PART V
CHAPTER 13

Problem 13-1: Planar Shearing Flow

(a) Starting from Navier-Stokes and continuity &ipns, derive the fully developed, steady
laminar velocity profile (Eq. 13-2-3) for amcompressible Newtonian fluid flow between
parallel plates as shown in Fig. 13.2-1. td\tbat the plate is open at both ends to the
atmosphere.

(b) Develop an expression for the x-component efftiice F exerted on the bottom plate. The

total surface area (x-z plane) of the bottdatepis S.

Problem 13-2: Couette Viscometer

As mentioned in section 12.2 of the book, a singplearing flow can be produced by placing a
fluid in the radial gap between two vertical corticercylinders. The outer cylinder of radiug R
spins at a rotation raf[rad/s] in order to produce a shear natds™] on the fluid in the gap.
The resulting torque T[N-m] is measured on the irayinder of radius Rthat is stationary.
The liquid column filling the gap has a height H.

Analyze an incompressible Newtonian fluid in thiscometer using a cylindrical coordinate
system. The z axis coincides with the axis ofitimer cylinder and points downward from the
top of the liquid column. The r axis is perpendasulo the cylinder walls. In a steady laminar
shearing flow, bl is the only non-zero velocity component. In aiddit the kinematics are
independent 0 when the flow is axisymmetric flow.

o=Wip(r,2), U=U=0 ,P=9(r,z)

(&) Given these kinematics, reduce th@and z components of the Navier-Stokes equation.
(b) Integrating the r and z components of the Blagtokes equation, determine how pressure P



depends on z. At the fluid surface wher@, 2 is equal to atmospheric pressugg. P
Recall that modified pressure is definedfas P+pd and-[d =G. In this problem, the

gravitational vectog points downward in the positive z direction sat tkeradial
component is zefg, =0)and its axial component is equal to its magnitude.

(c) Express th® component of the Navier-Stokes equation in dim@mess form. Apply an
order-of-magnitude analysis to justify the @gpgpmation:
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(d) State the necessary boundary conditions anky #pgm to the solution of this equation for
W(r).
(e) From the velocity distribution, determine theencomponents of the deviatoric stress tensor,
T. The only non-zero components should g@andtg,.
(f) Explain the following equation fot total torqua the inner cylinder.
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(g) Describe how you would use(I-data to determine the unknown viscosity of a
Newtonian fluid. Assume that a fluid standére, a fluid of known viscosity) is available.

Problem 13-3: Shear Stressin Blood Vessels (courtesy of John Tarbell)

(a) The definition of flow rate in a cylindricallia is
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Assuming radial symmetry, relate Q tg/du (Hint: use integration by parts). Then, shbatt
the following equation is valid for Newtonianwasll as non-Newtonian fluids in a fully-
developed, steady, laminar flow.

Q=-22 | yar (2)

TWO

Hereyy, is the shear stress at the tube wall, &g, andy=y,, are the shear stress and
corresponding deformation rate component withe fluid. Use the general force balance
between wall shear stress and pressure digppl@E&E4-12).

(b) By utilizing the rheological equation for a Gas fluid in a simple shearing flow (Eq. 13.2-
16b), eliminatg from Eq. (2) and integrate to find Q in termst@f Note the sign of and



that the shear stress is at a minimum atube tenterline.

(c) Computer,, rate in the four regions of the circulation listeelow when blood is modeled as
a Casson fluid with,,=0.005 Pa-sec ang=0.004 Pa. Repeat these computations for a
Newtonian fluid whose viscosity is 0.005 Pa-s&¢éhat is the effect of the yield stregson
the results?

Region Tube Radius (cm) Average Velocity (cm/sgec)
Ascending Aorta(AA) 0.75 20
Femoral Artery(FA) 0.20 10
Arteriole(A) 0.0025 0.75
Capillary(C) 0.0003 0.07

Problem 13-4: Channd Flow

A parallel plate flow chamber with a thin gépcompared to its width W and length L can be
used inin vitro experiments to study the effects of shear stresa oell monolayer. Cells are
cultured on the bottom plate and a pressure disteady flow of nutrient medium over the cells
is established in the chamber. Beginning with tlaiBr-Stokes equation, develop a relationship
for the velocity profile and the wall shear stresgerienced by the cells in terms of the
volumetric flow rate Q and viscosify of the nutrient medium and the geometric dimersioh
the channel. Assuming fully-developed laminar flokae kinematics nutrient medium are:

u, = u, (X,y) u=u=0 =2 X,y
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Problem 13-5. Flow of a Bingham Plastic Fluid Through a Tube

A Bingham fluid has an apparent viscosity with timaorporates a yield stressat low shear
rates and viscosity., at high shear rates.

“app = H. +T0/2yapp
(a) Write the relationship between shear sttesg and shear ratg=(1/2)dy/dr for a Bingham

fluid in steady-state, fully-developed, lamiflaw through a circular tube.
(b) Solve the equation of motion for the veloditgtribution y(r) of this fluid.



(c) Integrate the velocity distribution to obtaime volumetric flow rate &g What does this
equation indicate about the size of the agptieessure gradienf\?/L , relative to the yield

stress,?
(d) Find the ratio of gng to Quewt for a Newtonian fluid with viscosity =, . What is the

effect of the yield stress on the flow?



