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Abstract—Solving large-scale sparse linear systems of equations (SLSEs) is one of the most common and fundamental problems

in big data, but it is very challenging for resource-limited users. Cloud computing has been proposed as a timely, efficient, and

cost-effective way of solving such expensive computing tasks. Nevertheless, one critical concern in cloud computing is data privacy.

Specifically, clients’ SLSEs usually contain private information that should remain hidden from the cloud for ethical, legal, or security

reasons. Many previous works on secure outsourcing of linear systems of equations (LSEs) have high computational complexity, and

do not exploit the sparsity in the LSEs. More importantly, they share a common serious problem, i.e., a huge number of memory I/O

operations. This problem has been largely neglected in the past, but in fact is of particular importance and may eventually render those

outsourcing schemes impractical. In this paper, we develop an efficient and practical secure outsourcing algorithm for solving

large-scale SLSEs, which has low computational and memory I/O complexities and can protect clients’ privacy well. We implement

our algorithm on Amazon Elastic Compute Cloud, and find that the proposed algorithm offers significant time savings for the client

(up to 74 percent) compared to previous algorithms.

Index Terms—Sparse linear systems of equations, cloud computing, privacy, computational complexity, memory I/O complexity
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1 INTRODUCTION

WE are now in the age of big data [1], [2]. We need to
deal with huge data sets in many areas such as bio-

medicine, power systems, finance, engineering and scien-
tific simulations, and social networks. For example, in
power systems, real-time analysis like state estimation and
power flow optimization involves enormous amounts of
data collected from the electric grid [3]; financial firms need
to process huge amounts of consumer and business data for
portfolio optimization, etc.; in engineering and scientific
simulations, for instance, aircraft design or meteorological
simulations, we can easily have tons of data in a single sim-
ulation; and social network analysis is based on data from
millions or billions of users[4], [5]. Obviously, we have mas-
sive data in all these fields, and such data needs to be stored,
managed, and more importantly, computed. However, both
individuals and organizations face a formidable challenge
in trying to analyze such huge amounts of data in a timely
and cost-effective way.

In particular, it is infeasible for users to analyze large-
scale data-sets on traditional computer hardware due to its

limited computing capacity and RAM (random access mem-
ory). To overcome this limitation, many governments have
built supercomputers that can complete very heavy com-
puting tasks, but have large installation and operating costs
(in the range of tens of millions of dollars or even higher)
and usually have restricted access. Besides, even an in-
house computing cluster can be very expensive and may
still lack enough memory and computing power to analyze
large-scale data sets.

This challenge has attracted significant attention from
industry, academia and governments. Recently, cloud com-
puting has been proposed as an efficient, and cost-effective
way for resource-limited users to analyze large-scale data
sets. In this computing paradigm, cloud clients outsource
their computing tasks to a cloud server [6], [7], [8], [9],
[10], which contains a large amount of computing resour-
ces and offers them on a on-demand and pay-per-use basis
[11]. In cloud computing, clients share the cloud resources
with each other, and avoid purchasing, installing, and
maintaining sophisticated and expensive computing hard-
ware and software.

Nevertheless, one critical concern in cloud computing is
data privacy. To be more prominent, in many cases, clients’
data are very sensitive and should be hidden from the cloud
for ethical, legal, or security reasons. For example, in power
flow state estimation that can be solved by least squares
problems, a power company’s data may disclose the topol-
ogy of the system, thus enabling attacks to the electric grid
[12]; in portfolio optimization, we may have quadratic or
nonlinear programming problems that could reveal
companies’ proprietary investment strategies. Therefore, in
order for people to really adopt cloud computing, we have
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to design new tools and technologies that allow clients to
outsource their computations to the cloud while preserving
the privacy of their data. Moreover, the fact that users usu-
ally lack computing and memory storage resources limits
the complexity of the operations that they can perform to
hide their data, which makes secure outsourcing an even
more challenging problem.

We notice that many problems that involve large-scale
sensitive data are fundamentally based on solving sparse
linear systems of equations (SLSEs) of the form Ax ¼ b. For
example, as mentioned above, in image processing, power
flow estimation, and portfolio optimization, least squares
problems or quadratic programming problems can be refor-
mulated as SLSEs. In addition, in social network analysis
and web search engine design, the eigenvector centrality
problem is naturally posed as an SLSE which contains pri-
vate information such as social network users’ data and
innovative search engine algorithms. Therefore, in this
paper, we focus on efficiently and securely solving large-
scale SLSEs, one of the most common and fundamental
problems in big data.

Some previous works on securely outsourcing comput-
ing tasks to the cloud could be used to solve SLSEs. How-
ever, they have high computing requirements. Specifically,
in [13], Gennaro et al. employ fully homomorphic encryp-
tion (FHE) to securely offload computations to the cloud.
FHE offers theoretical privacy guarantees, but it is a compu-
tationally intensive operation, and large-scale computations
based on FHE ciphertexts are very expensive, even for the
cloud. Wang et al. [14], [15] design methods to privately out-
source a linear programming problem. A client may employ
such methods to find the solution to an LSE by requesting
the cloud to solve a special linear program. Unfortunately,
to protect data privacy, the client needs to perform a
matrix-matrix multiplication that is prohibitively expensive
because this operation has computational complexity of
OðrÞ where n2 < r �Mn (for n� n matrices with M non-
zero elements).

Recently a few secure outsourcing algorithms have
been developed specifically for solving LSEs. Lei et al.
[16] and Atallah et al. [17] design secure matrix inversion
algorithms that use matrix permutations to preserve data
privacy. To find the solution to an LSE, a client needs to
perform operations with computational complexity of
Oðn2Þ and OðMÞ, respectively. Chen et al. [18] outsource
an LSE to the cloud by employing matrix permutations.
Wang et al. [19] develop an iterative algorithm to solve
LSEs, where a client transforms and encrypts the coeffi-
cient matrix using homomorphic encryption, and the
cloud carries out computations on ciphertexts. Specifi-
cally, the client needs to perform two matrix-vector multi-
plications, which require OðMÞ floating-point operations
(flops), and OðMÞ homomorphic encryptions. Note that
performing homomorphic encryptions has high computa-
tional complexity (Oðlog 2eÞ flops per encrypted value,
were e is the key size). Although it is proposed that the
client could outsource this computation to a trusted
third-party, it may not always exist. The use of homomor-
phic encryption forces the cloud to operate on ciphertexts,
which then has to use specialized linear algebra software.
Besides, the proposed algorithm only works for LSEs

whose coefficient matrices are diagonally dominant, and
the privacy will be compromised if the number of itera-
tions approaches or exceeds n. Later on, Chen et al. [20]
also propose similar solutions to outsourcing linear pro-
grams and LSEs while preserving users’ privacy. We
notice that most such works’ computational complexity is
still high,1 and they do not exploit the sparsity in the
LSEs to potentially reduce computational complexity.

More importantly, previous works [16], [17], [18], [19],
[20] impose a large burden of memory I/O operations on
the client. This problem has been largely neglected in the
previous secure outsourcing algorithm design. But we
emphasize that the number of times an algorithm accesses
local data is of particular importance for outsourcing a
large-scale SLSE and may render the outsourcing algo-
rithm impractical. The reason is as follows. Most often a
client lacks enough RAM memory to store a large-scale
sparse matrix completely at once. So, instead of working
on RAM memory directly, as is the case with smaller
matrices, the client can only load a small section of the
large-scale sparse matrix at a time and write the results to
external memory when it is done. However, reading and
writing operations from and into external memory have a
very high latency compared to the same operations in
RAM. For example, our experiments show that reading a
matrix once with 3:7� 106 non-zero elements and size 1.2
GB on a laptop that has 4 GB RAM and a hard disk at
5400RPM would take about 10 minutes. Therefore, any
practical algorithm for large-scale SLSEs should only
incur as small the number of memory I/O operations for
the client as possible. To better capture the special mem-
ory I/O requirement of large-scale SLSEs, we propose a
new definition of “external memory I/O complexity”, which
is the number of values that are read/written from/into
external memory. In this paper, we call it “memory I/O
complexity” for brevity. Previous works have very high
I/O complexity. For example, in [16], [17], the client
needs to access a large-scale dense matrix at least twice
since the inversion operation does not preserve the spar-
sity of the original LSE. In [19], the client has to read a
large-scale sparse matrix at least five times. Both algo-
rithms may take an unacceptably long time due to the
latency of the large number of I/O operations in practice.

