
Efficient Privacy-preserving Outsourcing of Large-scale Convex Separable
Programming for Smart Cities

Weixian Liao, Wei Du
Department of Electrical Engineering

and Computer Science
Case Western Reserve University

Cleveland, OH, USA
wxl393, wxd108@case.edu

Sergio Salinas
Department of Electrical Engineering

and Computer Science
Wichita State University

Wichita, KS, USA
salinas@cs.wichita.edu

Pan Li
Department of Electrical Engineering

and Computer Science
Case Western Reserve University

Cleveland, OH, USA
lipan@case.edu

Abstract—One of the most salient features of smart city is
to utilize big data to make our lives more convenient and
more intelligent. This is usually achieved through solving a
series of large-scale common and fundamental problems such
as linear systems of equations, linear programs, etc. However,
it is a very challenging task for resource-limited clients and
small companies to solve such problems as the data volume
keeps increasing. With cloud computing, an alternative is to
solve complex problems by outsourcing them to the cloud.
Nonetheless, data privacy is one of the main concerns. Many
previous works on privacy-preserving outsourcing are based
on cryptographic techniques like homomorphic encryption
and have very high computational complexity, which may
not be practical for big data applications. In this paper, we
design an efficient privacy-preserving outsourcing algorithm
based on arithmetic operations only for large-scale convex
separable programming problems. Specifically, we first develop
an efficient transformation scheme to preserve data privacy.
Then we linearize the convex functions with arbitrary accuracy
and solve the problem by outsourcing it to the cloud. The client
can efficiently verify the correctness of the returned results to
prevent any malicious behavior of the cloud. Implementations
on Amazon Elastic Compute Cloud (EC2) platform show that
the proposed scheme provides significant time savings.

Keywords-convex separable programming; cloud computing;
privacy; smart city;

I. INTRODUCTION

Smart cities play a key role in transforming people’s lives
by improving sectors including transportation, water, power
system, healthcare, education, etc. [1]. Many technologies
that enable such innovative services employ big data an-
alytics. In particular, we have witnessed a skyrocketing
volume of data generated by a great variety of sources,
such as online transactions, social networking activities,
healthcare records, emails and so forth. Analyzing such data
has brought far-reaching impacts on smart cities. For exam-
ple, comprehensive and insightful analysis of the intensive
physiological data from patients can effectively assist physi-
cians in diagnosing diseases [2]. Manufacturers integrate big
data analytics into every stage of their business processes,
including predicting next possible popular products, optimiz-

ing product prices against competitors, forecasting market
demands and formulating production plans so as to achieve
maximum profits [3]. Besides, in social networks, monitor-
ing and analyzing interactions among users can improve
the accuracy of targeted advertising and recommendation
systems [4].

Although big data analytics can bring tremendous oppor-
tunities and profits, it is difficult for customers and small
companies to compute and analyze huge volumes of data by
themselves, which requires extensive computing resources
and hence very expensive capital investments [5]. As a result,
it is in dire need to find effective approaches to analyze large-
scale data sets in a more efficient and economical way. Fortu-
nately, cloud computing, characterized by rich computation
resources and the pay-per-use paradigm, can help resource-
limited clients perform large-scale data computation and
analytics [6]–[8]. In particular, clients can offload heavy
computation tasks to the cloud and enjoy vast computation
resources in a cost-effective manner. It has become widely
utilized in various types of environments and supported
clients to solve pressing issues more timely. For example,
a financial corporation’s proprietary trading algorithm can
involve intensive computation for realtime high frequency
trading. It is very impractical for the company to run it
with limited computational resources which leads to delayed
response to the market and may cause inestimable losses.
However, expeditious cloud outsourcing and computing can
be an effective alternative to address this issue [9]. To give
another example, smart grid companies can also choose
to outsource complex power distribution schemes to the
cloud, which can save noticeable computational resources
and improve energy efficiency.