CHAPTER 14

Problem 14-1: Radial Creeping Flow

A disadvantage of a rectangular flow channel demghat it can only subject a cell monolayer
to one wall shear stress for a single flow rateolffgm 13.4). To overcome this, a design
consisting of two parallel circular disks can bedisThe fluid enters with a volumetric flow rate
Q at the center core with a radius of Rt exits at a radial position denoted by. Rie will
assume that the fluid is in steady laminar flowaatow Reynolds number (creeping flow
assumption).

(a) State the kinematics you expect in this raithaV field at steady state.

(b) Based on these kinematics, reduce the conyianid components of the Navier-Stokes
equation. Further reduce this to a set oflirtéfferential equations by assuming creeping
flow.

(c) State the necessary boundary conditions, awd $ar u(r,z) as a function oA? , the
modified pressure drop between §=Rd r=R.

(d) Integrate this result between d=and z= to formulate Q. Then, rewrite(uz) as a
function of Q.

(e) Derive an expression for the radial shear stiestribution along a cell monolayer placed on
the inner wall of one of the disks as a funtid Q. Make a sketch of this distribution.

Problem 14-2: Lubrication Creeping Flow
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The lubrication of articulating joints by synovi@lid can be modeled by an idealized geometry
consisting of two solid surfaces separated by acgaypaining a highly viscous Newtonian fluid.
The lower surface is stationary while the uppefax# slides by at a velocity U. Because the
gap h(x) in the joint is so thin, relative to itsrpneter around the joint, we can represent the
surfaces as flat plates with a local irregularity the joint surfaces accounted for by a linear
variation in the gap thickness: h(x)zlth,-h;)(x/L). We also assume that the width of the #ate
is so large relative to their length L that we t@at this as a two-dimensional flow such that

U=(x,y), W=(x,y), L=0

Using this model, we will show that because of thiication flow, a pressure is developed
between the plates that keeps them separated.

(a) After eliminating terms by accounting for thésgematics, state the continuity and x,y,z
components of the Navier-Stokes equation.
(b) Make these four equations dimensionless usiadgollowing variables:

where ) and U, are velocity components of U, amt =(uU, /h, )(/h,) is a characteristic

pressure. It is important to note that théestactors are chosen so that the dimensionless
variables as well as their dimensionlessd y derivatives have values that are of order one.

(c) Simplify the dimensionless equations by @ad that h/L<<1, and by assuming that this is
a creeping flow in which the Reynolds numiiRas Re=pU, L/ , is much less than one.
Your result should be the lubrication equation.

0u,(x,y) _ dP(x)
ay? dx

(d) Integrate this equation twice using the vityoconditions aty=0 andy=h to obtain
Ux(x,y). Then integrate this result from0 toy=hto obtain the local value of the
dimensionless volumetric flow per unit wid@e/u,dy.

(e) Using the facts th& is constant at steady state, &¥®P, has the same values at the two
open ends of the film, formulate a second 0@BE and its boundary conditions f8¢x).
The only parameters in these relations shbelé, andAh=(h, —h,)/h,.

() Solve this equation numerically for alternatixhvalues of 0, 0.6, 0.8 and 0.9 with a fixed
value of P,=1. Plot the resulting pressure distributiof§1>x=0). Can you explain whiy
exhibits a maximum value wheth>07?

(9) The choice of#* =(nU, /h, )(L/h,) is a critical aspect in obtaining the lubricateguation.
Explain what this characteristic pressureesents.



Problem 14-3: Mobility of a Spherein Creeping Flow

A Newtonian liquid of viscosityt and density is in laminar flow around a sphere of radius ‘a’.
The liquid impinges on the sphere at a uniform e¥yoU, and the pressure at the stagnation
point (r=a,6=2m) is R,. When the characteristic Reynolds number 2UiRAery small such that
fluid inertia can be neglected, the steady-staigtisn to the Navier-Stokes equation is

=3
e Dl

u,=0

(a) Excluding the effect of gravity, formulate theessure distribution P@;g) due to fluid
motion alone.

(b) Integrate the pressure distribution to obthmret force of pressure on the surface of the
sphere in the z direction, fNote that a spherical surface element is giver’Siy@dode.

(c) Formulate the elements of the viscous stressoteat the surface of the sphere.

(d) Integrate the shear stress distributinf]fa to obtain the net force of friction on the surface
of the sphere in the z direction; F

(e) The hydrodynamic mobility of a sphere is the velocity at which it movestretato the
frictional force (skin friction) and the psese force (form drag) that retards that motion.
This is equivalent to the ratio UjFsp) for a stationary sphere. Formulat&éom the
results of parts (b) and (d).



Problem 14-4: Boundary Layer Flow on a Rotating Disk

By approximating the velocity field near the sudaotating disk (Fig. 14.1-2), determine how
the mean wall stress depends on radial positioangular velocityQ, fluid density p and
viscosityp without making use of the numerical solution iotg 14.1.

(a) Transform the dimensional continuity equatiorcylindrical coordinates (table 13.1-1) using

AQFE), W=QGE)r, u=(Q/V)*H(E)
where
£=(Q/v)°>z
Show that for cylindrical symmetry:

H'(€) = -20F(8)

(b) Show that the r component of the steady-stanaed-Stokes equation in cylindrical
coordinates (table B4-5) can be written in termf ahd G as

e - [GE)I* + FOHE) = F'€)
Note that (...)=d(...)/dz and"(...)=d*(...)/dz.

(c) Approximate the independent variables F and e vicinity of the disk surface as linear
functions:

F(E):bl‘l'clé, G(E):b2+czé

State the boundary conditions for the three vejamimponents at the surface, z=0. Using these
boundary conditions, evaluate ‘b’ constants. Datee an approximation for H in terms of
with additional unknown constant.