Aiming to reduce both computational and memory
I/O complexities, in this paper, we develop an efficient
and practical secure outsourcing algorithm for solving
large-scale SLSEs. Specifically, to protect its data privacy
while preserving sparsity, the client transforms the coeffi-
cient matrix Am�n into matrix Âm�n, by adding a sparse
matrix with random values and randomly permuting its
rows and columns. We prove that matrix Â has the prop-
erty of computational indistinguishability under a cho-
sen-plaintext attack (CPA). Then, based on the conjugate
gradient method, the client finds the solution vector x
iteratively with the help of the cloud. Since the client
delegates expensive matrix-vector operations to the cloud,
it has computational complexity of OðM̂ 0Þ, where

1. Our previous work [21] proposes an efficient secure outsourcing
scheme for solving general LSEs that has much lower complexity than
previous works, but it does not aim at sparse LSEs.
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0 � M̂ 0 � n2 is an arbitrary number chosen by the user
that determines the number of non-zero elements in the
transformed matrix sent to the cloud. The algorithm pre-
serves the privacy of the client by letting the cloud oper-
ate on the transformed matrix and some intermediate
values, rather than on A, x, or b. Moreover, both the client
and the cloud are able to exploit the sparsity of the trans-
formed matrix for computational savings, and use tradi-
tional linear algebra software, which avoids the costly
exponentiations required for ciphertext-based operations
as in previous works like [13] and [19].

We summarize our main contributions as follows.

� We develop an efficient and practical algorithm to
securely outsource the computation of large-scale
sparse LSEs

� The proposed algorithm requires operations with
low computational and memory I/O complexities at
the client and at the cloud. In particular, the compu-
tational complexity is OðM̂ 0Þ and the memory I/O
complexity is 2M̂ 0 þ 4M 0 þ 2M þ 8n at the client,
where M 0 is the number of non-zero elements in
A>A. Besides, our proposed algorithm allows the
cloud to take advantage of the sparsity of the SLSE
for computational savings. We compare the com-
plexities of our algorithm at both the client and the
cloud with those of previous algorithms and find
that our algorithm is much more efficient.

� We show that the cloud is unable to obtain any infor-
mation about the client’s SLSE.

� We implement our algorithm on Amazon Elastic
Compute Cloud (EC2) and a laptop. We find that the
proposed algorithm offers significant time savings
for the client (up to 74 percent) compared to previous
algorithms.

2 PROBLEM FORMULATION

2.1 System Architecture

We consider an asymmetric two-party computing archi-
tecture as shown in Fig. 1, where a cloud client (CC) is

resource-limited and a remote cloud server (CS) has
abundant computing resources. The CC intends to solve a
large-scale computing task, but cannot complete it on its
own. So the CC offloads the most expensive computations
to the CS and collaborates with it to find the solution to
the task. In this work, we concentrate on the computing
task of finding the solution to a large-scale SLSE:

Ax ¼ b; (1)

where A 2 Rm�n (m � n) is a full-rank coefficient matrix
with M non-zero elements (for n �M � mn), x 2 Rn�1 is
the solution vector, and b 2 Rm�1 is the constant vector.

To reduce the storage complexity of the coefficient matrix
A, the client uses a sparse matrix representation called com-
pressed sparse column (CSC). Particularly, in CSC, instead
of storing A as a two-dimensional vector, the client stores
the non-zero elements in A in a top-to-bottom left-to-right
order into vector val 2 RM�1, and uniquely determines
their positions in A by using two auxiliary vectors: the row
index row_index 2 RM�1 and the column index colum-

n_pointer 2 Rn�1 vectors. Elements in row_index indi-
cate the row in A each element of val is located in, while
column_pointer stores the indices of the elements in val

that start a column in A. By using the CSC format, the client
can reduce its storage and memory I/O requirements as
long as 2M þ n < mn.

2.2 Threat Model

We assume a malicious threat model for the CS. That is, the
CS tries to extract information from the CC’s data and from
the results of its own computations, and may attempt to
deviate from the proposed protocols and return erroneous
results.

To enable the CC to securely delegate computing tasks to
the CS, the data that the CC shares with the CS should
appear random. This notion of privacy is known as compu-
tational indistinguishability [22]. We identify two types of
private data contained in a matrix: the values of its non-zero
elements and the positions of its non-zero elements. In what
follows we define computational indistinguishability for
both types of data.

Definition 1. Computational Indistinguishability: Two proba-
bility ensembles X ¼ fXsgs2N and Y ¼ fYsgs2N, are computa-
tionally indistinguishable if for every probabilistic polynomial
time distinguisher D there exists a negligible function mð�Þ
such that

��Pr½DðXsÞ ¼ 1� � Pr½DðYsÞ ¼ 1��� < m; (2)

where the notation DðXsÞ (or DðYsÞ) means that x (or y) is
chosen according to distribution Xs (or Ys) and then DðxÞ (or
DðyÞ) is run.
Moreover, this definition can be extended to the case

where a distinguisher D has access to multiple samples of
the vectorsX and Y , i.e., when comparing two matrices.

Definition 2. Let R 2 Rm�n be a random matrix with entries in
its jth column sampled from a uniform distribution with inter-
val ½�Rj;Rj� 8j 2 ½1; n�. Matrices R and Q are computation-
ally indistinguishable in value if for any probabilistic

Fig. 1. A secure architecture for outsourcing LSEs.
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polynomial time distinguisher Dð�Þ there exists a negligible
function mð�Þ such that

jP ½Dðri;jÞ ¼ 1� � Pr½Dðqi;jÞ ¼ 1�j � m 8 i; j; (3)

where ri;j is the element in the ith row and jth column of R,
and qi;j is the element in the ith row and jth column ofQ. Dis-
tinguisher Dð�Þ outputs 1 when it identifies the input as a
non-uniform distribution in the range ½�Rj;Rj�, and zero
otherwise.

Definition 2 refers to the inability of an attacker to tell
apart the elements of a matrix Q from the elements of a ran-
dom matrix R. However, the position of the elements in Q,
(i.e., Q’s structure), may also contain private information
that should be hidden from the CS. To protect a matrix’s
structure, we can make it appear random by permuting the
rows and columns. In particular, we permute the rows and
the columns of a matrix by taking advantage of pseudoran-
dom functions as defined below.

Definition 3. Let F be a function and f a truly random func-
tion. We say F is a pseudorandom function if for all probabilis-
tic polynomial-time distinguishers D, there exists a negligible
function m such that

jPr½DF ð1nÞ ¼ 1� � Pr½Dfð1nÞ ¼ 1�j � m: (4)

Distinguishers DF and Df have oracle access to functions F
and f , respectively.

We give the definition of secure permutation below.

Definition 4. We say that a permutation scheme has indistin-
guishable permutations under a chosen-plaintext attack (or
is CPA-secure in structure) if for all probabilistic polyno-
mial-time adversaries A there exists a negligible function m,
such that the probability of distinguishing two permutations
in a CPA indistinguishability experiment is less than
1=2þ m.

3 A PRIVACY AND SPARSITY PRESERVING MATRIX

TRANSFORMATION

Before delving into the details about our proposed algo-
rithm for outsourcing large-scale SLSEs, we first present a
privacy and sparsity preserving matrix transformation
scheme.

To delegate a computing task to the CS, the CC first
needs to perform some computations on its data. These
computations should require a moderate effort from the
CC, hide the data from the CS, and allow the CS to return
a meaningful result. To this end, we design an efficient
privacy and sparsity preserving matrix transformation
that offers computational indistinguishability, that is,
every probabilistic polynomial time algorithm is unable
to differentiate between the transformed matrix and a
random matrix with non-negligible probability. In partic-
ular, the proposed matrix transformation conceals the val-
ues of the non-zero elements of A by adding a carefully
designed random matrix, and hides its structure by ran-
domly permuting its rows and columns. Moreover, the
proposed transformation allows the CS to exploit
the sparsity of A by not making it a dense matrix in the

computations. In the rest of this section, we explain in
detail the proposed transformation, and show that the
transformed matrix is indeed computationally indistin-
guishable from a random one.

3.1 Privacy-Preserving Matrix Addition

We first present a matrix addition scheme that can trans-
formmatrixA into a matrix that is computationally indistin-
guishable from a random matrix, but does not preserve
sparsity.

Specifically, to hide all the elements of A, the CC per-
forms the following matrix addition:

�A ¼ Aþ �Z; (5)

where �Z 2 Rm�n is a random matrix, and �ai;j ¼ ai;j þ �zi;j (for
i 2 ½1;m�; j 2 ½1; n�). We assume that the values of matrix
A are within the range ½�K;K�, where K ¼ 2l (l > 0) is a
positive constant.