In spite of the enormous benefits brought by the cloud,
there exist some serious concerns from clients, one of which
is data privacy. Clients’ data often contains sensitive infor-
mation, such as individuals’ medical records, companies’
proprietary information, engineering and scientific models,
etc. Since the leakage of such information may cause serious
problems, a good way of protecting clients’ data is to let the

2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems

978-1-5090-4297-5/16 $31.00 © 2016 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2016.95

1349

clients send concealed data instead of real data to the cloud.
The second issue is the verifiability of the results returned by
the cloud. It is possible that the cloud may unintentionally or
intentionally return invalid results. For example, if the soft-
ware incurs some hardware failures or expensive cost during
the operation, a malicious cloud may send incorrect results
to the client. Consequently, a privacy-preserving outsourcing
protocol should be developed in a manner that enables the
client to check the correctness of the returned results. The
last challenge is the computational efficiency. The additional
burden incurred by the privacy-preserving scheme should be
as little as possible. Otherwise there will be no incentive
for the client to seek help from the cloud. To overcome
those challenges, there have been some existing schemes
that are designed and applied to encrypt and outsource basic
mathematical problems. For example, our previous works in
[5], [10], [11] study the secure outsourcing of linear systems
of equations and quadratic programming problems. Zhou et
al. provide a privacy-preserving outsourcing tool that focuses
on a quadratic programming problem [12]. Outsourcing
methods for modular exponentiation, image reconstruction
and linear regression are also reported in [13]–[15], respec-
tively. Moreover, there are privacy-preserving outsourcing
schemes for matrix operations, including matrix inversion
[16], matrix determinant [17], and matrix multiplication
[18].

However, the privacy-preserving outsourcing of large-
scale convex separable programming (CSP) has not been
studied before, which is one of the most common and
fundamental nonlinear programming problem in many en-
gineering and scientific computations. Particularly, many
real-world applications are essentially CSPs, such as cost
optimization, industry control, and resource allocation [19],
which are critical for smart cities. To this end, in this
paper we propose an efficient privacy-preserving outsourcing
algorithm for solving large-scale CSPs. Specifically, we
consider a CSP where the objective function and constraints
are composed of convex functions. Firstly we develop an
efficient transformation scheme to preserve a vector’s pri-
vacy. Due to the characteristics of CSPs, we are able to
linearize the convex functions with arbitrary accuracy, which
results in solving a series of privacy-preserving large-scale
linear programming problems in the cloud. To ensure the
returned results’ integrity, we adopt a light-weight scheme
to effectively verify the correctness of the final results. Our
main contributions in this paper are summarized as follows:

• We develop a privacy-preserving scheme to efficiently
outsource large-scale CSPs. To the best of our knowl-
edge, this is the first study in the literature to investigate
this problem.

• Our privacy-preserving scheme is based on very effi-
cient arithmetic operations instead of heavy computa-
tions like homomorphic encryptions.

• We show that the proposed algorithm protects the
privacy of the client’s data and the final results.

• Experimental results show that the proposed algorithm
achieves noticeable time savings.

The rest of the paper is organized as the follows. Section
II introduces the system architecture, threat model, and
privacy definition. In Section III, we propose a privacy-
preserving transformation algorithm to protect a vector’s
privacy. Section IV presents an efficient privacy-preserving
algorithm to solve the transformed linearized CSP problem.
In Section V, we evaluate the performance of the proposed
algorithm through implementations on the Amazon Elastic
Compute Cloud (EC2) platform and finally conclude the
paper in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce our system architecture, the
threat model, and privacy definition.

A. System Architecture

We consider a two-party computing architecture for large-
scale CSP problems as shown in Fig. 1, where a client has a
resource-limited computing device and a remote cloud server
has abundant computing capabilities. The client tries to solve
a large-scale CSP problem with the help of the cloud by
outsourcing the most computationally complex tasks to the
cloud to find the optimal solution while preserving his/her
privacy. A large-scale CSP problem can be formulated as
follows:

P1: Min F =

n∑
j=1

fj(xj),

s.t.
n∑

j=1

gij(xj) ≤ bi, i = 1, · · · ,m (1)

xjL ≤ xj ≤ xjU , j = 1, · · · , n (2)

where F is a nonlinear separable function. fj(xj)′s and
gij(xj)

′s are general convex functions. b′is are constants.
xjL and xjU are lower and upper bounds for xj . Problem P1
is said to be a separable programming (SP) problem because
all the variables, i.e., xj , j ∈ [1, n], are mathematically
independent in the objective and constraint functions [20].

