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Results are presented on the shock response of a zirconium-based bulk metallic glass (BMG),
Zr41.25Ti13.75Ni10Cu12.5Be22.5, subjected to planar impact loading. Two series of plate impact experiments
are conducted to:

(a) Estimate spall strength of the BMG following different levels of normal shock compression,
combined shock compression with shear loading.

(b) Study the dependence of flow stress in shear on ultra-high strain rates (~105 /s), high normal
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ABSTRACT EXPERIMENTAL TECHNIQUES NORMAL SHOCK COMPRESSION SPALL RESULTS RESULTS OF HIGH STRAIN RATE COMBINED COMPRESSION WITH 
SHEAR EXPERIMENTS

stresses (up to 9 GPa) and high hydrostatic pressures (up to 6 GPa).

The first series of experiments show that the spall strength decreases with increasing
levels of normal shock-compression. In the combined compression-shear plate-impact spall
experiments, with increasing levels of shear strain, the spall strength is observed to decrease initially,
increase dramatically, and then decrease again as the shear strain is increased from 2.4% to 3.2%.

The second series of experiments indicate the hydrostatic pressure has a negligible influence on the
flow stress in shear up to 6 GPa. The normal-stress has a negligible influence on the
flow stress during compression (0.78 - 8.8 GPa), while it has a small influence when the stress state
changes from compression to tension. Moreover, the high strain rate experiments show that rate
sensitivity of this BMG is negligible up to strain rates of 105 /s.

Figure 2: Schematic of the plate impact pressure with shear spall experiment. 
(a) (b)

Figure 6: (a) Time-distance diagram paired with the measured free-surface particle velocity 
profile for experiment FY06011 to illustrate the “pull-back spall signal”. (b) Free surface particle 
velocity data for experiment Shot FY06011 Spall strength can be calculated from the “pull

Figure 10: (a) Longitudinal and transverse free surface velocities for Exp. 1. (b) History of normal 
stress, the shear stress and the shear strain rate in the specimen for Exp. 1.
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MATERIAL Z Ti Ni C B (LM 1) velocity data for experiment Shot FY06011.  Spall strength can be calculated from the pull-
back spall signal” using the equation shown.

High strength (≈ 2 GPa under uniaxial stress).

Large elastic strain (≈ 2% under uniaxial stress).

High hardness, excellent wear and corrosion resistance.

Increased fracture toughness when compared to other brittle, high compressive strength materials.

Low critical cooling rate (1-10 K/s vs. 106 K/s).

• Thick plates (e.g., 10 mm) can be produced.

The shock response of BMGs is of considerable interest for potential applications, such as:

• Kinetic energy penetrators and composite armor.

• Sports medical implants and coatings I t St (GP )
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The spall strength of this BMG under normal shock compression was found to decrease with 
increasing normal stress below the HEL (6.15 GPa), and then remains nearly constant above the HEL. 

The spall strength under combined compression with shear loading was found to 

• Initially slightly decrease with increasing levels of shear strain, and 

• Then increase dramatically (> 3.5 GPa), and no spall was observed at ~ 2% shear strain. 

• Sports, medical implants and coatings.

(b)(a)

Figure 3: (a) Time-distance diagram for spall experiments. (b) Stress-velocity diagram for spall experiments.
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Figure 7: (a) Free surface particle velocity versus time profiles for the four normal plate-
impact spall experiments. (b) Spall strength as a function of impact Stress for three different 
Zr-based BMGs.

(a) (b) (a) (b)
Figure 11: (a) Dynamic shear stress versus shear strain for Exp. 1. (b) Equivalent shear flow stress 
versus strain rate.

PRESSURE WITH SHEAR SPALL RESULTS
SUMMARY
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• Followed by a decrease in spall strength as the shear strain was increased from 2.40% to 
3.18%. 

The trend in the effects of normal stress and shear strain on the spall strength of the BMG can 
perhaps be explained by the competing roles of localized plasticity and shock/shear-induced damage 
taking into consideration their relative dominance below and above a critical normal stress/shear strain.

In the high strain rate combined compression with shear experiments, a weak dependence of flow 
stress in shear on ultra-high strain rates (~105 /s), high normal stresses (up to 9 GPa) and high 
hydrostatic pressures (up to 6 GPa) was observed for this BMG.

Spall strength under normal shock compression, and combined compression with shear loading.

• Plate dimensions: 90 mm x 63 mm x 5 mm.

• Ci l di k EDM hi d di t 25 4 thi k 4 5

Figure 1: (a) Typical strengths and elastic limits for various materials. (b) Applications of BMG.
(b)(a)

Figure 4: (a) Schematic of pressure with shear sandwich experiments. (b) Time-distance diagram for 
sandwich experiments.
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Figure 8: (a) Free surface particle velocity versus time profiles for the six pressure-shear 
plate-impact spall experiments. (b) Spall strength as a function of shear strain.
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MATERIAL PREPARATION

SEM PICTURES OF THE SPALL PLANES
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• Circular disks were EDM machined: diameter 25.4 mm, thickness ~4.5 mm.

• EDM disks were lapped and polished to a surface finish of 5 micrometers.

Flow stress in shear under ultra-high strain rates, high normal stresses and high hydrostatic 
pressures. 

• Thin square plates: 38 mm x 38 mm x 0.7 mm.

• Lapped and polished to a surface finish of 5 micrometers and thickness of ~ 0.6 mm

DSC and XRD reveal that LM-1 is fully amorphous.  

EDM and polished disks remained fully amorphous.
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Figure 5: (a) Schematic of the combined normal and transverse velocity interferometer. (b) VISAR.
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