To reduce the CC’s computational complexity, the ran-
dommatrix Z is formed by a vector outer-product, i.e.,

�Z ¼ �u�v>; (6)

where �u 2 Rm�1 is a vector of uniformly distributed random
variables with probability density functions as follows:
fUð�uiÞ is equal to 1=2c for �c < �ui < c and 0 otherwise,
where c ¼ 2p (p > 0) is a positive constant, and i 2 ½1;m�.
Vector �v 2 Rn�1 is a vector of arbitrary positive constants
ranging from 2l and 2lþq (q > 0).

Note that element �zi;j ¼ �ui�vj (for i 2 ½1;m�; j 2 ½1; n�), is
the product of a random variable and a positive constant.
Thus, �zi;j is also a random variable with its probability den-
sity function defined as [23]

f �Zð�zi;jÞ ¼
1

2Lj
�Lj < �zði;jÞ < Lj

0 otherwise,

�

where Lj ¼ cvj (for j 2 ½1; n�) and hence is between 2pþl

and 2pþlþq. We can now arrive at a theorem about the
computational indistinsguishability between �A and a
matrix with columns filled with values taken from uni-
form distributions.

Theorem 1. Let R 2 Rm�n be a random matrix with entries in
column j sampled from a uniform distribution on the interval
½�Lj; Lj� for j 2 ½1; n�. Matrices R and �A are computationally
indistinguishable.

Proof. According to Definition 2, we need to show that ri;j
and �ai;j (for i 2 ½i;m�; j 2 ½1; n�) are computationally indis-
tinguishable for matrices R and �A to be computationally
indistinguishable. In particular, we show that any proba-
bilistic polynomial time distinguisher D cannot distin-
guish �ai;j from ri;j for any i 2 ½1;m�; j 2 ½1; n�, except with
non-negligible success probability.

Recall that values from R and A are in the intervals
½�Lj; Lj� and ½�K;K�, respectively. Thus, we have that
�ai;j 2 ½�K � Lj;K þ Lj�, and hence ri;j; �ai;j 2 ½�2k; 2k�
where k ¼ pþ lþ q þ 1. The best strategy for distin-
guisher D when presented with a sample x ¼ �ai;j is to
return b f0; 1g with equal probability if �Lj � x � Lj,
and 1 if x < �Lj or x > Lj. Therefore, when x ¼ �ai;j, we
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have that the success probability of the distinguisher is
given by

Pr½Dð�ai;jÞ ¼ 1�
¼ 1

2
Pr½�Lj � �ai;j � Lj�
þ Pr½�ai;j < �Lj� þ Pr½�ai;j > Lj�
¼ 1

2
1� Pr½�ai;j < �Lj� � Pr½�ai;j > Lj�
� �
þ Pr½�ai;j < �Lj� þ Pr½�ai;j > Lj�

where

Pr½�ai;j > Lj� ¼ Pr½ai;j þ �zi;j > Lj�
¼ Pr½�zi;j > Lj � ai;j�
� Pr½�zi;j > Lj �K�
¼ K

2Lj
:

Similarly, we find that Pr½�ai;j < �Lj� � K
2Lj

. Conse-
quently, we have that the probability of success for dis-
tinguisherD, when x ¼ �ai;j, is bounded as follows:

0 < Pr½Dð�ai;j ¼ 1Þ� � 1

2
þ K

2Lj
:

On the other hand, if x ¼ ri;j, we can obtain that
Pr½Dðri;jÞ ¼ 1� ¼ 1

2.
According to equation (3), for any i 2 ½1;m�, j 2 ½1; n�

we get that

jPr½Dð�ai;jÞ ¼ 1� � Pr½Dðri;jÞ ¼ 1�j � K

2Lj
:

Note thatK ¼ 2l and Lj 2 ½2pþl; 2pþlþq�. Thus, we have

mðkÞ ¼ K

2Lj
� 2l

2pþl
¼ 1

2p
¼ 1

2k�l�q�1

which is a negligible function. By union bound, it con-
cludes the proof. tu

3.2 Privacy and Sparsity Preserving Matrix Addition

In the matrix transformation described above, the CC masks
the values of A unconditionally, which results in �A having a
dense structure. However, it is undesirable for the trans-
formed matrix to have a dense structure because it introdu-
ces unnecessary computations when we solve the SLSE.
Next, we develop a both privacy and sparsity preserving
matrix addition scheme based on matrix partitions.

Specifically, to achieve a privacy and sparsity preserving
matrix transformation, the CC partitions A into sub-matri-
ces of equal sizes and only masks those sub-matrices that
contain at least one non-zero element. In particular, the CC
divides matrix A into smaller matrices ag;u 2 Ra�b for
g 2 ½1;m=a�, u 2 ½1; n=b�, where m=a and n=b are integers.2

Matrix ag;u contains elements ai;j for i 2 ½ðg � 1Þaþ 1; ga�,
j 2 ½ðu � 1Þbþ 1; ub�.

Similar to Equation (5), the CC transforms a matrix
through a matrix addition as follows:

~A ¼ Aþ ~Z;

where matrix ~Z 2 Rm�n is a linear combination of sparse
randommatrices, i.e.,

~Z ¼
X
ðg;uÞ2Z

~zg;u;

where Z is defined as follows

Z ¼ fðg; uÞ j 9ai;j 2 ag;u : ai;j 6¼ 0g;
and matrix ~zg;u 2 Rm�n for ðg; uÞ 2 Z is defined as

~zg;u ¼ ~ug~v
>
u :

The CC forms vector ~ug 2 Rm�1 by setting �u as in equa-
tion (6), copying elements �ui for i 2 ½ðg � 1Þaþ 1; ga�, and
padding the remaining entries with zeros, i.e.,

~ug ¼ ½0 . . . �uðg�1Þaþ1 . . . �uga . . . 0�
Vector ~vu 2 Rn�1 can be found in a similar way

~vu ¼ ½0 . . . �vðu�1Þbþ1 . . . �vub . . . 0�:

We now arrive at a theorem about the computational
indistinguishability between submatrices ~ag;u ¼ ag;u þ ~z0g;u
for ðg; uÞ 2 Z and a random matrix with entries sampled
from a uniform distribution. Note that matrix ~z0g;u contains
elements in rows i 2 ½ðg � 1Þaþ 1; ga� and columns
j 2 ½ðu � 1Þbþ 1; ub� of matrix ~zg;u.

Theorem 2. Let r 2 Ra�b be a random matrix with entries in
column j sampled from a uniform distribution with interval
½�Lj; Lj� for j 2 ½ðu � 1Þbþ 1; ub�. Matrices r and ~ag;u 2
Ra�b for g 2 ½1;m=a� u 2 ½1; n=b� are computationally
indistinguishable.

Proof. The proof follows a similar procedure to that in the
proof for Theorem 1. tu
The choice of submatrix dimensions, a and b, determines

the number of additional non-zero elements in ~A compared
to A, the amount of extra computations needed to solve the
LSE, and the number of zero elements that are revealed to
the CS as well.

3.3 Privacy-Preserving Matrix Permutation

The privacy and sparsity preserving random matrix addi-
tion in Section 3.2 may reveal some of the zero elements and
their positions, which are also part of the CC’s private infor-
mation. Thus, to hide the structure of coefficient matrix A,
we propose to let the CC randomly permutate the rows and
columns of ~A.

To randomly permute ~A’s row index vector q 2 Zþm, we
compute the following

q0 ¼ MðqÞ; q̂0 ¼ F ðr;q0Þ; q̂ ¼M�1ðq̂0Þ; (7)
2. If m=a (or n=b) is not an integer, the CC can form an additional

sub-matrix row (column) of size mmoda (or nmodb) to cover the
remaining rows (columns).
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whereM : Zþm ! f0; 1gw (w ¼ dlog2 m!e) is a function that
maps an index vector to a bit string, F : f0; 1gw� f0; 1gw !
f0; 1gw is a function with two inputs, r 2 f0; 1gw is a random
bit string, andM�1 : f0; 1gw ! Zþm is the inverse ofM. We
denote these computations as

PermF ðr;qÞ ¼ q̂: (8)

Similarly, we can denote by PermF ðr0; cÞ the random per-
mutation of the column index c 2 Zþn of ~A, where
r0 2 f0; 1gw0 (w0 ¼ dlog 2n!e) is a random bit string. To apply
the permutations PermF ðr;qÞ and PermF ðr0; cÞ to matrix ~A,
the CC performs the following multiplications:

Â ¼ P~AT; (9)

where P 2 Rm�m and T 2 Rn�n are permutation matrices
and their elements are defined by

pi;j ¼ dpðiÞ;j; for i 2 ½1;m�; j 2 ½1;m�
ti;j ¼ dp0ðiÞ;j; for i 2 ½1; n�; j 2 ½1; n�;

where i and j are the row and column indexes, respectively.
Besides, the Kronecker delta function is given by

di;j ¼ 1; i ¼ j
0; i 6¼ j;

�

and the function pð�Þ maps an original index i to the corre-
sponding permuted index, i.e., pðiÞ ¼ q̂i (for i 2 ½1;m�) and
p0ðiÞ ¼ ĉi (for i 2 ½1; n�).