CSPs [19] are a special class of optimization problems,
which arise frequently in practical applications such as
time-dependent optimization in smart city applications. For
example, in an industrial resource utilization problem, each
variable xj represents the resource utilization in the time
period j, and the results of the resource utilization or profits
are additive over time. Thus, this problem can be formulated
as a CSP problem where decision variables are subject
to practical constraint functions. Another example is smart
grid operations in smart cities. Particularly, the objective
function can be minimizing zero minus the revenue of a
big company with regards to monthly energy consumptions

1350

����� ��	
�	
���	������
������

�	�����	���
�	������

���
�� ����	���� �	��	������ �	������

�������
�

����� �����

Figure 1. The architecture for privacy-preserving outsourcing of large-
scale CSPs

at different sub-companies, while the total energy cost at
different months are upper-bounded. Obviously, this problem
can be formulated as a CSP as well.

B. Threat Model

We consider that the cloud server is malicious and knows
the proposed secure outsourcing algorithm. Specifically, the
cloud tries to extract knowledge from the client’s data and
the final results. The cloud may even try to deviate from the
proposed protocols and return erroneous results so as to save
computing resources. We also consider that in the problem
P1, the objective functions fj(xj)’s and the constraint func-
tions gij(xj)’s all contain sensitive information that should
not be revealed to the cloud. The optimal solution xj’s and
the optimal value optimal value of the objective function
should not be known by the cloud either.

C. Privacy Definition

In this study, we adopt the definition of computational
indistinguishability [21] in our privacy-preserving outsourc-
ing scheme design. We first introduce the definition of
probability ensemble as follows.

Definition 1. Probability Ensemble: Let I be a countable
set. A probability ensemble by I is a collection of random
variables denoted by {Xi}i∈I .

I can be either a set of natural numbers, i.e., N, or
an efficiently computable subset {0, 1}n. With Definition
1, we can formally give the definition of computational
indistinguishability between two ensembles.

Definition 2. Computational Indistinguishability: Let
{Xn}n∈N be a probability ensemble with entries following a
uniform distribution on [−R,R]. Another probability ensem-
ble {Yn}n∈N is said to be computationally indistinguishable
from {Xn}n∈N if for every probabilistic polynomial-time
distinguisher D, there exists a negligible function, i.e., μ(·)
such that

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ μ(·) (3)

where distinguisher D(·) outputs 1 when it identifies that
the input x (or y) does not follow a uniform distribution,
and zero otherwise.

III. A PRIVACY-PRESERVING TRANSFORMATION

SCHEME FOR VECTOR PRIVACY

Before we delve into the details of the privacy-preserving
outsourcing algorithm for the CSP problem, we first develop
a privacy-preserving vector transformation scheme.

Specifically, the client needs to conduct transformation on
the original data before delegating the complex computations
to the cloud. The transformation should: 1) conceal the data
from the cloud, 2) impose light computational burden on
the client, 3) allow the cloud to return verifiable result-
s. Therefore, we design a light-weight privacy-preserving
transformation scheme based on addition and multiplication
operations only, which ensures the computational indistin-
guishability in Definition 2.

In particular, the client hides the private variable vector
x = (x1, x2, · · · , xn) by adding a randomly generated
vector r ∈ R

n×1 as follows:

y = x+ r (4)

where yj = xj + rj for any j ∈ [1, n], and yj , xj and rj
are the jth element of vector y, x, and r, respectively. Here
we assume that xj is in the range [−K,K] where K =
2k(k > 0) is a positive constant. In addition, rj (j ∈ [1, n])
is uniformly distributed on [−L,L] with the corresponding
probability density function as follows:

fr(rj) =

{
1
2L , −L ≤ rj ≤ L
0, otherwise

(5)

where L = 2k+l(l > 0) is a positive constant. We obtain the
following theorem that vectors r and y are computationally
indistinguishable.