(d) Use the functions of E), G(), H(§) to express the velocity components in the vigioit
the surface: ur,0,z), w(r,0,z) and «r,0,z),

(e) Use Newton’s law of viscosity with deformati@ie components in cylindrical coordinates
(table B4-8) to obtain the shear stresgegr) and 1, (r), acting in the vicinity on the surface.
Formulate the mean shear stress on the surface:

Twall (r) = Trzz(r) + ng(r)

How does this equation compare with Eq. 14.1-688hat is a practical application of this
result?



Problem 14-5: Tube Flow With a Non-Sinusoidal Pressure Distribution

In the pulsatile flow illustration in Section 14-8e pressure gradient involved a simple
sinusoidal function. The pressure gradient can beersomplex such as in arterial blood flow.
To address this, researchers use a multiharmonigdfdunction to better represent the pressure
gradient. In such a case, the pressure gradiemtitien in terms of a time average gradient X
and an oscillating component comprising the sufd cbmplex harmonics.

0P o < .
__:><O+Z><ne]n(“I ' xn:xcn_Jx
62 n=1

sn

where X%, is the complex Fourier coefficient associated wite A" harmonic. Using this
representation of the pressure gradient, and asgumein-oscillatory transients have died out, we
expect the velocity profile,,uto have the multi-harmonic form:

N
u, =U,+ > u, &

n=1

(a) Starting from Eq. 14.3-2, derive separate eqoafor | and win terms of X, X, r and t.
(b) Using the results of part(a), integrateuer the tube cross-section to formulate the
volumetric flow rate Q(t). Your result in damsionless form should be

Q 0 16 1_1J0(j3/W0nr) X iX en | Ajnt
Q—O—{1+;WO§ [E ,[ JO(JG/Z\NOn) rdr}( X, J X, jé } (1)

0

wherer=r/a, t=at, Q, = (T&’/ &1)X, andWo, = a,/ rpw/p .

Problem 14-6: Fourier Analysisof Blood Flow in a Dog Aorta

In the ascending aorta of a dog, pulsatile bloodvflvas measured and then expressed as a
Fourier series with 10 harmonics (Atinger, et &3@-246 Circulation Research 1966).

3:[1+ w%é“‘“j: Q=Q,- iQ,

Qo n=1 Qo
n Qe/Qo Qsr/Qo n | Qu/Qo Qsr/Qo
1 -0.465 1.34 6 0.103 0.079
2 -0.739 -0.268 7 -0.099 0.003
3 -0.043 -0.298 8 -0.037 0.075
4 0.176 -0.228 9 0.0068 -0.115
5 0.052 0.132 1) -0.0272 -0.0139




(a) By equating Eq.(1) from problem 14.4 to abdes/fequation, find the dimensionless
relationship betwee(Q,,/Q,)~ j(Q/ Qo)and (%n/Xo) —j(Xs/Xo).

(b) With the aid of numerical software such as Mathtica, find the numerical values of o
and XX, (n=1,2,...10) from the numerical values af{Qo, Qs/Qo given in the table.

(c) Using these ¥/Xo and %/Xo values, plot the Q(t)/Qand {1/X,)d%/dz waveforms.



CHAPTER 15

Problem 15-1: Alternative Forms of One Dimensional Transport Equations

The one-dimensional transport model for solutiog. (E5.3-25) is given by:

o(pA,) , 9(pQ)
ot 0z

= _pAt(ptuwaII

and for solute (Eq. 15.3-27) is given by:

9(AC) 9(QC) o “\a 9
6; + e _£|:('ZDI +'ZDi )AtE:|+RiAt _At(RNi,waII

(a) Assume constant mass dengignd combine these two equations to show that

oC  _0C _ @ . 0C
A—+Q—==—|(D+D')A — |+RA -F
"ot Qaz dz[( ! ) taz} A

What is function P

(b) Starting with the model of (a), specify theaditions for which model takes the form:

£+g£: d (,ZDi*At a&j_kici _ipl(q _ q:'external)
ot A 0z Aoz 0z A,

where 3, is the circumference of the tube at position zpl&x P ( C- Cthe’“a') . What is the relation of
¢, tod, /A, ?

(c) Show that the model of part (b) can be expkase

aC, , ~0C _  0°C 9 remnai
— +G—L=H L _k.C -2t P ¢ - xtema
at az aZZ i~ At i ( CI: c )

Define functions G and H.

(d) Transform the spatial derivatives of the [fajtequation into cumulative volumdV = Adz.

Problem 15-2: Cell Monolayer Oxygenation in a Two-Dimensional Channel

Buffered saline containing a nutrient concentratiR, flows through a thin rectangular channel
of thickness H and Length L>>H. A confluent celbmolayer is adherent to the lower channel



wall at y=0. The cells absorb the nutrient acaogdat a rate given by a Michaelis-Menten type
equation. Nutrient is also supplied through a msiole membrane that forms the upper wall of
the channel at y=H. The outside surface of thisnbrane is in contact with a large pool of

nutrient at a constant concentration at a constamt¢entrationC*™. The following equation
models the steady-state €oncentration ¢y,z) in the channel:

9°C
ay’

. (L>z>0, H>y>0) (1)

aC,
u, (y) B =D,

0

where the longitudinal velocity distribution is

—u XL1-YL
u,(z)= UOH(l HJ

and the boundary conditions are

z=0: G=GC,,

oC, V. C,
y=0: D, =—=
dy K, +C
oC
y=H: D, s :PS(Cesxternal_/‘CS)
oy

The dimensional parameters of this model&geH, D, L, Vv, K,, P, ¢

s,in?

