PART VI
CHAPTER 18

Problem 18-1: Tumor Imaging

1. Overexpression or mutation of an integral memer protein, epidermal growth factor
receptor, plays a role in the progression of somecers. To access tumor treatment, it is
important to non-invasively image the tumors befodeiring, and after targeted therapy.
Sometimes this can be done by real-time noninvagantitative fluorescent imaging of
semiconductor nanocrystalse( quantum dots, QD) that are conjugated to epithgliawth
factor. Quantum dots are advantageous because h&vey unique size- and composition-
dependent tunable emission from visible to neamanmed wavelengths, high fluorescence
guantum yield, and photo-stability.

A two-compartment pool model has been developedetzribe the fluorescent signal response
of a tumor after injection of an ideal impulse of moles of EGF-QD into the bloodstream. The
concentration of QD-EGF in a central (blood) conip@nt changes as:
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The concentration of QD-EGF in the tumor compartnoiianges according to:
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In these equations, the coefficients represent:

ik — influx from blood to tumor

ek — efflux from tumor to blood

ckn — elimination from blood by transport to externakties

k- loss from tumor to external tissues because dfiemdy cancer cells

(a) Draw the system diagram that represents theehsmuations.
(b) Obtain the Laplace transforms of this modekhich C, (s)= L{ G, (t} and

C.(s)=L{ G (t} . For convenience, defing, =(K ., +K)/V, andK, =(K+K,)/V,.
(c) Solve forC, (s) and C,(s).

(d) Obtain the time domain solution for the tissoacentration t).
(e) What must be true of;kand K if this is a well-behaved solution?
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Problem 18-2: Blood-Tissue M odel

Mass transport of a chemical species in a bloalisystem consists of blood (B), interstititalafhd
intracellular (C) compartments.
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Compartments | and C are well mixed with internaluge concentrations |Gand G, respectively.
Compartment B is imperfectly mixed with an interredlute concentration gCgiven by a linear
combination of a constant arterial input concer@raC, and a venous output concentration C

Cs(®)=(1-a)C,+aC, (1) (1z2a=0)

The volume Yof each compartment i is constant and the volumedte of flow Q through the B
compartment is constant. Transport of a soluterden adjacent compartments i and j is by passive,
ordinary diffusion at a molar rate:

N; =K;§ (Q _)‘HQ)

where K is an overall mass transfer coefficient, iS the interfacial surface area, ani" is the
equilibrium partition coefficient between compartiteei and j. The solute species reacts withinceilks
by Michaelis-Menten kintetics at an intensive maokite

R = -V, Pe
y+Ce

(a) From solute mass balances, obtain the spexjfiations for

d(v.C
szk(cv,c,,cc) (k= B,1,C)
dt

(b) Substitute the rate equations into these lbalaguations.

(c) Substitute the mixing equation for compartnigito the equations of part (b).

(d) Rewrite the equations of part (c) if the blammpartment is perfectly mixed.

(e) If transport is flow-limitedi(e., Kg, S, — % and K¢S c - with N, and N . finite), what is the
relationship between the solute concentnatio the three compartments. If this is the cslsew
that the model equations with the assumptidmerfect mixing of compartment B can be treaed
single well- mixed compartment.



ac, _,

eff dt

What is the effective volumeMof this compartment? Hint: Add the balance eiguatof part (a).

Problem 18-3: Two Compartment Multiple-lnput-Multiple Output M odel

In the model shown below, the compartments areepyfmixed and have constant volumes.
Fluid density is uniform throughout the system.pfase that an ideal impulse of m moles of
tracer is initially injected into compartment 1.
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(a) Write the dynamic balances for the tracer cotrations G(t) and G(t) leaving the
compartments if no tracer is present in tipaut flow streams.
(b) Assuming that Qand Q are constants and that there is no tracer wittercompartments to

start with, solve these balances for the wiutpncentrations in the Laplace domaﬁ‘rll(s)
andC, (s).

