
achieve specified power-performance tradeoff,” in Proc. Int. Conf. Auton.
Comput., Jun. 2007, p. 24.

[25] D. Kusic and N. Kandasamy, “Control for dynamic resource provisioning
in enterprise computing systems,” in Proc. Int. Conf. Auton. Comput.,
2006, pp. 74–83.

[26] E. Kalyvianaki, “Resource provisioning for virtualized server applica-
tions,” Comput. Lab., Univ. Cambridge, Cambridge, U.K., Tech. Rep. No.
762, Nov. 2009.

[27] M. Goyal, A. Kumar, and V. Sharma, “Optimal cross-layer scheduling
of transmissions over a fading multiaccess channel,” IEEE Trans. Inf.
Theory, vol. 54, no. 8, pp. 3518–3537, Aug. 2008.

[28] R. A. Berry and R. B. Gallager, “Communication over fading channels
with delay constraints,” IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 125–
144, Jan. 2002.

[29] D. J. Ma, A. M. Makowski, and A. Shwartz, “Estimation and optimal
control for constrained Markov chains,” in Proc. IEEE Conf. Decision
Control, 1986, pp. 994–999.

[30] M. Goyal, A. Kumar, and V. Sharma, “Power constrained and delay opti-
mal policies for scheduling transmissions over a fading channel,” in Proc.
IEEE Infocom, 2003, pp. 311–320.

[31] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.

[32] M. L. Littman, T. L. Dean, and L. Pack Kaelbling, “On the complexity of
solving Markov decision problems,” in Proc. 11th Int. Conf. Uncertainty
Artif. Intell., 1995, pp. 349–402.

[33] E. Yeh and R. Berry, “Throughput optimal control of cooperative relay
networks,” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3827–3833,
Oct. 2007.

[34] H. Halabian, I. Lambaris, and C. Lung, “Network capacity region of
multi-queue multi-server queuing system with time varying connectivi-
ties,” in Proc. Int. Symp. Inf. Theory (ISIT), 2010, pp. 1803–1807.

[35] J. Jose, L. Ying, and S. Wishwanath, “On the stability region of amplify-
and-forward cooperative relay networks,” in Proc. Inf. Theory Workshop
(ITW), Oct. 2009, pp. 620–624.

Maria Kangas received the M.Sc. degree in telecom-
munication engineering from the University of Oulu,
Oulu, Finland, in 2007. She is currently a Doctoral
Researcher and a Project Manager in the area of
wireless networks with the Centre for Wireless
Communications (CWC), University of Oulu. She
was a Visiting Ph.D. Student at the Rice University,
Houston, TX, USA, from November 2008 to May
2009 and from January 2010 to May 2010. Her
research interests include dynamic programming,
network stability, heterogeneous networks, radio

resource management, network optimization theory, network topology control,
opportunistic communications, social networks, and complex networks.

Savo Glisic (M’90–SM’94) is a Professor of telecom-
munications with the University of Oulu, Oulu,
Finland, the Head of the Networking Research
Group, and the Director of Globalcomm Institute
for Telecommunications. He was a Visiting Scientist
at Cranfield Institute of Technology, Cranfield, U.K.
(1976–1977) and the University of California, San
Diego, La Jolla, CA, USA (1986–1987). He has been
active in the field wireless communications for 30
years and has authored a number of papers and books.
His book Advanced Wireless Networks: 5G/6G, 3E

(Wiley, 2015) covers the enabling technologies for the definition of 5G/6G
systems. He also runs an extensive doctoral program in the field of wireless
networking. His research interest include network optimization theory, net-
work topology control and graph theory, cognitive networks and game theory,
radio resource management, QoS and queuing theory, networks information
theory, protocol design, advanced routing, and network coding, relaying, cellu-
lar, WLAN, ad hoc, sensor, active and bio inspired networks with emphasis on
genetic algorithms. He has served as the Technical Program Chairman of the
3rd IEEE ISSSTA’94, the 8th IEEE PIMRC’97, and the IEEE ICC’01. He was
the Director of the IEEE ComSoc MD programs.

