MASS TRANSPORT EQUATIONS

Table 13.1-1. Continuity Equation for an Incompressible Fluid

Rectangular coordinates:				
$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0$				
Cylindrical coordinates:				
$\frac{1}{r}\frac{\partial}{\partial r}(ru_{r}) + \frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_{z}}{\partial z} = 0$				
Spherical coordinates:				
$\frac{1}{r^2}\frac{\partial}{\partial r}(r^2u_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}(u_\theta\sin\theta) + \frac{1}{r\sin\theta}\frac{\partial u_\phi}{\partial\phi} = 0$				

 Table 9.1-1
 Components of the Molar Flux Vector: Constant Mass Density

Г

$$\begin{array}{l} \mbox{Rectangular coordinates:} \\ N_{i,x} = u_z C_i - \mathcal{D}_i \frac{\partial C_i}{\partial x}, \quad N_{i,y} = u_y C_i - \mathcal{D}_i \frac{\partial C_i}{\partial y}, \quad N_{i,z} = u_z C_i - \mathcal{D}_i \frac{\partial C_i}{\partial z} \\ \mbox{Cylindrical coordinates:} \\ N_{i,r} = u_r C_i - \mathcal{D}_i \frac{\partial C_i}{\partial r}, \quad N_{i,\theta} = u_\theta C_i - \mathcal{D}_i \frac{1}{r} \frac{\partial C_i}{\partial \theta}, \quad N_{i,z} = u_z C_i - \mathcal{D}_i \frac{\partial C_i}{\partial z} \\ \mbox{Spherical coordinates:} \\ N_{i,r} = u_r C_i - \mathcal{D}_i \frac{\partial C_i}{dr}, \quad N_{i,\theta} = u_\theta C_i - \mathcal{D}_i \frac{1}{r} \frac{\partial C_i}{d\theta}, \quad N_{i,\varphi} = u_\varphi C_i - \mathcal{D}_i \frac{1}{r \sin \theta} \frac{\partial C_i}{\partial \varphi} \end{array}$$

Table 15.2-1 Species Concentration Equations: Constant ρ and \mathcal{D}_A

Rectangular coordinates:

$$\frac{\partial C_{A}}{\partial t} + \left(u_{x}\frac{\partial C_{A}}{\partial x} + u_{y}\frac{\partial C_{A}}{\partial y} + u_{z}\frac{\partial C_{A}}{\partial z}\right) = \mathcal{D}_{A}\left(\frac{\partial^{2}C_{A}}{\partial x^{2}} + \frac{\partial^{2}C_{A}}{\partial y^{2}} + \frac{\partial^{2}C_{A}}{\partial z^{2}}\right) + R_{A}$$
Cylindrical coordinates:

$$\frac{\partial C_{A}}{\partial t} + \left(u_{r}\frac{\partial C_{A}}{\partial r} + u_{\theta}\frac{1}{r}\frac{\partial C_{A}}{\partial \theta} + u_{z}\frac{\partial C_{A}}{\partial z}\right) = \mathcal{D}_{A}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial C_{A}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}C_{A}}{\partial \theta^{2}} + \frac{\partial^{2}C_{A}}{\partial z^{2}}\right] + R_{A}$$
Spherical coordinates:

$$\frac{\partial C_{A}}{\partial t} + \left(u_{r}\frac{\partial C_{A}}{\partial r} + u_{\theta}\frac{1}{r}\frac{\partial C_{A}}{\partial \theta} + u_{\phi}\frac{1}{r\sin\theta}\frac{\partial C_{A}}{\partial \phi}\right)$$

$$= \mathcal{D}_{A}\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial C_{A}}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\left(\sin\theta\frac{\partial^{2}C_{A}}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}C_{A}}{\partial\phi^{2}}\right] + R_{A}$$

Constant Mass Density, ρ					
Axisymmetric (S _r ∝ r)	$\frac{\partial (ru_r)}{\partial r} = 0$ $\frac{\partial C_i}{\partial t} + u \frac{\partial C_i}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(\mathcal{D}_i r \frac{\partial C_i}{\partial r} \right) + R_i$				
Spherically Symmetric ($S_r \propto r^2$)	$\frac{\partial \left(r^{2} u_{r}\right)}{\partial r} = 0$ $\frac{\partial C_{i}}{\partial t} + u \frac{\partial C_{i}}{\partial r} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(\mathcal{D}_{i} r^{2} \frac{\partial C_{i}}{\partial r} \right) + R_{i}$				
Constant Molar Density c					
Axisymmetric $(S_r \propto r)$	$\frac{\partial \left(ru_{r}^{*}\right)}{\partial r} = \frac{r}{c}\sum_{k=1}^{I}R_{k}$ $\frac{\partial C_{i}}{\partial t} + u^{*}\frac{\partial C_{i}}{\partial r} = \frac{1}{r}\frac{\partial}{\partial r}\left(\mathcal{D}_{i}r\frac{\partial C_{i}}{\partial r}\right) + R_{i} - \frac{C_{i}}{c}\sum_{k=1}^{I}R_{k}$				
Spherically Symmetric (S _r $\propto r^2$)	$\frac{\partial \left(r^{2} u_{r}^{*}\right)}{\partial r} = \frac{r^{2}}{c} \sum_{k=1}^{I} R_{k}$ $\frac{\partial C_{i}}{\partial t} + u^{*} \frac{\partial C_{i}}{\partial r} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(\mathcal{D}_{i} r^{2} \frac{\partial C_{i}}{\partial r} \right) + R_{i} - \frac{C_{i}}{c} \sum_{k=1}^{I} R_{k}$				