Theorem 1. Let rn×1 be a random vector with its elements
uniformly distributed in the interval [−L,L]. Then vectors
r and y = x+ r are computationally indistinguishable.

Proof: According to Definition 2, we need to prove that
any polynomial-time distinguisher D cannot distinguish yj
from rj for j ∈ [1, n] except with non-negligible success
probability, where yj and rj are the jth element of the vector
y and r respectively. The best strategy for a polynomial-time
distinguisher D is to follow the rules: D outputs 0 or 1 with
the same probability of 1

2 if the chosen element, i.e., yj , is
within the range [−L,L], and outputs 1 if yj is in the range
(−∞,−L) or (L,∞).

Therefore, the success probability of the distinguisher

1351

when the input is yj = xj + rj can be calculated as:

Pr[D(yj) = 1]

=
1

2
Pr[−L ≤ xj + rj ≤ L]

+ Pr[xj + rj < −L] + Pr[xj + rj > L]

=
1

2

(
1− Pr[xj + rj < −L]− Pr[xj + rj > L]

)
+ Pr[xj + rj < −L] + Pr[xj + rj > L] (6)

Recall that xj is in the range [−K,K] and that rj is sampled
from a uniform distribution with probability density function
in (5). We have that

Pr[xj + rj > L]

= Pr[rj > L− xj] ≤ Pr[rj > L−K] =
K

2L
. (7)

Similarly, we can have that

Pr[xj + rj < −L] = Pr[rj < −L− xj]
≤ Pr[rj < −L+K] =

K

2L
. (8)

Consequently, the success probability of the distinguisher D
follows the inequality:

Pr[D(yj) = 1] ≤ 1

2
+
K

2L
. (9)

On the other hand, when the input is rj , following the
procedures above we can obtain that:

Pr[D(rj) = 1] =
1

2
. (10)

According to equation 3 in Definition 2, we get for all j ∈
[1, n]:

|Pr[D(yj) = 1]− Pr[D(rj) = 1]| ≤ K

2L
. (11)

Note that K = 2k and L = 2k+l. Thus, we can obtain that

μ(l) =
K

2L
≤ 2k

2k+l+1
=

1

2l+1
, (12)

which is negligible when l is large.

IV. PRIVACY-PRESERVING OUTSOURCING SCHEME

DESIGN

In this section, we develop a privacy-preserving outsourc-
ing scheme for large-scale CSPs. Note that the original CSP
problem P1 is a nonlinear problem. Our main idea is to
firstly linearize the nonlinear functions in P1 with arbitrary
accuracy and obtain a series of linear programming problems
denoted by P2. After that, we propose the privacy-preserving
outsourcing scheme for solving the large-scale CSP problem.

A. Linearization of a General Nonlinear Function

Consider a general continuous nonlinear function h(t)
where t ∈ [ta, tb]. We use a linear approximation func-
tion, i.e., ĥ(·), to approximate the original function h(t).
Specifically, by inserting k grid points, denoted by {tv|v =
1, · · · , k}, a continuous nonlinear function h(t) can be
approximated by [19]:

for t =

k∑
v=1

tvλv, h(t) ≈
k∑

v=1

h(tv)λv (13)

where λv(v ∈ [1, k]) is the coefficient for the grid point tv,
and

k∑
v=1

λv = 1, λv ≥ 0, v = 1, · · · , k (14)

B. Linearization of Problem P1

Based on the linearization method presented in (13) and
(14), we can transform the original problem P1 into P2, i.e.,

P2: min
{λjv |j∈[1,n],v∈[1,kj]}

n∑
j=1

kj∑
v=1

fj(x̂jv)λjv ,

s.t.
n∑

j=1

kj∑
v=1

gij(x̂jv)λjv ≤ bi, i = 1, · · · ,m (15)

kj∑
v=1

λjv = 1, j = 1, · · · , n (16)

λjv ≥ 0, v = 1, · · · , kj , j = 1, · · · , n (17)

where kj is the number of grid points for the variable xj ,
and xjv’s (v ∈ [1, kj]) are the grid points for the variable xj .
Since P2 is a linear programming problem, we can solve it
with existing techniques such as interior point method [22].