The CC recovers matrix ~A from the permuted matrix
through the following operation

~A ¼ P>ÂT>;

where > denotes the transpose operation. This result is due
to the fact that the permutation matrices are orthogonal, i.e,
P>P ¼ I and TT> ¼ I, where I is the identity matrix.

We now arrive at a theorem about the computational
indistinguishability of the structure of matrix Â.

Theorem 3. If F ð�; �Þ is a pseudorandom function, then the row
and column permutations described above are computationally
indistinguishable in structure under a CPA.

Proof. Please refer to Appendix A in the online supplemen-
tal material for the detailed proof, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TBDATA.2017.
2679760. tu
Note that after the privacy-preserving matrix permuta-

tion, the resulted matrix has the property of computation-
ally indistinguishability, particularly, the non-zero elements
in any column of the matrix are computationally indistin-
guishable from a uniform distribution and the non-zero ele-
ments’ positions are computationally indistinguishable
under a CPA. We can clearly see that after the proposed
matrix addition and matrix permutation, we can success-
fully transform the original matrix A into a new matrix Â
that protects both the values of the non-zero elements and
the positions of them in A.

4 SECURE OUTSOURCING OF LARGE-SCALE

SLSES

In this section, we develop a practical and light-weight algo-
rithm to securely outsource a large-scale SLSE to the CS
based on the conjugate gradient method (CGM).

4.1 The Conjugate Gradient Method

We notice that solving an SLSE in A0x ¼ b is equivalent to
solving the following unconstrained quadratic program

minfðxÞ ¼ 1

2
x>A0x� b0x; (10)

when A0 is nonsingular, symmetric and positive definite
with M 0 non-zero elements [24]. Therefore, we can use the
CGM algorithm that solves the above optimization problem
to solve the SLSE.

Specifically, as any gradient directions (GD) method, the
CGM employs a set of vectors P ¼ fp0;p1; . . .png that are
conjugate with respect to A0, that is, at iteration k the follow-
ing condition is met:

p>k A
0pi ¼ 0; for i ¼ 0; . . . ; k� 1: (11)

Using the conjugacy property of vectors in P, we can find
the solution in at most n steps by computing a sequence of
solution approximations as follows:

xkþ1 ¼ xk þ akpk; (12)

where ak is the one-dimensional minimizer of (10) along
xk þ akpk. The minimizer ak can be found by setting (10) to
zero and taking its gradient when x ¼ xkþ1

rfðxkþ1Þ ¼ A0xkþ1 � b0 ¼ 0: (13)

By replacing xkþ1 with (12) and multiplying by p>k from the
left, we get

ak ¼ �r
>
k pk

p>k A0pk

; (14)

where rk ¼ A0xk � b0 is called the residual.
Moreover, we can find the residual iteratively based on

(12) as follows:

rkþ1 ¼ A0xkþ1 � b0

¼ A0ðxk þ akpkÞ � b0 ¼ rk þ akA
0pk:

(15)

Efficiently finding the set of conjugate vectors P is a
major challenge in GD methods. The CGM algorithm offers
an efficient way of finding P that has low storage and
computational complexity. In particular, the CGM finds a
new conjugate vector pkþ1 at iteration k by a linear combina-
tion of the negative residual, i.e., the steepest descent direc-
tion of fðxÞ, and the current conjugate vector pk, that is,

pkþ1 ¼ �rkþ1 þ bkþ1pk; (16)

where bkþ1 is chosen in such away that p>kþ1 and pk meet con-
dition (11). Bymultiplying p>k A

0 from the left in (16), we get

p>k A
0pkþ1 ¼ �p>k A0rkþ1 þ p>k A

0bkþ1pk;
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which leads to

bkþ1 ¼
p>k A

0ðpkþ1 þ rkþ1Þ
p>k A0pk

:

Since as mentioned above p>k and p>kþ1 are conjugate with
respect to A0, we have p>k A

0pkþ1 ¼ 0. Note that p>k A
0rkþ1 is a

scalar and A0 is symmetric. Thus, we have

bkþ1 ¼
r>kþ1A

0pk

p>k A0pk

: (17)

Moreover, since xk minimizes fðxÞ along pk, it can be
shown that r>k pi ¼ 0 for i ¼ 0; 1; . . . ; k� 1 [24]. Using this
fact and equation (16), a more efficient computation for (14)
can be found, namely,

ak ¼ �r
>
k ð�rk þ bkpk�1Þ

p>k A0pk

¼ r>k rk
p>k A0pk

:

Similarly, using (15), we can find a more efficient formula-
tion for bkþ1. First, we replace A0pk with 1

a
ðrkþ1 � rkÞ in (17)

to get

bkþ1 ¼
r>kþ1ðrkþ1 � rkÞ
p>k ðrkþ1 � rkÞ :

Then, using the fact that p>k rkþ1 ¼ 0 and r>kþ1rk ¼ 0 [24], we

find that bkþ1 ¼ �
r>
kþ1rkþ1
p>
k
rk

. By replacing pk with �rk þ bkpk�1

above, and applying p>k�1rk ¼ 0, we get

bkþ1 ¼
r>kþ1rkþ1
r>k rk

:

To summarize the above, the CGM algorithm is as fol-
lows. At iteration k ¼ 0, we have

r0 ¼ A0x0 � b0 (18)

p0 ¼ �r0 (19)

k ¼ 0 (20)

and at iteration k � 0 we have the following iterative equa-
tions:

ak ¼ r>k rk
p>k A0pk

(21)

rkþ1 ¼ rk þ akA
0pk (22)

xkþ1 ¼ xk þ akpk (23)

bkþ1 ¼
r>kþ1rkþ1
r>k rk

(24)

pkþ1 ¼ �rkþ1 þ bkþ1pk: (25)

Compared to other methods, e.g., Gaussian eliminations,
QR decomposition, CGM offers a feasible algorithm for
extremely large-scale systems.

4.2 The Privacy-Preserving CGM Algorithm

In what follows, we describe our proposed privacy-preserv-
ing CGM algorithm (PPCGM) that exploits the CGM
method to securely shift the relatively more expensive oper-
ations, i.e., matrix-vector multiplications, in each iteration
to the CS. Specifically, we first consider the case that matrix
A is nonsingular, symmetric and positive definite as
required by the CGM algorithm, and then discuss the case
when it is not.

4.2.1 Initialization

We first consider that matrix A is nonsingular, symmetric
and positive definite, and hence have A0 ¼ A and b0 ¼ b.
Thus, in the initialization step, the CC sets the initial solu-
tion vector x0 to a random vector of Rn�1, and tries to com-
pute r0 and p0 according to Equations (18) and (19). Since
computing A0x0 requires a matrix-vector multiplication, the
CC can outsource this computation to the CS.

Particularly, the CC generates a masked coefficient
matrix Â0 ¼ PðA0 þ ~ZÞT, where ~Z, P, and T are n� n ran-
dom matrices that can be constructed as described in
Section 3, and sends it with the permuted solution vector
x̂0 ¼ T>x0 to the CS. The CS helps the CC compute the term
A0x0 in a privacy-preserving manner by computing the fol-
lowing intermediate value

h0 ¼ Â0x̂0 ¼ PðA0 þ ~ZÞx0:
Upon receiving h0, the CC computes the residual vector as
follows

r0 ¼ A0x0 � b0

¼ P>h0 �
X
ðg;uÞ2Z0

~ug ~v>u x0
� �� b0

¼ P>h0 �
X

gjðg;uÞ2Z0
~ug

X
ujðg;uÞ2Z0

~v>u x0 � b0:

(26)

Note that we use different parameters a0, b0, and Z0 for ~Z
compared with a, b, and Z for ~Z0. By computing ~v>u x̂0 first
in equation (26), the CC only performs vector-vector com-
putations, which have linear complexity. This is possible
due to the fact that ~Z is formed by rank-one matrices and
can be decomposed into outer-vector products. If we had
formed ~Z arbitrarily, the client would not be able to experi-
ence any computational or storage complexity gains.

At the end of the initialization step, the client sets the
conjugate vector p0 ¼ �r0, and transmits p̂>01 ¼ p>0 P

>,
p̂02 ¼ T>p0, and r0 to the CS.