(c) Using the derivative relationship in Eq. 183-determine the zeroth momepts, first
momentsl,;, and corresponding mean timesyly i/Ho,; of the dynamic output
concentrations;@®) (i=1,2).

(d) Show that that the equations for; andpl 2 are consistent with overall conservation of

traceri(e., all m moles of injected tracer must eventualbflout of the system in the;Q
and Q streams).

Problem 18.4: Two Compartment Imperfectly Mixed Model

Experiment #2 Experiment #1
ma(t) ma(t)
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A system model consists of a perfectly mixed conmpant 1 in series with compartment 2 that
is not perfectly mixed. Compartment 1 has a caorist@lume \{ and is fed by a constant
volumetric flow rate Q of liquid. To characterizensport and mixing in this model, two
experiments are performed with a tracer that neithacts nor permeates across the walls of
either chamber.

(@) In experiment #1, compartment 2 is charaaterizsing an impulse input ratedft) with m

moles of tracer that yields an outpuat@:k(e'at+cébt) where a,b,c and k are constants. If
the number of input and output moles of trace equali.e. the tracer is conserved), obtain
the relation of kto a,b,c.

(b) As a continuation of part (a), find the traersiunction of compartment 2

9,(s)= C,, (s) G (s. HereC_,(s) is the Laplace transform of,@t) given in part (a), and
C,(s) is the Laplace transform of the tracer input comi@gion G(t). In specifying Qt),

assume that the input flow stream Q contamfacer and the volumetric rate of the tracer
impulse input is small compared to Q.

(c) In experiment #2, an impulse of m moles oféras injected into compartment 1. Write the
molar balance on compartment 1 for this cas&suming no tracer is present in the system

before the impulse input, solve for the Lapldomain outpufil(s).

(d) Based on the result of part (c), find the sfanfunctiong (s) of compartment 1. What is the
transfer function of the entire systég,(s)= C,,/ C,?

(e) Usinggsys(s), determine Gt) that would be observed during the second exysstt.

Problem 18-5: Compartmental Dispersion Model

Convective-dispersion of an inert tracer speciédlasving through a cylindrical tube can be

described by a one-dimensional species concemiraguation, Eq. 15.5-53. Consider an
experiment carried out in a very long tube withracér pulse inputted at z=0. To model the
solute concentration measured at a finite distatedownstream of this input, we consider the
tube to be infinitely long such that the concembratdisturbance at z=0 has no effect on
concentration in the limit as-zeco. The dynamics of the tracer concentration at eah then be

characterized with mathematical moments obtaineah @& solution to Eqg. 15.5-53 in the Laplace
transform domain.

(a) State the boundary and initial conditionstf@ concentration £z,t) with the assumptions:
(1) no tracer in the tube at t=0;
(2) time varying input of tracer concentratiog(@ at z=0;
(3) In the limit of z- o, the input does not disturb the initial tracer @amtration.
(b) Find the solution to this spatially distributebdel in the Laplace domain. Express this
solution in terms of the transfer functionvee¢n the flow inlet at z=0 and a downstream
position z=L.:



9(s)= G (z= L,s)/C (= 0O,s

(c) To characterize this model by moments, thesferfunction or its inversg(t) is needed.
Explain why. Find the zeroth, first momeatsl second moments gft).
(d) Using these moments, determine the nigamd the varianceg of g(t).

(e) Compare the result of part (d) to entry 4 blggl8.3-1 for the compartments-in-series model.
When areTg and the varianceg for the two models equivalent?