C. Optimal Solver for Original Large-scale CSP Problem

Since the accuracy of the linear approximations heavily
depends on the number of grid points for each variable,
there is a tradeoff between the accuracy and the convergence
speed. That is, when we increase the number of the grid
points to improve the approximation accuracy, the size of
the approximation problem P2 increases dramatically. Con-
sidering that the problem is already a large-scale problem,
how to optimally choose the number of grid points is very
critical. In what follows, we describe how to find the optimal
number of grid points.

We solve this problem in an iterative manner. Assume
that at the dth iteration, we solve the P2 and let λ̂jv’s be the
optimal solution to P2. Furthermore, let si ≥ 0 and tj denote
the optimal Lagrangian multipliers for constraints (15) and
(16), respectively. Then the solution set can be denoted
by Ω = {λ̂jv, si, tj |i ∈ [1,m], j ∈ [1, n], v ∈ [1, kj]}.
Next, the question is whether adding a new grid point can
achieve a better approximation and the minimum objective

1352

function value would further decrease. Therefore, we have
the following theorem.

Theorem 2. Let Ω = {λ̂jv, si, tj|i ∈ [1,m], j ∈ [1, n], v ∈
[1, kj]} be the solution set to the problem P2 and x̂jv’s,
(v ∈ [1, k, j = 1, · · · , n) be the corresponding grid points.
Consider that functions fj and gij are convex functions.
Denote by ψj(x̂j) a function as follows:

ψj(x̂j) = fj(x̂j) +

m∑
i=1

sigij(x̂j) + tj (18)

for j = 1, · · · , n, where x̂j =
∑kj

v=1 x̂jv λ̂jv . Then we have

1) If ∀j = 1, · · · , n, ψj(x̂j) ≥ 0, then Ω =
{λ̂jv, si, tj}, i = 1, · · · ,m, j = 1, · · · , n is an optimal
solution to problem P1, and the optimal objective
function value is

∑n
j=1 fj(x̂j).

2) Otherwise, if ψj(x̂j) ≤ 0, denote by x̂j(kj+1) =∑kj

v=1 x̂jv λ̂jv a new grid point. Then we will obtain a
new approximating linear programming problem with
a minimum objective value no higher than the current∑n

j=1 fj(x̂j).

Proof: Due to the space limits, we omit the proof and
please refer to [20] for detailed proof.

Theorem 2 helps us determine the optimal number of grid
points to find the final solution. The whole algorithm for
solving the SP problem is summarized as Algorithm 1.

Algorithm 1 Efficient Solver for SP Problem
Input: P2, initial grid points x̂j0 and kj = 1

1: Solve P2
2: Solve subproblem (18) and obtain ψj(x̂j)’s and λ̂jv’s

(v ∈ [1, kj])
3: For (ψj(x̂j) < 0)

Add new grid point x̂j(kj+1) =
∑kj

v=1 x̂jvλ̂jv with
λ̂j(kj+1) = 0, and set kj = kj + 1

Update P2, solve P2 and obtain λ̂jv , v = 1, · · · , kj , j =
1, · · · , n
Solve subproblem (18) and update ψj(x̂j) for all j ∈
[1, n]
end

Output: x̂j =
∑kj

v=1 x̂jvλ̂jv and
∑n

j=1 fj(x̂j)

D. A Privacy-preserving Outsourcing Algorithm

In what follows, we develop a privacy-preserving out-
sourcing algorithm to solve the large-scale CSP problem
with the help of the cloud.

Particularly, as shown in Section IV-B, the client linearize
the original problem P1 into P2. Considering that P2 is
a large-scale problem and computationally prohibitive for
the client to solve by itself, P2 will be outsourced to the
cloud for solutions. To protect client’s data privacy, we

conduct some transformations based on the proposed scheme
in Section III.