(a) Express the model in dimensionless form withuariables:

C u
C= i; , u= -z , Z=—, Y= l
C 0 L H
Show that the dimensionless parameters are
q= Dst ’ IB - VmH , Y= K m E E ’ Cexternal — Cixtemal
UH DC C.. D, C

s’s,in s,in s 5,in

(b) Assumingr =D.L /U H? >>1, how does the model simplify? Explain the phyksica
significance of this case. Obtain the solutionG¢y,2).

(c) Simplify the original model, Eq 1, assumingttiias constant and <<c. Use the linear
transformation $=C+ay+b to obtain a homogeneous governing equation. Unaleat
conditions will the boundary conditions in tlgedomain also be homogeneous?



Problem 15-3: Dispersion With a Rapid Tracer Input

Often dispersion is studied by the rapid injectidra non-reactive tracer at the entrance of the
vascular system. If the system can be modeled@sgecylindrical tube and axial diffusion is
negligible, then the convective-dispersion equafen 15.5-51) is

oC , , 9Cs :Dmazc
z S

S
ot 9z 922

(z>0,t>0

where the axial velocity,tand the dispersion coefficiedt,’ are constants. The appropriate
initial and boundary conditions for an injectiomtltreates a concentration pattegfl§ are:

t=0: G=0, =Z=0: G=C (), 2z oo : G-
(&) Using the dimensionless variables

C:&, t:i, Z:i
Co to Zy

where ¢ and z are arbitrary scale factors, show that the dineniess model can be expressed

as:
2
a_C+a_C:a_C (Z>0,t>0)
ot 0z 097°

with the conditions

t=0: C=0, z=0: C=6¢), zZ-o : C o (
To obtain this result, what must be the relatiopsiii t, and of z to u, and DSD?

(b) Apply the Laplace transform&.{C(z,t)} =C(z,s)and L{6(t)} =(s), to the governing equations
and boundary conditions. From the differentialrapar of the transformed differential equation
obtain the roots rand g. Then, write a general solution faX(z,s).

(c) Apply the boundary conditions to get the tfangunction, C(z, s)/é(s) , for this system.

(d) For a very rapid tracer injection, we can ideathe input as an ideal unit impulse (see section

18.1.2 in the textbook) for which the inpué(;s) =1. For this case, find the inverse transform. Note
that

47

L_l{eXIO(—bx/E)} { b TS expfat )ex;E—Z—i]

Then , obtain the dimensional concentration, C(z,t)



Problem 15-4 Dispersion by Pure Convection in Poiseulle Flow

Consider dispersion of solute s by pure convecéitemg a tube in which fluid flows in well-
developed laminar flow with an axial velocity dibtrted from the tube center (r=0) to the tube

wall (r=a):
r2
UZ =2u 1_—2
a

A planar dividing front initially separates upstneaolution at solute concentratiog=Cs, from
downstream solvent. Thereafter, solute moves bgl adnvection at a rate,(0)Cso At a time
t>0, the dividing front assumes a parabolic shapeated between z=0 and = 2ut;
consequently, the solute concentration changegdiogato

c(r,2,4= C, for r(z)>r>0
70 for B orr(zt

Here, r*(z,t) is the radius to which solute molexre just able to translate to position z during
a time interval {O,t}. Atr<r*, the solute molecs are fast enough to surpass position z. At
r>r* solute molecules are too slow to reach positio

Time, t=0
v 777 7. 7771
Cs=Csqo Cs=0 —, 2a
v 777, 71
Time, t >0
v 7777727 7721
r t
C=Cys | 2r* Cs=0
1
1
va 777277 Z 772

(a) Solve for r* as a function of axial positiomad time t.

(b) Determine the cross-sectional average soluteardrationC as a function of z and t.
Obtain the concentration derivative.

(c) Express the average cross-sectional axial es@llus NS‘Z (per tube cross-section area) as a

function of z and t:
(d) Starting with the flux equation:




formulate the dispersion coefficieB as a function of z and t.
(e) Describe howD changes with z at a particular time t. At whatesl of z isD at a
minimum and at a maximum ? What are the mininand maximum values dp" ?

Problem 15-5: Drug Transport in theLiver

Drug transport in liver tissue (Fig. 1.2-7 in teodlx) has been modeled as diffusion across a
parenchymal layer, which consists of a planar sfdiiepatocytes that separate liver sinusoids on
one side from bile canaliculi on the other sideqYiaH et al. Hepatocellular diffusion model, J.
Pharm. Biopharm. 23:183-203,1995). Consider dfags, cefixime) that are not metabolized in
the hepatocytes and are actively transported inititact form into the bile. Initially, there i
drug in the liver tissue. Thereafter, the introdtutiof a drug pulse into the body results in a drug

concentration in the sinusoid that can be approtdthay C, =Coe®. Develop a model for drug
concentration in the parenchymal layer.

Sinusoid,C} = Coe™t

Liver Parenchym

Bile Canaliculi

(a) Under conditions of constant density and diffuscwefficient D, what is the PDE that

describes the dynamic drug concentratiaiix@) in the parenchymal domad»x>07?
(b) At the x=0 boundary, the diffusion flux of drug fnrothe sinusoids is the product of a mass

transfer coefficiemkA and the difference between the concentration irsthesoidC® , and

that in the parenchyma(@,t). What is the equation that expresses thismiary condition?
(c) Drug transport across the &boundary occurs by the facilitated transport gaten by Eq.
11.1-12b. What is the equation representing thisi\dary condition?
(d) Express the model including initial and boundargditons in dimensionless form using:

t = kt; x:%; C, :&.