CHAPTER 19

Problem 19-1: Renal Excretion

A physiologically based model to describe the dyieanof fluid balance and renal excretion considts o
five compartments representing: (1) plasma, (Zrstitial fluid, (3) lymph, (4) intracellular fluijcand (5)
kidney. Compartments 1, 2, 3, 4 are perfectly ohigaé concentrations;@nd have a variable volumes
Vi(t). Compartment 5 is not well-mixed but has astant volume. Solute enters compartment 5 in
arterial blood at concentration, @nd exits in venous blood at concentration. @ solute enters the
model into plasma at concentratiog; @nd exits the model in urine at concentratiga. CConvective
transport occurs between compartments at volumétws Q. Membrane transport at molar rate

Nij =QijCij +jij combines convectivand dii‘fusivejij components between compartments 4 and 2 and
compartments 2 and 1. The clearance of a soloe fine kidneys is &
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(a) From solution mass balances for each compattrdevelop dynamic equations relating compartment
volumes to volume transport rates. Assuraédh solutions have constant and equal mass tiEnsi
(P =p)-
dv, .
—=? (i=1,2,3,4,5)
dt

What is sum of the rates of volume change efdhtire system?

v, _
= dt

~
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(b) Develop the dynamic equations for solute cotretion G in each of the four compartments.

9C o (21,2345
dt

(c) Write the solute balance for compartment 5ing the clearanceQrelate Gand G; .
(d) What additional information is necessary tmptetely solve for the concentrations of this m@del



Problem 19 -2: Lactic Acid Cycle

The lactic acid (a.k.a. Cori) cycle is the metabglathway by which lactate (3) produced by
anaerobic glycolysis (Eg. 1.1-4) via pyruvateif2)nuscles is transported to the liver. There it
is converted by gluconeogenesis via pyruvate toage (1) and the glucose is transported back
to the muscles to be converted to lactate. Toysthi process, Waterhouse and Keilson (J.
Clinical Investigation, 48: 2359-2366, 1969) morgi blood levels of & glucose on seven
healthy human subjects following bolus injection 6f* labeled glucose . Using the resulting
data, we would like to estimate parameters in th@ model shown in the figure. Evaluation of
these rate parameters provides a basis for chaeaateabnormal conditions.

Glucose Injection Pyruvate Injection
(Experiment A) (Experiment B)
Glucolysis
Fio
y1,. W1 y2,W>
Ea1 Fas
Gluconeogenesis y3,W3 Lactate
Production

In this model, the mass of each pool i is,\Whe mass fraction of radiolabeled species ind {3vy;, and
the mass rate of transfer untagged plus taggedespkeom pool i to pool j isif In analyzing the tracer
dynamics, we assume that 1) the radio decay"bé&h be neglected because its half-life is muchedon
than the 3-4 hour period of an experiment; 2) thleidinjection of tracer can be idealized as an

exponential functionfne™ , with th — « at the end of an experiment; 3) the amount afeegglucose in
any pool is much less than untagged glucose; 4MWand W are constants; 5) gluconeogenesis is so
fast that pool 3 behaves in a pseudo-steady manner.

(a) Formulate the mass balances on untagged glirtdise three pools.
(b) Formulate the mass balances on tagged glucoskd three pools.
(c) State the initial conditions necessary to theegning equations.

(d) Solve fory, (t) with the Laplace transform method. You will haveuse the following inverse
Laplace transform:

L_l{S(SS) ( " B)} TR = L

(e) Formulate the fractional glucose dose F(thasamount of tagged glucose in the cycl&yy
relative to the total amount of tagged glecmgected during the entire experimefrr'ndt.

() Use a non-linear regression of the model tod&a shown in the table in order to estimate hiheet
parameters BfW1, F5/W, andt.

Data From Waterhouse and Keilson

t(min) 5 15 30 60 90 150 210
F(t) 0.600 0.425 0.318 0.232 0.171 0.113 0.070




(g) How well does the model fit the data? How nhigie model be improved in order to better fit the
data?