Recall that the original problem P1 is linearized and
transformed into P2 before outsourcing to the cloud. Only
fj(xjv)’s are sent to the cloud while xjv’s are kept privately
by the client. Therefore, the client has protected the privacy
of fj(xj)’s and gij(xj)’s. However, the problem P2 still
contains sensitive information, i.e., λjv’s (j ∈ [1, n], v ∈
[1, kj]), which can enable the cloud to obtain the final
optimal objective function value of P2 and hence of P1
as well. To address this issue, we hide the vectors of
Λjkj = {λjv, v = 1, · · · , kj} for every j ∈ [1, · · · , n] by
adding a random vector rj:

Λ̄jkj = Λjkj + rj, j = 1, · · · , n (19)

where Λ̄jkj is a vector with elements denoted by λ̄jv =
λjv + rjv (v = 1, · · · , kj) and rj is constructed following
Section III. In addition, the lower bounds on λjv’s, will
become λ̄jv ≥ rj , in which rjv’s still contain private infor-
mation that can not be revealed to the cloud. Consequently,
we transform the constraint (17) by:

AΛ̄jkj ≥ Arj, j = 1, · · · , n (20)

where A is a kj × kj positive random matrix with elements
being sampled from a uniform distribution (0, L′). Note that
each element of Yj will be masked by kj random number
and hence can be protected.

Now we can transform the problem P2 into a privacy-
preserving problem P3:

P3: Min
n∑

j=1

kj∑
v=1

fj(xjv)λ̄jv ,

s.t.
n∑

j=1

kj∑
v=1

gij(xjv)λ̄jv ≤ bi

+
n∑

j=1

kj∑
v=1

gij(xjv)rjv , i = 1, · · · ,m (21)

kj∑
v=1

λ̄jv = 1 +

kj∑
v=1

rjv , j = 1, · · · , n (22)

AΛ̄jkj ≥ Arj, j = 1, · · · , n (23)

in which
∑n

j=1

∑kj

v=1 gij(xjv)rjv and
∑kj

v=1 rjv are calcu-
lated by the client and then sent to the cloud as constraints.
Since P3 is a standard linear programming problem, the
cloud can use the existing solvers such as the interior
point methods [22] to obtain the result. Similar to that in
Algorithm 1, after the cloud sends back the solutions, the
client will check locally if adding another grid point can
lead to a better solution for original problem. Note that to
verify the correctness of the returned result from the cloud,
the client only needs to check if the KKT conditions hold
at point λ̄jv’s.

1353

The details of the proposed privacy-preserving outsourc-
ing scheme for large-scale CSP problems are summarized
in Algorithm 2.

Algorithm 2 Privacy-preserving Scheme for CSP Problem
Input: P3, initial grid point x̂j0 and kj = 1

1: Cloud solves P3 and sends the result to the client
2: Client solves Λjkj = Λ̄jkj − rj, j = 1, · · · , n
3: Client solves subproblem (18) and obtain ψj(x̂j)’s and
λ̂jv’s (v ∈ [1, kj])

4: For (ψj(x̂j) < 0)
Client adds a new grid point x̂j(kj+1) =

∑kj

v=1 x̂jvλ̂jv
with λ̂j(kj+1) = 0, and set kj = kj + 1
Client updates P2 with the new grid points
Client transforms P2 into P3 and send it to the cloud
Cloud solves P3 and sends the result to the client
Client solves subproblem (18) and update ψj(x̂j) for all
j ∈ [1, n]
end

Output: x̂j =
∑k

v=1 x̂jvλ̂jv and
∑n

j=1 fj(x̂j)

V. EVALUATION RESULTS

In this section, we present the performance of the pro-
posed privacy-preserving outsourcing algorithm for CSPs.
To evaluate our algorithm in a practical scenario, we imple-
ment the client-side computations of the proposed algorithm
on a laptop with a dual-core 2.6 GHz CPU, 8 GB RAM, and
a 150 GB solid state drive, and the cloud-side computations
on an AWS EC2 instance. We implement both the client-side
and the cloud-side computations of the proposed algorithm
on Matlab 2015a. We evaluate the performance of our
algorithm by generating random large-scale CSPs.