What are the dimensionless parameters in thetmgguhathematical model?

(e) Simulate the model by numerical solution with &k tdimensionless parameter values set to
1. Plot the concentration profiles as a function difnensionless distance at different
dimensionless times (1020)



() The dimensionless liver excretion rate of the dnig the bile is defined in terms of the flux
Nax at the x boundary.

ER= [NAX]X=5
D,Cy/

FormulateER in terms of Ca]x=5 and then ploER as a function of dimensionless time
(10>t>0).

Problem 15-6: Oxygen Limitation in Tissue Engineering

A tissue-engineered construct consists of a spiles@affold that is initially loaded with a dilute
cell suspension and then cultured in a bioreactoséveral days. Experiments have shown that,
as they propagate, the cells consumeft rate, B(moles Q/s/cn? that is proportional to the
cell number densit(cells/cn).

Ry, (1 t) ==k Q(r,t)

(&) Assuming that the construct is so porousithaffect on Q diffusion can be
ignored, write the dynamic concentrationagn.
(b) Formulate the boundary and initial conditioasolve this PDE for a construct of
radius ‘a’, an initial cell number densfy, and Q concentration Cinitially in
the construct. Oxygen concentratignigCalso maintained at the construct surface
for all later times.
(c) Express the PDE and its conditions in termhefdimensionless variables:

f=L =l c=fer 22
T a G Q,

where T is the characteristic time of cell propagat
(d) Under what conditions can the transient teenméglected so that simultaneouys O
diffusion and consumption can be treated jpse@ido-steady process? Under
what conditions are the diffusion and constiompterms of equal importance?

Problem 15-7 : Alternative Models of Capillary-Tissue Transport
The following dimensionless models are differenpresentations of solute transport from

capillary blood to surrounding extra-vascular tessuWhat do these models have in common?
Briefly explain the processes and assumptions adedowvith each model.

Crone Model The solute concentration in capillary blo@fchanges according to

C C
oC +6C =_P_SCC (1>x>0)
ot 0X Q



where PS/Q is the ratio of capillary permeabilityxsurface area to volumetric blood flow. The boundary
and initial conditions are

t=0:C%=1

x=0:C°=0
Sangren-Sheppard ModeThe solute concentration in capillary bloe§ and in extra-vascular
tissueC'change according to

C C
oC +0C __(P_SJ(CC_CT) (1>X>O)

ot ox Q
6CT _ (P—SJXT(CC'CT)
aa (Q)v

where VIV is the capillary-tissue volume ratio. The boundamy initial conditions are

t=0: C°=1C'=0
x=0: C°=0

Turner Model The solute concentration in blo@f and in extra-vascular tissu@' change
according to

aCC+aCc:[(AC)ZD}(VCC_(F)_SJ(CC_CT) (1>x>0)

ot ox QV® | ox? Q
T

oC :(P_SJXT(CC_CT)

ot Q)v

The boundary and initial conditions are

t=0: C°=1,C'=0

x=0: C°=0
C

x=1: oC =0
0X

whereD is the dispersion coefficient and #he capillary cross-sectional area.

Problem 15-8: Concentration Boundary Layer On a Flat Plate

Consider a wide flat plate with a concentratigfky=0)=C,,, of inert solute at the plate surface
and a solute concentration af)&-0,y)=Csin the impinging flow (Fig. 15.5.4). At a sufficidy
rapid impinging velocity (0,y)=U, momentum and concentration boundary laygélidoth be



formed. At a downstream position x=L, the concatin boundary layer thicknedgis much
less than L.

Ul CSO

The objective of this problem is to find the crigeto justify the assumption thég<<d under
steady state conditions. From an analysis of glecity field using the Navier-Stokes equation,

we know thatd ~,/Lu/U (Eq. 14.1-29b), and the velocity components neapthte surface are

u, ~ yy U*/ux (Eq. 14.1-32) andi, ~ y2JU%/ux® (Eq. 14.1-33).

(a) Incorporating the assumptions given abovepkiynthe governing equation for the solute
concentration £x,y) in rectangular coordinates (table 15.2-1):

aC oC aC aC 9’C. 9°C. 9°C
*+lu —+u —+u — |=D S+ —>+—"|+R
ot “ox  Ydy 7oz x> dy° 07 :

(b) Make the governing equation dimensionlessguthe following scaled variables:

Yy
vy 5.
(c) From an order of magnitude analysis, simplifg timensionless equation and fitdn

terms of U, Lp andD. Then, relaté.to &~ /Lu/U . Specify the criterion to justify

O/ d<<1.

Problem 15-9: Diffusion in Central Nervous System : Alternative Models

L-Glutamate is the major excitatory neurotransmitieche mammalian central nervous system (CNS).
Initially, a micropipette containingg=5 mM L-glutamate is inserted into the CNS. At émal of the
micropipette, a drop is formed by a 10 ms prespulge. The drop has a radius arouseR6 pm.
Surrounding the drop is a much larger medium intictvthe L-glutamate diffuses . The governing
equation for concentration of L-glutamate in eittier drop or surrounding medium is



oC_(D)a( ,0C
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whereH( ) is the unit step functiord() is the Dirac delta functior? is a diffusion coefficient, which is
the same in the drop and the external medium. cdhditions are

t<0: C=0
r=0:0C/or=0
+o00: C=0

(a) What are the key assumptions of the governjjugigon and their justifications?
(b) Explain the source term, initial condition, amslindary conditions.
(c) What is the number of micromoles wf L-Glutamate in the drop?