Problem 19-3 N, Washout With Inhomogeneous Ventilaion

In a multi-breath nitrogen washout test (section 19.1t2¢, objective is to quantitatively
characterize the mixing and distribution in the lunibat distinguishes homogenous from
inhomogeneous ventilation. In this non-invasive soeement, a patient breathes through a
mouthpiece with the nostrils clamped shut. On iatiah, the patient breathes pure oxyges) (O
from a reservoir attached to the mouthpiece. On etibalathe patient breathes out to the
environment. The nitrogen ¢Nmole fraction and volume flow are continuously measured
entering and leaving the mouth. Over successive laetth N progressively falls until the N
fraction is much less than the initiab fraction. Here, we model Nvashout from diseased
lungs represented by two alveolar regions that @menmmogeneously ventilated via conducting
airways (i.e., a common dead space).

y=0
“— .
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Alveolar Regions Tb
Conducting
Airways

The assumptions of this model are as follows:

1. Mole density of this ideal gas mixture is uniform awotstant everywherec,, =C,, = C.

Therefore, moles of gas are proportional to volumes of gas,mole fractions in the
alveolar compartmentsayand \, are equivalent to volume fractions.

2. Average volumetric flows are constant through the cotdg@irways { ) and between
the conducting airways and alveolar regions,(V,,) . These flows have the same

magnitude during inhalation and exhalation. Alée, flow ratio is constangi =V, /V.
3. Tidal volume () does not change from breath to breatt (V; =tV where ¢ is the
constant and equal breathing half periods).



4. The well-mixed alveolar regions expand during inhatadad contract during exhalation.
The alveolar volumes at the start of inspiration afg(®) and Va2(0). At the end of
inspiration, they are M(tg) and Vao(tg).

5. There is no axial mixing in the conducting airwayBiet have a constant dead space
volume b which is less than W

6. At the start of the first inhalation of Othe N fractions in the alveolar regions and the
dead space are all equal to the normal atmosphetie Wal0)=ya1(0)=ya2(0).

Based on this information, answer the following:

(a) From a molar balance, relatéoV, andV,,. How is the flow ratiax related to
V,, andVv?

(b) How are the volume increases of each alveolar refyiang inhalation, \;(tg)-Va1(0)
and Vax(tg)-Va2(0), related tax and \4?

(c) During the first inhalation of 9 what is the Mvolume delivered from the dead space to
each alveolar compartmefy/ y ; andAVy »?

(d) At the end of inspiration, what is the Xblume fraction in each alveolar compartment,
ya1(ts) and wo(tg)? Express these results in terms of the followingiditufractions:

Bi=[Va1(0)+aVp)/[V a1(0)+aV+],  Bo=[Va2(0)+(1-0)Vo]/[V a2(0)+ (1-0)V+]

(e) Generalize the result found in part (d) to relatdNcheolume fractions in alveolar
compartments i=1,2 at the end of two succesdientical breaths, ayk) and wi(k-1). Use
these single-breath equations to relate theoNime fractions in the two alveolar
compartments i=1,2 between the beginningtaeand of k successive identical breaths,
yai(k) and wi(0).

(f) Formulate the end-expired,Mdt the mouth for breath kgfk), in terms ofa, 31, B2 and w(0).

(g9) Reduce the relation from (f) to an ideal lung in whioh flows to the alveolar compartments

are equal and their alveolar volumes are alwgyale How does this result compare to Eq.
19.1-32a?

Problem 19-4: Blood Oxygenation With a Pulmonary Shunt

The effect of a pulmonary diffusion limitation and bdoshunt on the excretion and retention of
soluble inert gases was analyzed in section 19fltBeobook. In this problem, we will analyze
the effect of blood shunting on steady-statetr@nsport. To account for,@netabolism, a body
compartment with a volume rat™of O, loss has been added to the previous model. To
simplify the analysis, you should:

» Assume that compartments including the pulmonaryllesips are perfectly mixed
+ Consider @ binding to heme group<£), + Hb 2 HbO,) to be in reaction equilibrium

* Express the model equations in terms gp@rtial pressures and volumetric transfer rates
specified at a standard temperature T and a pressure P
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(a) Write the relationship between molar €@@ncentration Cand partial pressure in a gas
stream i.

(b) Express the molarf&oncentration in blood to (freep@artial pressure;@and (bound)
O-Hb in blood stream 5= §p;). Start with Eq. 5.5-6.