 Table 9.1-2
 Unidirectional Radial Transport

Table 12.1-1 Dimensionless, Surface-Averaged, Mass Transfer Coefficients $(Re_d = \rho ud/\mu: Re_L = \rho uL/\mu: Sh_d = k_s d/D_s: Sh_L = k_s L/D_s: Sc = \mu/\rho D_s)$

1. FULLY-DEVELOPED FLOW THROUGH CIRCULAR TUBES (Middleman, 1998)

2. FLOW PARALLEL TO A FLAT PLATE (Treybal, 1980)

3. FLOW PERPENDICULAR TO CYLINDERS

a) Single Cylinder_(Treybal, 1980)

$$Sh_d = (0.35 + 0.34 Re_d^{0.5} + 0.15 Re_d^{0.58}) Sc^{0.3}$$

b) Evenly Spaced Array of Cylinders (Cussler, 1997, p 226-227)*
 $Sh_d = 0.80 Re_d^{0.47} Sc^{1/3}$

4. FLOW PARALLEL TO EVENLY-SPACED ARRAYS OF CYLINDERS (Yang and Cussler, 1986)*

a)	$Sh_{\rm d} = 1.25 \left[Re_{\rm d} \left({\rm d/L} \right) \right]^{0.93} Sc^{0.33}$:ε=0.97
b)	$Sh_{\rm d} = 0.022 \ Re_{\rm d}^{0.60} Sc^{0.33}$:ε=0.74
c)	$Sh_{\rm d} = 0.24$:ε=0.60

5. FLOW PAST SPHERES

a) Single Sphere (Cussler, 1997, p 226-227) Sh_d = 2.0 + 0.6 Re_d^{1/2} Sc^{1/3}
b) Spheres Randomly Packed in a Tube (Treybal, 1980)* Sh_d = (0.25/ε) Re_d^{0.69} Sc^{1/3}

6. MASS TRANSFER FROM A SPINNING CIRCULAR DISK (Cussler, 1997, p 226-227)

*u=superficial velocity through packed tube or across tube bank ε=void fraction between particle packing or tube banks

Model	$\begin{array}{l} \textbf{Transfer}\\ \textbf{Function}\\ \tilde{g}{=}\tilde{C}_{_{out}}/\tilde{C}_{_{in}} \end{array}$	Mean Appearance Time T	$\begin{array}{c} \textbf{Variance} \\ \sigma_g^2 \end{array}$
1) Transport Delay	Eq. 18.2-17	$\frac{V}{Q}$	0
2) Single Compartment (Fig. 13.1-5)	Eq. 18.1-26	$\frac{V}{Q}$	$\left(\frac{\mathbf{V}}{\mathbf{Q}}\right)^2$
 3) J Series Compartments of Unequal Volumes V_j (Fig. 13.2-1; J=2) 	Eq. 18.2-11	$\frac{V}{Q} = \frac{\sum_{j=1}^{J} V_j}{Q}$	$\sum_{j=1}^{J} \left(\frac{V_j}{Q} \right)^2$
 4) J Series Compartments Of Equal Volumes V_J (Fig. 13.2-3) 	Eq. 18.2-12	$\frac{V}{Q} = \frac{JV_{J}}{Q}$	$J\left(\frac{V_J}{Q}\right)^2$
5) 2 Parallel Compartments of Volumes V ₁ and V ₂ Without Interaction (Fig. 13.2-5)	Eq. 18.2-22	$\frac{\mathbf{V}}{\mathbf{Q}} = \frac{\mathbf{V}_1 + \mathbf{V}_2}{\mathbf{Q}_1 + \mathbf{Q}_2}$	$\left(\frac{\mathbf{V}}{\mathbf{Q}}\right)^{2} \times \left[\frac{2\mathbf{Q}}{\mathbf{Q}_{1}}\left(\frac{\mathbf{V}_{1}}{\mathbf{V}}\right)^{2} + \frac{2\mathbf{Q}}{\mathbf{Q}_{2}}\left(\frac{\mathbf{V}_{2}}{\mathbf{V}}\right)^{2} - 1\right]$
6) 2 Parallel Compartments of Volumes V ₁ and V ₂ With Flow Interaction (Fig. 13.2-7)	Eq. 18.2-35	$\frac{V}{Q} = \frac{V_1 + V_2}{Q}$	$\left(\frac{\mathbf{V}}{\mathbf{Q}}\right)^{2} \left[1 + 2\frac{\mathbf{Q}}{\mathbf{Q}_{12}}\left(\frac{\mathbf{V}_{2}}{\mathbf{V}}\right)^{2}\right]$
7) 2 Parallel Compartments of Volumes V ₁ and V ₂ With Diffusion Interaction (Fig. 13.2-9)	Eq. 18.2-46	$\frac{V_1 + V_2 / \lambda^{12}}{Q}$	$\left(\frac{\frac{V_1 + V_2}{\lambda^{12}}}{Q}\right)^2 \times \left[1 + \frac{2Q}{P_{12}S} \left(\frac{V_2}{\lambda^{12}V_1 + V_2}\right)^2\right]$

 Table 18.3-1
 Moments of a Unit Impulse-Response With Zero Loss in SISO Models