(d) Use the Laplace transforn{ C(r,t)} =C(r,s) to show that the following is an alternative foofithe
governing equation:

a—cz(g]i(F%j (r>0,t>0)
ot re)or or

with conditions:

t=0: C=Ei(rp-1)
r=0:0C/or=0
$o00: C=0

Problem 15-10: Diffusion in Central Nervous System : Model Transfor mation

Consider the model for the radial diffusion of Lu@mate in the mammalian central nervous system
described in problem 15-9:

a—cz(g]i(F%j (r>0,t>0)
ot re)or or

t=0: Cs8(rp-r)
r=00C/or=0
$00. C=0

whereH( ) is the unit step functiord() is the Dirac delta functior? is a diffusion coefficient.

(a) Show that the model can be expressed withriiimeless variable in the following form:

"iz[izji(rza_cJ (r>0,t>0)
ot r<)or or



t=0: C=U(@-r)
r=0: a—C:O
or

r-o: C=0

What are the scale factors (a, b, c) that relaaliimensionless variables to the dimensionlessbias ?

ca,o:%, ro=t

r=—, t=—
b c

(b) Transform the dimensionless problem by lettthg rC. What simplification occurs ? What are the
dimensionless conditions ?

Problem 15-11: One Dimensional Transport in a Tubewith Variable Dimensions

Under some conditions, the one dimensional soloeentration C(z,t) in liquid flowing through b
surrounded by an external phase with solute coratiot C changes according to:

a_C+ga_C:_li(DAa_Cj_ﬁ(c_cE) +R
ot Adz Aoz oz) A

whereS (z)the tube circumference and A(z) the cross-sectiared vary with axial position z .

(&) Assume that: 1) the solute diffusion coeffiti® is constant; 2) the tube has a circular crosdesect
whose radius is a function f(z) of axial piosi z. ExpressS (z) and A(z) in terms of f(z). Then
express the dynamic concentration distrilpuitiothe form:
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Specify F, G and H in relation to f(z) andddfas needed.
(b) The differential change in volume of the tubmén between axial positions z and z+dz is dV=A{z)d

Given f(z), how is the derivate of V with pext to z evaluated ? Using the chain rule of
differentiation, transform the result of p&} from C(z,t) to C(V,t). Express your resultie form:

oC _ oC_ . 0°C
E"‘ FVaZ—GVaZZ_HV(C'CE)+R

RelateF,, ,G,, ,HV to f and df/dV as appropriate.



CHAPTER 16

Problem 16-1: Oxygenation of a Tissue L ayer

A tissue layer of thickness; is being maintained on the bottom of a Petri didihe tissue is
covered with a nutrient solution of heightthat is in contact with atmospheric air whose @tyg
partial pressure is,p Oxygen diffuses from the atmosphere throughnileient layer and into
the tissue layer where it is metabolized.

The diffusion domain in this problem can be sphtialbdivided into the nutrient layer located
at Le>z>L¢ (zone I) and a homogeneous tissue layer locategzt0 (zone Il). The @diffusion

coefficients,D' andD", as well as the Osolubilities,a' anda", are different in the two zones.

While there is no @reaction in zone |, ©in zone 1l is utilized at a constant molar rate peit
volume, R .

(a) Write the second-order differential equation®, concentration in the two zones(£} and
C'(z). In each zone, assume a steady-state pracsggjonary phase, a constant diffusion
coefficient and constant mass density

(b) How many boundary and how many initial conditiare necessary to solve the two ODE

found in part (a)? Give the conditions thatl yvould use to solve this problem; write the
formulas and state what each one means.

(c) Find the Qdistributions in the two zones by integrating thiféerential equations and
applying the boundary conditions.

(d) Using the solution for '¢z), formulate the oxygen transport rate into thdace area S of the
monolayer at z=l. Explain this result.

Problem 16-2 Heparin Distribution in Arterial Wall

Placement of stents in coronary arteries frequaesylts in lesions on the vessel walls. Locally
applied heparin is a possible treatment for supgmgsa proliferation response that exacerbates
this damage. Consider a mathematical model foafemelivery through a coronary arterial
wall from a locally-applied hydrogel fiim (Lovich M Edelman ER. Am. Physiol. Soc.
271:H2014-H2024, 1996). We represent the arteval as a series of endothelial-intimal,
medial and adventitial layers bounded by the hyekogBetween these planar layers, the
(uniform) cross-sectional area is S.
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One-dimensional diffusion occurs in the x directtbrough the media §%x>x;), the adventitia
(x3>x>x2) and the myocardium fxx>x3). The hydrogel layer ¢#x>0) is considered to be a
well-mixed reservoir of heparin. The endotheliumtirnal layer (x=%) is represented as a
membrane with a heparin permeabilifyjrRol/s/nf]. The media is modeled as a uniform, fixed
tissue of cells surrounded by interstitial fluis free heparin diffuses through the media, it
reacts with cell surface receptors to form bounglni@. Once bound, heparin can be internalized
across the cell membranes with a permeability Within the cells, the heparin is metabolized
by Michaelis-Menten kinetics at a maximum intensiade a and a concentration at half
maximum off3. Free heparin is also metabolized in the perglhayocardium with a first-order
rate coefficient s™']. At the proximal boundary of the arterial wall (Y=Beparin moves into
the arterial blood of the lumen with an irreversittbss rate coefficientks™]. At the distal
boundary (x=x%) of the myocardium, heparin concentration is v@nall compared to that in the
hydrogel. For uniformity of symbols, represent dwiilibrium partition coefficients of heparin

between any phases | and JXas and the diffusion coefficients of free heparirpimases =M,
Aand P a®'.