First, we measure the computing time of our proposed
algorithm at both the client and at the cloud, and show the
results in Fig. 3. In particular, we measure the computation
time of the client, that is, the time it takes to find the
transformed problems, i.e., P2 and P3, plus the time it takes
to find the grid points. Fig. 2(a) shows the client’s computing
time for CSPs with an increasing number of variables. We
observe that even when the CSP problem has a large number
of variables, the client can still finish its computations in a
very short time. For example, the computing time of the
client the CSP with 2.5× 103 variables is only 9.5s.

In Fig. 2(b), we show the total computing time at the cloud
for solving the transformed CSP with different numbers
of variables. We observe a low computing time for the
cloud even when the number of variables is vary large large
separable programs. For instance, the cloud takes 26.5s to
solve a SP problem with 2.5× 103 variables, which is very
efficient in real-world scenarios.

Next, we explore the computational savings offered by
our proposed algorithm. Specifically, we compare the time it

Number of Variables
0 500 1000 1500 2000 2500 3000

T
im

e(
se

co
nd

s)

0

1

2

3

4

5

6

7

8

9

10

(a)

Number of Variables
0 500 1000 1500 2000 2500 3000

T
im

e(
se

co
nd

s)

0

5

10

15

20

25

30

(b)

Figure 2. Computing time of the proposed algorithm at the client and
cloud for different size of CSP problems. (a) Computing time at the client.
(b) Computing time at the cloud.

takes for the client to solve the CSPs by itself with that when
the client and the cloud collaborate to solve the CSPs using
our proposed privacy-preserving outsourcing algorithm. We
first show the time that the client takes to solve CSPs
with an increasing number of variables by on its own in
Fig. 3(a). We can see that it increases very fast. Fig. ??
shows the computing time when the client outsources the
problem to the cloud and collaborates with the cloud to
find the solution. It is obvious that the proposed algorithm
offers significant computing time savings to the client. For
example, we observe that CSP with 2.5× 103 variables can
be solved in only 34s by using our algorithm, while it takes
the client almost 40s to solve the same problem by itself.
Moreover, we can observe from Fig. 3(a) and Fig. ?? that
when the CSPs do not have many variables, computing by
the client itself is more efficient. This is reasonable since
our proposed algorithm includes computations for problem
transformation. However, when the scale of the problem
increases beyond 2× 103 variables, the proposed algorithm
is much more efficient. As the number of variable increases,

1354

Number of Variables
0 500 1000 1500 2000 2500 3000

T
im

e(
se

co
nd

s)

0

5

10

15

20

25

30

35

40

(a)

Number of Variables
0 500 1000 1500 2000 2500

T
im

e(
se

co
nd

s)

0

5

10

15

20

25

30

35

Total cloud computing time
Client's time

(b)

Figure 3. Comparison for the proposed algorithm between the client and
collaboration for different size of CSP problems. (a) Computing time for
the client. (b) Computing time for the collaboration.

the proposed scheme will achieve more and more time
savings.

VI. CONCLUSIONS

In this paper, we have investigated the problem of privacy-
preserving outsourcing of large-scale CSPs. To the best
of our knowledge, this is the first work to solve CSPs
in a privacy-preserving manner in cloud computing. To
protect the client’s private data, we have developed an
efficient vector transformation scheme that is only based
on linear algebra and shown that the transformed data is
computationally indistinguishable from a random vector.
The proposed private linear approximation algorithm can
enable the cloud server to efficiently find the solution while
protecting the client’s privacy. In addition, the correctness
of the returned results from the cloud can be efficiently
verified by the client to prevent any malicious behavior of
the cloud. Experimental results on Amazon Elastic Compute
Cloud (EC2) have shown that the proposed algorithm can
achieve noticeable time savings.

ACKNOWLEDGMENT

This work was partially supported by the U.S. National
Science Foundation under grants CNS-1602172 and CNS-
1566479.