4.2.2 Main Iteration

Exploring the CGM iteration, i.e., equations (21), (22), (23),
(24), and (25), we notice that equations (21) and (22) need
matrix-vector multiplications involving the coefficient
matrix A0, while the rest of the equations only require vec-
tor-vector multiplications. We exploit these equations to
design an efficient collaborative computation between the
CC and the CS, where the CS helps compute (21) and (22),
and the CC carries out the rest of the equations by itself. To
protect the CC’s privacy, the CS carries out computations
with the transformed matrix Â0, instead of A0. In what
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follows, we describe a set of operations that allow the CC to
efficiently find xn, while protecting its data privacy.

To compute ak, the CC and the CS carry out equation (21)
in two steps. First, based on the p̂>k1 and p̂k2 received from
the CC, the CS computes an intermediate scalar

tk ¼ p̂>k1Â
0p̂k2 ¼ p>k ðA0 þ ~ZÞpk: (27)

Second, the CC finds ak using tk as follows

ak ¼ r>k rk
tk �

P
ðg;uÞ2Z0 ðp>k ~ugÞð~v>u pkÞ

¼ r>k rk
tk �

P
gjðg;uÞ2Z0 ðp>k ~ugÞ

P
ujðg;uÞ2Z0 ~v

>
u pk

:

(28)

Similarly, the CC exploits the CS’s resources to find rkþ1.
The CS first calculates the intermediate vector

fk ¼ Â0p̂k2 ¼ PðA0 þ ~ZÞpk; (29)

which allows the CC to compute rkþ1 as follows

rkþ1 ¼ rk þ ak P>fk �
X
ðg;uÞ2Z0

~ugð~v>u pkÞ
0
@

1
A

¼ rk þ ak

�
P>fk �

X
gjðg;uÞ2Z0

~ug

X
ujðg;uÞ2Z0

~v>u pk

�
:

(30)

Note that when calculating ak and rkþ1 we have also
used the fact that ~Z is formed by rank-one matrices to
provide computational gains to the CC. That is, the
CC carries out the computations of ak and rkþ1 in linear
time via vector-vector multiplications and vector-vector
additions.

Equations (23), (24), and (25) only require vector-vector
operations, hence they all can be computed entirely by the

CC itself. At the end of the kth iteration, the CC transmits

p̂>ðkþ1Þ1 ¼ p>kþ1P
> and p̂ðkþ1Þ2 ¼ T>pkþ1 to the CS for the next

iteration kþ 1. Iterations terminate according to the stop-
ping criteria suggested by Golub and Van Loan [25], i.e.,ffiffiffiffiffiffiffiffiffi

r>k rk
q

� njjb0jj2, where n is a tolerance value. After the

PPCGM algorithm converges, the CC recovers the solution
vector x	.

We summarize the PPCGM algorithm in Table 1, avail-
able in Appendix B in the online supplemental material,
available online. Moreover, we note that since the CS has an
economic incentive to allocate less computational resources
to the CC and return erroneous solutions, the CC should be
able to verify the results from the CS. In particular, at the end
of the algorithm the CC canmultiplyA0 by the obtained solu-
tion vector x, and compare the product to the constant vector
b0. As in [19], the solution vector x can be deemed correct if
jjA0x� b0jj2 � �, where � is a small value. Since the result ver-
ification is not themain focus of this paper, we refer the read-
ers to other works for more detailed discussions.

4.2.3 Preconditioning

To accelerate the convergence of our algorithm PPCGM, the
CC can reformulate its SLSEs into an equivalent system
with better numerical properties. Specifically, since the

convergence of the CGM depends on A0’s condition num-
ber, the CC can instead solve the following SLSE:

Apxp ¼ bp; (31)

where Ap ¼ C�>A0C�1, C 2 Rn�n is a preconditioning
matrix, xp ¼ Cx is the variable vector, bp ¼ C�>b0 is the con-
stant vector, and �> denotes the inverse and transpose oper-
ations. By lowering the condition number of Ap,
preconditioning reduces the number of iterations that it
takes the PPCGM algorithm to solve an SLSE [25]. In Section
4.2.4, we introduce a transformation to solve general SLSEs,
which can also be used by the CC to efficiently outsource
the preconditioning in (31) to the CS.

4.2.4 Solving General SLSEs

As shown in Section 4.1, the CGM only works with symmet-
ric and positive definite matrices. Therefore, the CC may be
unable to directly solve some SLSEs with our proposed
algorithm PPCGM. In particular, we have the following two
cases: 1) the SLSE has a coefficient matrix A 2 Rm�n, where
m > n: in this case the SLSE is an overdetermined system and
the objective is to minimize jjAx� bjj2, i.e., a least-squares prob-
lem; and 2) the SLSE has a nonsingular, non-symmetric, and
non-positive definite coefficient matrix A 2 Rn�n. We can see
that the CC can solve both of the above types of SLSEs by
formulating the following equivalent SLSE:

A0x ¼ b0; (32)

where A0 ¼ A>A is symmetric and positive definite, and
b0 ¼ A>b.

Since computing A0 requires a matrix-matrix multiplica-
tion, which has computational complexity of OðrÞ, where
n2 � r �M 0n (M 0 denotes the number of non-zero ele-
ments), the CC can outsource the computation to the CS. To
be more prominent, the CC generates two m� n random
matrices ~Z0 and ~Z1, and permutation matrices P0;T0, Q0 as
described in Section 3, and then sends two masked matrices
Â0 and Â1 to the CS:

Â0 ¼ Q>0 ðAþ ~Z0ÞP>0 ; (33)

Â1 ¼ Q>0 ðAþ ~Z1ÞT0: (34)

As proved before, Â0 and Â1 are computationally indistin-
guishable from a random matrix and hence do not reveal
any information about A. The CS carries out the following
secure computation:

G ¼ Â
>
0 Â1 (35)

¼ P0ðA>AþMÞT0: (36)

where M ¼ ~Z
>
0 AþA>~Z1 þ ~Z

>
0
~Z1. Thus, upon receiving G

from the CS, the CC can obtain the symmetric positive defi-
nite matrix A0 by

A0 ¼ P>0 GT>0 �M: (37)

To avoid matrix-matrix multiplications in the calculation of
M, the CC can replace ~Z0 and ~Z1 with

P
ðg;uÞ2Z ~u0

g~v
0>
u andP

ðg;uÞ2Z ~u1
g~v

1>
u , respectively, i.e.,
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M ¼
X
ðg;uÞ2Z

~v0u ~u0>
g A

� �
þ

X
ðg;uÞ2Z

A>~u1
g

� �
~v1>u

þ
X
ðg;uÞ2Z

~v0u ~u0>
g ~u1

g

� �
~v1>u

¼
X

ujðg;uÞ2Z
~v0u

X
gjðg;uÞ2Z

~u0>
g Aþ

X
gjðg;uÞ2Z

A>~u1
g

0
@

1
A�

X
ujðg;uÞ2Z

~v1>u þ
X
ðg;uÞ2Z

~v0u ~u0>
g ~u1

g

� �
~v1>u :

(38)

Note that multiplying a matrix by P>0 , T
>
0 , or Q0 has com-

plexity of at most Oðn2Þ and can be done efficiently by the
CC. We summarize this SLSE transformation scheme in
Table 2, available in Appendix C in the online supplemental
material, available online.

Remark 1. The matrix A0 can be calculated just once for
many SLSEs that share the same A0 but have different
b0’s. For example, power system operators solve many
state estimation problems for system monitoring and con-
trol. These problems have different measurements, i.e.,
b0’s, but the same A0 which depends on network topology
and does not change frequently. Thus, finding A0 once is
enough to solve a large number of SLSEs.

Remark 2. Since the transformation by employingA0 ¼ A>A
will greatly increase the condition number of the original
SLSE (1), solving an SLSE of type 2) based on (32) may take
a large number of iterations. To accelerate the convergence
of our algorithm PPCGM, the CC can reduce the condition
number of (32) by applying the preconditioning technique
described in Section 4.2.3. Alternatively, the CC may easily
extend our proposed secure outsourcing techniques to the
Generalized Minimal Residual Method (GMRES) [26],
which is a gradient directionmethod that can directly solve
(1) but has a largermemory requirement than the CGM.

5 PERFORMANCE AND PRIVACY ANALYSIS

In this section we analyze the computational, memory I/O,
and communication complexity of the proposed PPCGM
algorithm, and compare it with those of the previous works.
We also present a thorough privacy analysis. Note that previ-
ous works can only work with square coefficient matrices. To
perform fair comparisons, we assume that they employ our
proposed SLSE transformation algorithm in Table 1 (available
in Appendix B in the online supplemental material, available
online) to securely transform an arbitrary coefficient matrix of
into a square, symmetric and positive definitematrix.