Yuguang Fang (S’92–M’97–SM’99–F’08) received
the M.S. degree in mathematics from Qufu Normal
university, Shandong, China and the Ph.D. degree
in systems engineering from Case Western Reserve
University, Cleveland, OH, USA, and the Ph.D.
degree in electrical engineering from Boston
University, Boston, MA, USA, in 1987, 1994, and
1997, respectively. He was an Assistant Professor of
electrical and computer engineering with New Jersey
Institute of Technology, Newark, NJ, USA, from July
1998 to May 2000. He then joined the Department of

Electrical and Computer Engineering, University of Florida, Gainesville, FL,
USA, in May 2000, as an Assistant Professor; he was promoted to an Associate



334 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 1, NO. 3, SEPTEMBER 2015

Professor with tenure in August 2003, and to a Full Professor in August 2005.
He held a University of Florida Research Foundation (UFRF) Professorship
from 2006 to 2009, a Changjiang Scholar Chair Professorship with Xidian
University, Xian, China, from 2008 to 2011, and a Guest Chair Professorship
with Tsinghua University, Beijing, China, from 2009 to 2012. He has authored
over 400 papers in refereed professional journals and conferences. He is also
active in professional activities. He is a Fellow of AAAS and a Memebr of
ACM. He is currently serving as the Editor-in-Chief of IEEE Transactions
on Vehicular Technology, was the Editor-in-Chief of the IEEE Wireless
Communications Magazine and serves/served on several editorial boards
of technical journals including the IEEE Transactions on Communications,
the IEEE Transactions on Wireless Communications, the IEEE Wireless
Communications Magazine, and the ACM Wireless Networks. He is an Editor
of the IEEE Transactions on Mobile Computing and also served on its Steering
Committee. He has been actively participating in professional conference
organizations such as serving as the Steering Committee Co-Chair for QShine
from 2004 to 2008, the Technical Program Co-Chair for the IEEE INOFCOM
2014, the Technical Program Vice-Chair for the IEEE INFOCOM 2005, the
Technical Program Symposium Co-Chair for IEEE Globecom 2004, and a
member of technical program committee for the IEEE INFOCOM (1998, 2000,
2003–2013). He was the recipient of the National Science Foundation Faculty
Early Career Award in 2001, the Office of Naval Research Young Investigator
Award in 2002, the best paper award in the IEEE GLOBECOM in 2015 and
2011, IEEE International Conference on Network Protocols (ICNP) in 2006,
and the IEEE TCGN Best Paper Award in the IEEE High-Speed Networks
Symposium, the IEEE GLOBECOM in 2002.

Pan Li (M’09) received the B.E. degree in elec-
trical engineering from Huazhong University of
Science and Technology, Wuhan, China, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Florida, Gainesville, Fl,
USA, in 2005 and 2009, respectively. Since the fall of
2015, he has been with the Department of Electrical
Engineering and Computer Science, Case Western
Reserve University, Cleveland, OH, USA. He was an
Assistant Professor of electrical and computer engi-
neering with Mississippi State University, Starkville,

MS, USA, from August 2009 to August 2015. His research interests include
network science and economics, energy systems, security and privacy, and
big data. He has served as an Editor for the IEEE Journal on Selected Areas
in Communications (Cognitive Radio Series) and the IEEE Communications
Surveys and Tutorials, a Feature Editor for the IEEE Wireless Communications,
and a Technical Program Committee (TPC) Co-Chair for Ad-Hoc, Mesh,
Machine-to-Machine and Sensor Networks Track, IEE VTC 2014, Physical
Layer Track, Wireless Communications Symposium, WTS 2014, and Wireless
Networking Symposium, the IEEE ICC 2013. He is a member of the ACM. He
was the recipient of the NSF CAREER Award in 2012.