(a) For the well-mixed hydrogel layer, derive aw&itpn for the concentration dynamics of free
heparin, &(t). Account for transport across both the x=0 &nx, surfaces.

(b) Develop an equation for the overall formatiate R'[mol/s/nt] of free heparin in the
medial layer resulting from reversible moalant binding to unoccupied receptor sites.
This equation should depend on the molacentrations of free and bound hepariff(Gt)

andC!' (x,t), as well as the total concentration of occupiedi @moccupied receptor sites,

™ which is assumed to be constant. The forwardramerse rate constants for the
reaction aregk and kg, respectively.
(c) For the medial layer, derive an equation fer diynamics of free heparif’cx,t) and an

equation for the dynamics of bound hep@fjrfx,t). Since the cells are stationary, the

bound heparin does not move through the mémirar.
(d) What are the boundary conditions for the frepdrin concentration at the medial boundaries,
X=x and x=x%7?
(e) Fg:r the cell interior, derive a concentratigmamics equation for internalized heparin,
(x1).
(f) For the adventitia, derive the PDE for the cemtcation dynamics of free heparifi(€,t).
What conditions relate”"Go the myocardial concentratiof(&,t) at the x=% boundary?



(g) For the peripheral myocardium, derive the PDiEle concentration dynamics of free
heparin §z,t). What alternative boundary conditions wobdlappropriate at the distal
myocardial boundary xzR

(h) Do the number of boundary conditions specifretch the number of boundary conditions

that are necessary for this model ?

(i) What are reasonable initial conditions?

Problem 16-3: Carbon Dioxide Excretion From Pulmonary Capillaries

In the pulmonary capillaries, G@s eliminated from flowing blood to the well-mixadveolar
gas. Within the blood, carbon dioxide is transpais dissolved GOnolecules as well as in
hydrated form as1CO; ions.

co, + H,00 Iy Hea + H

Although this reversible hydration reaction ocaarany agueous solution, it is greatly
accelerated by the action of the carbonic anhydeasenzyme that is present in the RBC.

In this problem, we model the transport of G@pulmonary capillaries in a similar fashion as
the blood oxygenation model in section 16.2.3. o8l treated as a two phase system
consisting of a RBC core encircled by a plasmarlayiéne plasma layer is separated by an
alveolar-capillary membrane from a surrounding alaegas layer that contains a constant
concentrationCy,, of CQ,.

Additional symbols not shown in the figure areoR the net formation rate of G@y the
hydration reaction per unit RBC volumg3?,, the partition coefficient of C&£between alveolar

gas and plasma;?/the volume of the RBC phass;, the volume fraction of the RBC phase in
blood.

“Alyeolar Gas: G
uP =—> plasma
r il P.r
u" =—> RBC Core Ceo2'Chicos TNc):oz'NHcos
—>

(&) What conditions must be met if the net produrctate of CQ by the hydration
reaction is given by:



Rz:oz = errHco3_ kaCOZ

Here kand k are constant rate constants for the forward averse reactions. If this
reaction reaches equilibrium, what is thatiehship betweerC;,, andCj,,?

(b) Rewrite Egs. 16.2-45 and 16.2-46 from theldegk so that they apply to G@ansport in
the plasma and the RBC phases. For simgliagisume that the solubility of G& equal in
the plasma and RBC phases.

(c) Develop the corresponding equationsHL O; transport in the RBC and plasma phases.

Assume that the solubility ®1CO; is equal in the plasma and RBC phases.
(d) As afirst step in reducing the two-phase nhofielood developed in parts (b) and (c) to a
single-phase model, we define the volumeayeCQ and HCO; concentrations in blood
as
C:goz =€,Ceont ( 1_£H) Ceoz

b —
CHCO3 = ‘EHCrHCO3+ ( 1-¢ H) CpHco:

Combine the concentration equations obtaingxrt (b) for CQ transport in the RBC and
plasma phases to obtain one concentratioatequin which the unsteady and convection
terms are given in terms Gf,,. Assume that the velocity of the two phases quak
U=uP=uP.

(e) Repeat this derivation to obtain one equétorc? .., from the separate concentration
equations determined in part (c).

(H In the special case of interfacial equilibriehCO, between the RBC and plasma phases,
and reaction equilibrium between £dhd HCO; in the RBC phase, combine the results of

parts (d) and (e) to obtain a single catregion equation withC?_,as the only dependent

variable.
(g) If the inlet concentration of GGn blood is G, integrate this equation to determine the,CO

concentration distributio@?,(z) under steady state conditions .

Problem 16-4; Artificial Membrane Modd

|
Compartment A HK - Layer 1: Player 2 Compartment B
GLA CoLu Cerr )} Gua Copr (S
1 >

72727 Z=Zg =73

Broun and colleagues (J. Membrane Biol. 1972. 8:333) describe an artificial membrane
consisting of two active protein layers enclosedvioy selective films located at positions z=z
and z=z. The protein layers containing ATP and ADP meet dividing surface zsz To
promote a reaction-driven diffusion of glucose(Ghptein layer 1 incorporates immobilized



hexokinase (HK) whereas layer 2 incorporates phatsigle (PT). Well-mixed, external
compartments A and B that surround this artifio@mbrane both contain GL.