5.1 Computational Complexity

We define the computational complexity of a party as the
number of floating-point (flops) operations (additions, sub-
tractions, multiplications, and divisions), bitwise opera-
tions, and encryptions that the party needs to perform. We
note that an encryption takes many flops, and a flop takes
some bitwise operations. To determine the overall computa-
tional complexity for the client and the cloud in PPCGM,
we look into Tables 1 and 2 in detail which are available in
Appendices B and C in the online supplemental material,
available online respectively.

5.1.1 Cloud Client

If the original coefficient matrix is not symmetric and defi-
nite positive, the CC runs the algorithm in Table 2 to con-
struct such a matrix in equation (32). To this end, in line 1 of
Table 2, the client generates the random vectors �u0 and �u1,
the random matrices ~Z0 and ~Z1, and permutation matrices
P0, T0, andQ0. To get �u0 and �u1, the client uses a pseudoran-
dom number generator like the Mersenne Twister [27],
which takes a constant number of bitwise operations, say
CR, for each of the 2m random numbers. To get ~Z0 and ~Z1,
the client multiplies ~u0

g~v
0>
u and ~u1

g~v
1>
u (for ðg; uÞ 2 Z) via

2abjZj flops, where jZj is the number of submatrices in A
with at least one non-zero value. To obtain the permutation
matrices (i.e., P0, T0, and Q0), the CC computes two map-
pings using a traditional search (2n, 2n, 2m flops for P0, T0,
and Q0, respectively), and one pseudorandom function
using the Advanced Encryption Standard (AES), which
takes CF ¼ OðwÞ bitwise operations (w ¼ dlog2 m!e). Thus,
the total complexity in line 1 is ð2þ 2CRÞmþ 4nþ 3CF bit-
wise operations plus 2abjZj flops. In line 2, in each of Equa-
tions (33) and (34), there are 1 sparse matrix addition with
abjZj flops, and two random permutation matrix and
sparse matrix multiplications with 2abjZj flops. Thus, the
total computational complexity in line 2 is 6abjZj flops. In
line 4, the client computes Equations (37) and (38). Denote
the number of nonzero elements in G ¼ Â>0 Â1 by M̂.
Then, Equation (37) requires two matrix permutations and
a matrix sum with at most 2M̂ flops and M̂ flops, respec-
tively. In Equation (38), the client performs 2ðn=b� 1Þ þ
ðjZj � 1Þ rank one matrix additions with zero flops (since
we are adding matrices with no overlapping non-zero ele-
ments, the client can efficiently build the resulting matrix by
appending the matrices’ CSC vectors); for each u at most
2ðm=a� 1Þ row/column additions with at most 2mn=a
flops, i.e., at most 2mn2=ðabÞ flops; at most 2m=a sparse
matrix and sparse vector products which totally takes
4M � 2n flops; at most 2n=b outer vector products with no
more than 2M̂ flops (the complexity is no more than twice
the number of nonzero elements in M, hence no more than
twice the number of nonzero elements in G); jZj outer vec-
tor products with jZj � b2 flops; jZj sparse inner vector
products that are essentially at most m=a different sparse
inner vector products with ðm=aÞ � ð2a� 1Þ, i.e., 2m flops,
and jZj scalar and sparse vector products with jZj � b flops.
Thus, the total computational complexity in line 4 is
5M̂ þ 4M þ 2mn2=ðabÞ þ ðb2 þ bÞjZj þ 2m� 2n. In addi-
tion, in line 5, since there areM (note thatM < M 0) nonzero
values in A, there are at most 2M � n flops. Consequently,
the overall computational complexity for the cloud client
in Table 2 is 5M̂ þ 6M þ 2mn2=ðabÞ þ ð8abþ b2 þ bÞjZj þ
2m� 3n flops plus ð2þ 2CRÞmþ 4nþ 3CF bitwise opera-
tions. Note that and b2jZj � M̂. We can see that when
a ¼ QðmÞ and b ¼ QðnÞ, the computational complexity for
the cloud client in Table 2 is OðM̂Þ þ OðMÞ flops.

In line 1 of Table 1, the client generates the random vector
�u, the matrices ~Z, P, and T, which require CRnþ 4nþ 2CF

bitwise operations plus a0b0jZ0j flops. Denote the number of
nonzero elements in Â0 by M̂ 0. Then, we have M̂ 0 ¼ a0b0jZ0j.
In line 2, the client constructs the transformed coefficient
matrix Â0 through a matrix addition, two permutation
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matrix and matrix multiplications, and a permutation
matrix and vector multiplication, which takes 3M̂ 0 þ n flops.
In line 4, the client computes r0 through at most n=b0 differ-
ent inner vector products with ðn=b0Þ � ð2b0 � 1Þ, i.e., 2n
flops; at most minfðn=a0Þðn=b0 � 1Þ; jZ0j � 1g scalar addi-
tions, i.e., minfn2=ða0b0Þ; jZ0jg flops; at most n=a0 sparse vec-
tor and scalar multiplications with totally ðn=a0Þ � a0, i.e., n
flops; at most n=a0 � 1 vector additions with no flops (due
to nonverlapping non-zero elements and the CSC method
mentioned above); two vector subtractions with 2n flops;
and one permutation matrix and vector multiplication with
n flops; which takes minfðn2=ða0b0Þ; jZ0jg þ 6n flops in total.
In each iteration, to find ak in line 6, according to equa-
tion (28), the client performs 1 inner vector multiplications
with 2n� 1 flops; at most n=b0 inner vector multiplications
with ðn=b0Þ � ð2b0 � 1Þ, i.e., 2n flops; at most minfðn=a0Þ
ðn=b0 � 1Þ; jZ0j � 1g scalar additions, i.e., minfðn2=ða0b0Þ;
jZ0jg flops; at most n=a0 inner vector multiplications with
ðn=a0Þ � ð2a0 � 1Þ, i.e., 2n flops; at most n=a0 scalar and sca-
lar multiplications with n=a0 flops; at most n=a0 � 1 scalar
additions with n=a0 � 1 flops; one scalar subtraction, and
one scalar division; which has a total of minfðn2=ða0b0Þ;
jZ0jg þ ð6þ 2=a0Þn flops. In line 7,

P
ujðg;uÞ2Z0 ~v

>
u pk has

already been computed in Equation (28) and hence does not
require any more computations. The client needs to perform
at most n=a0 vector scalar multiplications with ðn=a0Þ � a0,
i.e., n flops; at most n=a0 � 1 vector additions with zero flops
(due to nonverlapping non-zero elements and the CSC
method mentioned above); one permutation matrix and
vector multiplication with n flops; one scalar and vector
multiplication with n flops; and two vector addition/sub-
traction with 2n flops; to find rkþ1. The total cost is 5n flops.
Similarly, in line 8, we can see that computing xkþ1, bkþ1,
pkþ1 requires 2n, 4n� 1, and 2n flops, respectively, resulting
in 8n� 1 flops in total. In line 9, computing p̂>ðkþ1Þ1 and
p̂ðkþ1Þ2 requires 2n flops. Our experiments show that itera-
tions usually end fairly quickly. Thus, when a0 ¼ QðnÞ and
b0 ¼ QðnÞ, the total computational complexity of the
PPCGM algorithm in Table 1 is OðM̂ 0Þ flops.

Note that M < M 0, M 0 < M̂, and M 0 < M̂ 0. Therefore,
the overall computational complexity of the PPCGM algo-
rithm is OðM̂Þ þ OðM̂ 0Þ flops.

The scheme proposed by [16] does not specifically solve
LSEs with sparse matrices. To make fair comparisons, we
assume [16] employs the SLSE transformation algorithm in
Table 2 to transform an arbitrary coefficient matrix into a
square matrix first, which takes OðM̂Þ þ OðMÞ flops plus
OðmÞ þ OðnÞ bitwise operations as shown above. Then, a
client encrypts its coefficient matrix by multiplying it with
two permutation matrices, which takes 2M 0 flops. Similarly,
the client performs 2M 0 multiplications to decrypt the
received inverse matrix. To solve an LSE the client performs
an additional matrix and vector multiplication, which
incurs 2M 00 � n flops where M 00 is the number of nonzero
elements in ðA0Þ�1. Note that the inverse of a sparse matrix
is generally not sparse any more, and we generally have
M 00 ¼ Qðn2Þ. Thus, the total computational complexity is
OðM 00Þ þ OðM̂Þ flops.

The secure outsourcing proposed in [19] requires a client
to perform a problem transformation that takes one diago-
nal matrix inversion with n flops, a sparse matrix-vector

multiplication with 2M 0 � n flops, the multiplication of
diagonal matrix and a matrix with a zero diagonal with at
most M 0 flops, the multiplication of a diagonal matrix and a
vector with n flops, and an additive homomorphic encryp-
tion and random permutations of the elements of an n�m
matrix with M 0 homomorphic encryptions and M 0 flops
respectively. These operations take a total of 4M 0 þ n flops
plus M 0 homomorphic encryptions. Then, in each iteration
the client decrypts a vector and performs a vector addition,
which takes n flops and n decryptions. Considering the
transformation of an arbitrary coefficient matrix into a
square matrix, the total computational complexity for this
work is OðM̂Þ flops þOðM 0Þ encryptions.