REFERENCES

[1] R. G. Hollands, “Will the real smart city please stand up?
intelligent, progressive or entrepreneurial?” City, vol. 12,
no. 3, pp. 303–320, 2008.

[2] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and
secure sharing of personal health records in cloud comput-
ing using attribute-based encryption,” IEEE transactions on
parallel and distributed systems, vol. 24, no. 1, pp. 131–143,
2013.

[3] V. Chang, D. Bacigalupo, G. Wills, and D. De Roure, “A
categorisation of cloud computing business models,” in Pro-
ceedings of the 2010 10th ieee/acm international conference
on cluster, cloud and grid computing, 2010, pp. 509–512.

[4] P. Kim, C. K. Ng, and G. Lim, “When cloud computing meets
with semantic web: A new design for e-portfolio systems
in the social media era,” British Journal of Educational
Technology, vol. 41, no. 6, pp. 1018–1028, 2010.

[5] S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure
outsourcing of large-scale quadratic programs,” in Proceed-
ings of the 11th ACM on Asia Conference on Computer and
Communications Security. ACM, 2016, pp. 281–292.

[6] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar,
A. Gani, and S. U. Khan, “The rise of Şbig dataŤ on cloud
computing: Review and open research issues,” Information
Systems, vol. 47, pp. 98–115, 2015.

[7] W. Venters and E. A. Whitley, “A critical review of cloud
computing: researching desires and realities,” Journal of
Information Technology, vol. 27, no. 3, pp. 179–197, 2012.

[8] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghal-
sasi, “Cloud computing– the business perspective,” Decision
support systems, vol. 51, no. 1, pp. 176–189, 2011.

[9] C. Wang, K. Ren, J. Wang, and K. M. R. Urs, “Harnessing
the cloud for securely solving large-scale systems of linear
equations,” in 31st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2011, pp. 549–558.

[10] S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure
outsourcing of large-scale linear systems of equations,” in
2015 IEEE Conference on Computer Communications (IN-
FOCOM). IEEE, 2015, pp. 1035–1043.

[11] S. Salinas, X. Chen, J. Ji, and P. Li, “A tutorial on secure
outsourcing of large-scale computations for big data,” IEEE
Access, vol. 4, pp. 1406–1416, 2016.

[12] L. Zhou and C. Li, “Outsourcing large-scale quadratic pro-
gramming to a public cloud,” IEEE Access, vol. 3, pp. 2581–
2589, 2015.

1355

[13] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms
for secure outsourcing of modular exponentiations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 9, pp. 2386–2396, 2014.

[14] Z. Qin, J. Yan, K. Ren, C. W. Chen, and C. Wang, “Towards
efficient privacy-preserving image feature extraction in cloud
computing,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 497–506.

[15] F. Chen, T. Xiang, X. Lei, and J. Chen, “Highly efficient
linear regression outsourcing to a cloud,” IEEE Transactions
on Cloud Computing, vol. 2, no. 4, pp. 499–508, 2014.

[16] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing
large matrix inversion computation to a public cloud,” IEEE
Transactions on cloud computing, vol. 1, no. 1, pp. 1–1, 2013.

[17] X. Lei, X. Liao, T. Huang, and H. Li, “Cloud computing
service: The caseof large matrix determinant computation,”
IEEE Transactions on Services Computing, vol. 8, no. 5, pp.
688–700, 2015.

[18] X. Lei, X. Liao, T. Huang, and F. Heriniaina, “Achieving
security, robust cheating resistance, and high-efficiency for
outsourcing large matrix multiplication computation to a
malicious cloud,” Information Sciences, vol. 280, pp. 205–
217, 2014.

[19] S. M. Stefanov, Separable programming: theory and methods.
Springer Science & Business Media, 2013, vol. 53.

[20] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear
programming: theory and algorithms. John Wiley & Sons,
2013.

[21] J. Katz and Y. Lindell, Introduction to modern cryptography.
CRC press, 2014.

[22] M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual
interior point algorithm for linear programming,” in Progress
in mathematical programming. Springer, 1989, pp. 29–47.

1356