(c) Assume that the mass transfer coefficient K is ardigrinige, while the alveolar-to-capillary

transfer flux Nqi remains finite. What is the relationship between@aeoncentration &
in the alveolar compartment and the dissol(ng:oncentratiorCﬂ in the capillary

compartment? What is the corresponding relahignbetween the partial pressurgsand
R inthese two compartments?

(d) The steady-state molar balance around the comhlmedlar region and capillaries is
expressed in terms of molag €éncentrations My Eqg. 19.1-38. Rewrite this balance
equation in terms of (artial pressures pnd fractional @Hb binding§ .

(e) Atthe node where the shunt and end-capillakySlmerge, the steady-state @olar
balance is specified in terms of molard®ncentrations @y Eqg. 19.1-39. Express this
equation in terms of (artial pressures pnd fractional @Hb bindingS.

() Develop a steady state @ole balance around the perfectly mixed body compantiirst
in terms of molar concentrations and then in sesfrpartial pressures @nd Q-Hb binding

fractionsS.

(g) Using the Hill model (Eg. 5.5-1) of, @b saturation fractio(p;), solve numerically the

3 equations of parts (d),(e) and (f) to evaluate&thgartial pressures in the venous stream,
R, arterial streamgand capillary streamcp Plot these partial pressures as a function of

the shunt fraction 1>(@>0. Use the following values of parameters that are &bir a
resting adult person:



V, =5L(STP)/min

Q=5L/min

M =0.250 L(STP)/min

a=0.000219 ml Q (STP)/ml blood/kF

C,ox =0.209 L G (STP)/L blood
K, =0.283 kP&

n=2.8

P=101kPa

p, =19 kPa

(h) Explain what these results mean.

Problem 19-5: A Three Pool Model for Systemic Iron Distribution

The distribution of iron is important to many aspedteuman heath, particularly as it affects the
formation of hemoglobin. Najean and colleagues (ArRhysiol. 213:533-546, 1967) measured
the progressive reduction in plasma radioactivityofeing rapid bolus injection of an iron
radioisotope into plasma. These data averaged teesdveral human subjects tested were
expressed by a double exponential equation:

Y,o(t)

y (O):(o.994¢ 0.005 exp« 112 2.g)t( 0.085 0.003 pxp (5&¢34)f+(0.00% 0.000F

Here, y,(t)ly,(0) represents the gram-atoms of radioisotope in plasradiate t(days) relative

to the initial gram-atoms in plasma. A possible tlwempartment model of this behavior
consists of a plasma pool p that irreversibly losesrign of its radioactive iron to a pool of red
cells r while simultaneously exchanging radioacirom with the remaining red cells and other
body tissues t. In each pool i=p,r,t of the mode]:i¥Vthe total gram-atoms of iron in both
radioactively tagged and untagged formsiepresents the gram-atoms of tagged iron relative to
Wi. The parameter;Hs the total gram-atoms of iron transferred from pdolpool j.

m(t-0)
R vi Fpryp l
ecyclying [¢ F Non-recycling
Tissue P\I/\:;lsma oY > Tissue
W, Y; > pYp WLy,
I:err

(a) Assuming that each pool i is perfectly mixed dvad W and F are constants, write the mass



balance equations for the three compartmehéen an ideal impulse of m gram-atoms of
radiolabeled iron is injected into the plagpoal.
(b) With no radioactive iron initially present, athare the initial conditions associated with the

equations of part (a)?
(c) Take the Laplace transform of the model eguatand solve fog,(s)= L{ y(t)} in the form

f(s)/(s-1)(s-12).
(d) Noting that

L_l{(s-a)l( s-e>} e “l{( 0 s—g)} S

obtain the time domain solutiop(ty. What is y(0)? Express the final model equation as
3(0)/yp(0)-

(e) Because of the strong effect of measuremeaserat low levels of radioactivity, the additive
constant (0.0@D.0005) in Najean’s empirical equation is unrekablgnoring this constant,
determine the values for the model parametggd\V, , F,/W, , and /W, Comparing the
parameters values for the exchange and tixeeirsible loss processes, which of the two takes
longer to occur.