5.1.2 Cloud Server

In the proposed PPGCM algorithm, the CC and the CS run
the algorithm in Table 2 to construct a symmetric and posi-
tive definite matrix, and hence the CS needs to compute G
in Table 2 through one matrix multiplication, which takes at
most M̂n flops. Thus, the computation complexity for the
CS in Table 2 is OðM̂nÞ. In Table 1, the CS computes h0 in
line 3 via a matrix vector multiplication with complexity
2M̂ 0 � n. To compute tk in line 5, the cloud performs two
matrix vector multiplications with complexity 4M̂ 0 � 2n. In
line 5, the CS also computes fk, which takes 2M̂ 0 � n flops.
The CS totally performs ð2M̂ 0 � nÞ þ ð4M̂ 0 � 2nÞk flops in
Table 1. Therefore, the total complexity of the CS is OðM̂nÞ
in the proposed PPGCM.

In [16], the CS computes a matrix inversion that takes
OðM 00nÞ flops. Considering the complexity of running the
algorithm in Table 2, the total complexity of the CS is
OðM 00nÞ flops.

The CS in [19] runs an iterative algorithm that computes
a matrix vector multiplication over encrypted data in each
iteration, which takes n2 � n multiplications and n2 expo-
nentiations. We note that each exponentiation takes Oðd2Þ
floating point operations, where d is the bit-length of the
encrypted values. Thus, considering the complexity of run-
ning the algorithm in Table 2, the total computational com-
plexity of the CS is Oðd4n2Þ.

5.2 Memory I/O Complexity

As mentioned before, to better capture the memory I/O
requirement of large-scale SLSEs, we propose a new defini-
tion of memory I/O complexity, which is the number of val-
ues that are read/written from/into external memory.

If the original LSE system is not symmetric and positive
definite, the CC runs the algorithm in Table 2, which reads
the original coefficient matrix in 2M þ n I/O operations and
writes the new coefficient matrix with 2M 0 þ n I/O opera-
tions (due to the CSC matrix representation method intro-
duced in Section 2.1). The CC also needs to read b and write
b0 once, respectively, which takes 2n I/O operations. In line
2 of Table 1, to construct Â0, the CC reads A0 and writes Â0

to external memory, which takes 2M 0 þ 2M̂ 0 þ 2n I/O oper-
ations. Computing r0 requires one read of b̂

0
which takes n

I/O operations. In the main iteration phase, the CC is able
to make all of its operations within the RAM memory. At
the final iteration, stores the solution x	 into the external
memory, which takes n I/O operations. Therefore, the total

SALINAS ETAL.: EFFICIENT SECURE OUTSOURCING OF LARGE-SCALE SPARSE LINEAR SYSTEMS OF EQUATIONS 35



memory I/O complexity of our scheme is no more than
2M̂ 0 þ 4M 0 þ 2M þ 8n.

In [16], the CC hides its coefficient matrix using permuta-
tion matrices that need one read of A0, and one write of the
resulting matrix, which takes 4M 0 þ 2n I/O operations. The
client decrypts the received inverse matrix similarly, which
in general is no longer a sparse matrix, so it takes another
2M 00 þ n I/O operations. To find the solution vector, the CC
performs a read of the inverse matrix and vector b and a
write of the final solution, which takes 2M 00 þ 3n I/O opera-
tions. Note that transforming an arbitrary matrix into a
square matrix for matrix inversion incurs 2M 0 þ 2M þ 4n
memory I/O operations. The memory I/O complexity in
[16] for general matrices is thus 4M 00 þ 6M 0 þ 2M þ 10n.

In [19], the CC protects its data by transforming the prob-
lem through a matrix transformation, which takes 4M 0 þ 3n
I/O operations, and by encrypting the coefficient matrix,
which takes additional 4M 0 þ 2n I/O operations. At the
final iteration, the CC also stores the result in external mem-
ory which takes n I/O operations. Similarly, an arbitrary
matrix needs to be transformed into a square matrix first,
which takes 2M 0 þ 2M þ 4n I/O operations. Thus, the total
memory I/O complexity for the CC is 10M 0 þ 2M þ 10n
I/O operations.

5.3 Communication Complexity

We define the communication complexity as the number of
non-zero values that the CC and the CS need to transmit to
each other to solve an SLSE.

If the original LSE is non-symmetric and non-positive
definite, then the CC and CS collaborate to run the transfor-
mation algorithm in Table 2. In the first transmission, the
CC uploads Â0 and Â1, which both have abjZj non-zero ele-
ments. In the second transmission, the CS sends matrix G to
the CC, which has M̂ non-zero elements. Hence, the overall
communication complexity of Table 2 is 2abjZj þ M̂. We
can see that when a ¼ QðmÞ and b ¼ QðnÞ, the total commu-
nication complexity in Table 2 is OðM̂Þ.

In the initialization phase of Table 1, the CC sends Â0 and
x̂, which have M̂ 0 and n non-zero values, respectively. The
CS replies by transmitting h0, which has n non-zeros. In the
main iteration phase, the CC transmits p̂k0 and p̂k1, which
both have n non-zero values. The CS responds with tk, a sca-
lar, and fk, which is a vector with n non-zero values. Our
experiments show that the proposed PPCGM algorithm
usually converges fairly quickly when a0 ¼ QðnÞ and
b0 ¼ QðnÞ. Therefore, the total communication complexity
of the PPCGM algorithm in Table 1 is OðM̂ 0Þ non-zero value

transmissions. The overall complexity of our proposed
PPCGM algorithm for Tables 1 and 2 is OðM̂Þ þ OðM̂ 0Þ non-
zero value transmissions.

In [16], the CC transmits its concealed matrix to the CS,
which has M 0 non-zero elements, and the CS replies with a
concealed inverse matrix, which has M 00 non-zero elements.
Considering that transforming an arbitrary matrix into a
square one requires the transmission of OðM̂Þ non-zero ele-
ments, the total communication complexity for [16] is
OðM̂Þ þ OðM 00Þ.

In [19], the CC transmits a concealed matrix withM 0 non-
zero values to the CS during the initialization phase. In the
main iteration, the CC and CS each transmit a vector of
length n. Taking into account the LSE transformation in
Table 2, the total communication complexity of [19] is
OðM̂Þ þ OðM 0Þ non-zero element transmissions.

A summary of computational, memory I/O, and commu-
nication complexity comparison between our algorithm and
previous works is also shown in Table 3. Note that most pre-
vious works assume square matrices in their study.
Although we have analyzed the complexities of several
existing schemes, to facilitate more inclusive comparison,
we consider square matrices as well, i.e., m ¼ n, and disre-
gard the complexity of running the algorithm in Table 2,
i.e., focusing on solve the transformed SLSE. Again, note
that M < M 0, M 0 < M̂, M 0 < M̂ 0, and M 00 ¼ Qðn2Þ. We
can easily see that our proposed scheme has the lowest com-
plexities both at the CC and CS.

5.4 Privacy Analysis

Exploring the PPCGM algorithm proposed in Section 4, we
observe that the CS only has access to the transformed coef-
ficient matrices Â0=Â0=Â1 and the conjugate vector pk.
According to Theorem 1 the transformed matrices
Â0=Â0=Â1 are computationally indistinguishable from a
random matrix. Thus, the CS cannot derive any information
about the non-zero elements of coefficient matrices A=A0

from the transformed matrices Â0=Â0=Â1. Besides, Theorem
3 guarantees that the positions of the non-zero elements in
the matrices sent to the CS are computationally indistin-
guishable under a CPA. In addition, in contrast to [16], [17],
[18], our proposed matrix addition can conceal the amount
of non-zero values in the matrices A=A0, which is also very
important in many applications. For example, in power sys-
tem state estimation, the system matrix contains the
topology of the power grid, which can be used by attack-
ers to launch attacks against the grid [12]. By introducing
additional non-zero values and permuting the rows and

TABLE 3
Computational and Memory I/O Complexity Comparison

Algorithm Computational
Complexity at the CC

Memory I/O
Complexity at the CC

Computational
Complexity at the CS

Communication
Complexity

Matrix
Type

Gennaro et al. [13] OðM 0Þ FHE crypt ops 6M 0 þ 2M þ 6n I/O ops VðM 00nÞ OðM 0Þ General
Wang et al. [14], [15] OðrÞ (n2 < r �Mn) flops 2M 0 þ 2M þ n2 þ 5n I/O ops OðM 00nÞ OðM 00Þ General
Lei et al. [16] OðM 00Þ flops 4M 00 þ 6M 0 þ 2M þ 10n I/O ops OðM 00nÞ OðM 00Þ General
Atallah et al. [17] OðM 00Þ flops 8M 0 þ 2M þ 4n I/O ops OðM 00nÞ OðM 00Þ General
Chen et al. [18] OðM 0Þ flops 7M 0 þ 2M þ 12n I/O ops OðM 0nÞ OðM 0Þ General
Wang et al. [19] OðM 0Þ crypt ops 10M 0 þ 2M þ 10n I/O ops Oðd4n2Þ OðM 0Þ Diagonally

Dominant
Our scheme OðM̂ 0Þ flops 2M̂ 0 þ 4M 0 þ 2M þ 8n I/O ops OðM̂nÞ OðM̂ 0Þ General
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columns of A=A0, our matrix transformation conceals the
network topology. Consequently, the CS is unable to
find out either the original positions of or the total num-
ber of the non-zero elements, and hence the structure of
matrices A=A0.

We also observe that the CS is unable to derive informa-
tion about the solution vector xn. Specifically, to calculate xn
the CS needs the knowledge of ak, which is calculated with
rk. However, the CC keeps ak and rk private. We also note
from (25) that even if the CS stores pk for all k, it cannot cal-
culate rk because bk is kept private by the CC. Moreover,
from (22), rk also remains unknown from the CS since it
would need the coefficient matrix A0 to find it.

In addition, by keeping ak and rk private, the CC also
prevents the CS to learn about the vector b0 and hence b.

We also note that different from [19] where privacy can
only be protected if the algorithm converges within n itera-
tions, the privacy in our algorithm can be protected no mat-
ter how many iterations are needed.

6 EXPERIMENT RESULTS

In this section, we evaluate the computational and mem-
ory I/O complexity of the proposed scheme for secure
outsourcing of large-scale SLSEs. We implement both the
CC and the CS parts of the algorithm in Matlab 2014b.
We run the CC on a laptop with a dual-core 2.4 GHz
CPU, 4 GB RAM memory, and a 320 GB hard disk at
5,400RPM. The CS is set up on Amazon Elastic Compute
Cloud (EC2). As explained in Section 4.2.1, transforming
A into A0 can be done just once for many LSEs, and it
needs to be done before many previous LSE outsourcing
algorithms can work. Therefore, we focus on the perfor-
mance of solving A0x ¼ b0 with nonsingular, symmetric,
and positive definite coefficient matrices of dimension
n� n, with n ranging from 1,800 to 25,700. We test our
algorithms by solving real-world SLSEs taken from the
University of Florida database [28], which includes SLSEs
for computational fluid dynamics, aircraft design, transis-
tor design, and structural engineering problems. Table 4
summarizes the testing matrices’ parameters.

We first investigate the impact of submatrix size, i.e., a, b,
a0, and b0, on the computing time of the CC and of the CS. In
particular, we solve four SLSEs, i.e., with coefficient matri-
ces S1, S2, S3, and S4, using different submatrix sizes by
setting a ¼ b ¼ a0 ¼ b0, and present the results of comput-
ing time in Fig. 2. We observe that the CC’s computing time
becomes lower when a increases. This is because the num-
ber of computations performed by the CC in equations (26),
(28), and (30) decreases as a increases, which is consistent
with our complexity analysis in Section 5.1. In contrast, we
find that the CS experiences less computing time when the

submatrix size is smaller. The reason for this is that the CS
performs matrix and vector multiplications with Â0, which
has fewer non-zero elements as a decreases. Therefore, in
order to have low overall computing time, we need a small
a since the computing time at the CS is generally much
higher than that at the CC. However, a cannot be too small
because otherwise the CC’s computing time would become
very high and outweigh the CS’s computing time.

We then evaluate the CC’s running time due to memory
I/O operations and show the results in Fig. 3. As expected,
the CC’s I/O time is generally shorter when a is smaller.
The reason is that a smaller a introduces fewer non-zero ele-
ments to Â0, which results in fewer I/O operations. For
example, In Fig. 3a, we can see that the CC only takes a cou-
ple of seconds to perform all the I/O operations when
a ¼ 100. We observe similar results when when solving the
other SLSEs.

To explore the total running time of our proposed
algorithm PPCGM, we focus on the total computing and
memory I/O access time. Fig. 4 shows the total running

TABLE 4
Sparse Matrices

Name Dimension Non-zerosM

S1 n ¼ 1:8� 103 39:3� 103

S2 n ¼ 2:9� 103 174:2� 103

S3 n ¼ 14:8� 103 715:8� 103

S4 n ¼ 25:7� 103 3:7� 106

Fig. 2. The computing time of the CC and that of the CS to solve SLSEs
with different values of a.

Fig. 3. The I/O memory access time with different values of a.
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time with different submatrix sizes. Since the CS performs
the most expensive computation in the iterations of our
algorithm, i.e., matrix and vector multiplications, the total
running time is dominated by the CS’s computing time
when a is large, and hence increases as a increases. On
the other hand, when a is very small, the total running
time is dominated by the CC’s computing time and hence
decreases as a increases. We can easily see such results
when comparing the plots in Fig. 4 to those in Fig. 2. Con-
sequently, we generally need a small a so as to have low
total running time.

We summarize the total communication time of our test
problems with a 1 Gbps connection to the cloud in Table 5.
We observe that the communication time of our proposed
algorithm PPCGM is very small compared to the combined
computing and memory I/O access time. For instance, the
communication time of S3 is 53:4� 10�3 s, which is only
about 0.4 percent of the total running time and can be
neglected. Note that a dedicated 1 Gbps connection is a
practical and cost-efficient option for the CC as most cloud
service providers offer this service at a low price. For exam-
ple, Amazon Web Services offers a 1 Gbps connection for
$0.3/hour [29].

To further evaluate our algorithm, we compare our
results with those of the matrix inversion algorithm in [16],3

which has the lowest computational complexity in the pre-
vious literature as shown in Table 3.

We first summarize some detailed results on the total
computing time and the total memory I/O access time in
Tables 6 and Table 7, respectively. We can observe that
although our algorithm deals with an increased number of
non-zeros due to matrix Â0 having more non-zeros than A,
the computing time and the memory I/O time of our algo-
rithm are much less than those of the algorithm in [16]
because of more efficient algorithm design. Besides, we can
observe that the total running time saving offered by our
algorithm is very attractive. For example, in the case of a
sparse matrix of size n ¼ 25;700, the total running time of
our algorithm is 2545.72 seconds, compared to a total of
9732.11 seconds of the algorithm in [16]. Thus, our algo-
rithm can achieve as high as 74 percent time saving, which
is very impressive. We also compare in Fig. 5 the total run-
ning time of our algorithm with that of [16] with different
sparse matrices. We can find that the time saving of our
algorithm becomes more and more significant compared to
[16] as the sparse matrix becomes larger.

7 CONCLUSION

In this paper, we have investigated the problem of securely
outsourcing large-scale SLSEs. In particular, to protect the
cloud client’s privacy and preserve the sparsity of the
SLSEs, we have developed a privacy and sparsity preserv-
ing matrix transformation scheme based on linear algebra

Fig. 4. The total running time under different values of a.

TABLE 5
Total Communication Time between the CC and the CS Under a

1 Gbps Connection

Matrix Name Vector Size Total Communication Time

S1 112:5� 103b 789� 10�6 s
S2 181:2� 103b 2:05� 10�3 s
S3 925� 103b 53:4� 10�3 s
S4 1:6� 106b 160:9� 10�3 s

TABLE 6
Comparison of Total Computing Time

Matrix Name Our Algorithm [16]

S3 143.2 s 596.5 s
S4 2533.4 s 8870.7 s

TABLE 7
Comparison of Total Memory I/O Access Time

Matrix Name Our Algorithm [16]

S3 11.5 s 336.98 s
S4 12.32 s 861.41 s

Fig. 5. The total running time of our algorithm compared with that of [16]
with different sparse matrices.

3. Note that [17] also has the same lowest computational complexity
as [16] and employs similar techniques.
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and shown that it is CPA-secure. Then, we have devised an
algorithm based on the conjugate gradient method that can
solve large-scale SLSEs efficiently while protecting the cli-
ent’s privacy. Formal analysis has demonstrated that our
proposed algorithm has much lower computational and
memory I/O complexities than previous works at both the
client and the cloud, and can protect the client’s privacy
well. We have also conducted extensive experiments on
Amazon Elastic Compute Cloud (EC2) and found that our
algorithm offers significantly less total running time com-
pared to previous works.
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