The HK in layer 1 catalyzes the phosphorylatiosafby ATP to form glucose-6-phosphate
(GP) by the reaction

GL+ATPO '™ ., GP+ ADF

The PT in layer 2 catalyzes the dephosphorylatid@®to form GL and inorganic phosphate
(Pi):
GPOTI~ GL+ Pi

The overall reaction occurring in the two layergigeen by the sum of these two reactions.
ATPO - ADP+P

This hydrolysis of ATP to ADP liberates a bond gyawhich can possibly promote active
transport.

The films at z=z and z=g are highly permeable to GL but impermeable to 8Bth GL and

GP readily pass through the dividing plane at,z=Dehosphorylation in layer 1 is limited by
the presence of GL while phosphorylation in layés Bmited by the presence of GP. In that
case, the enzymatic reaction rates follow Michaelenten kinetics that depend only on GL and
GP concentrations:

_ Tk CGL,l

GPTCGP 2
RGL,l = _RGP,l_

, RG|_,2= - RGP,Z_

BHK + CGL,l BPT + CGP,Z

Initially, GL and GP concentrationssG and (Gpj in the two layers (j=1,2) are zero. The GL
concentrations in the external compartments,and G g, are constant. The diffusion
coefficient D of GL and GP are equal to each other and are the saboth layers. You can
neglect differences in solubility of GL and GP lrettwo layers and in the external
compartments.

(a) Assuming a 1-dimensional diffusion-reactiontegswith no convection, what are the
dynamic mole balance equations fey {z) and Gp (2) in the i=1 and i=2 layers?

(b) State the total of eight boundary conditions@g_; and Gsp; in the two layers (i=1,2) at
z=2,Zs,Zm . What are the initial conditions at t=0 in theotlayers?

(c) Non-dimensionalize the mole balance equatiostheir boundary conditions using the
dimensionless variables:

= DU ,=%7% ¢ = S (izoLep, =19
(ZB - ZA) Zg — 2, CGL,A

and the dimensionless parameters:



z =1 , V=
Zg =2, CGL,A
2
a _(zs-2) a =(ZB_ZA)
HK — HK PT = PT
DCGL,A DCGL,A
— BHK = BPT
,BHK = Co, ) :BPT = CGL,A

(d) Simulate the behavior of the dynamic GL arlé&ncentrations in the i=1 and i=2 layers
when the dimensionless parameters have tbhesia

z. =05, y=2, a, = 200, dp = 100, B = Bor =

Then make a plot &g, (2) andCgp(2) betweerr=0 andz=1 when the simulations reach

steady state.
(e) Solve for the dimensionless molar flux of Gltass each of the two membrane surfaces.

dc
Nz =g

What should be true of these two values atiststate? Is the GL flux in the same direction
as the GL concentration driving force acrossrttembrane, or are they in opposite directions

(i.e. primary active transport)?

Problem 16-5: Nitric Oxide Generation and Shear Stress

Nitric oxide (NO) is a cell signaling molecule rated by endothelium to regulate vascular
smooth muscle tone. In an experiment designedseroe the effect of hydrodynamic shear
stress on NO generation rate (Kanshiall, Circulation Research. 77: 284-293, 1995), a
monolayer of bovine aortic endothelial cells waacpld on the lower wall of a rectangular
channel. While a flow of culture medium producedesired shear stresg,; on the monolayer
surface, NO concentrationng was measured by a miniature sensor mounted flugh the
upper channel wall and directly above the centéhefcell monolayer.

NO Sensor

y‘E ¥ _

—— X U — 25 Endothelial Cell
v Monolayer

m&g\\?\a\\o\\mm

& >
< >

Develop a



mathematical model that relates the shear streggetdlO concentration that would be detected
by the NO sensor once steady state is reachedollbwing additional information is available:

The flow channel has dimensions of length L, hehand width W.

Assume steady state, fully-developed laminar fldva dlewtonian medium, the velocity
field and wall shear stress are then given by (prall3-4)

2 _
ux :§U(1_Lj’ l’l/ = l‘! = O’ Twall __'aij

2 & o

where is the average velocity.

* In addition to convection and diffusion, NO undezgmxidation in the medium at an
intensive reaction rateR,,[mol/(m’-s)]=-k C,,(The minus sign indicates that
oxidation depletes NO).

« NO generation rate at the monolayer surfagg /[mol/(m*s] is only a function of

Twall-

(a) Write the steady state concentration equdtip@yo(X,Y,z) due to convection, diffusion and
reaction if the flowing medium has a constaolar density and constane NO diffusion
coefficientD,, .

(b) Make the concentration equation dimensionlessguthe dimensionless variables:

z _ Dy
W aq NO,wall

CNO

Arrange the equation such that the coeffiodérthe diffusion term in the y direction is unity
Explain the significance of the two dimens$éss parameter groupBe = ud/D,, and

R = 63krRNO,Wa\II/IZ)IgJO '

(c) Based on the dimensionless equation, speaifgtimditions under which we can neglect
diffusion in the x and z directions relatiteediffusion in the y direction. Write the
dimensionless concentration equation whesdltonditions are met.

(d) Formulate the dimensional and dimensionlessitdary conditions.

(e) In one experiment, the sensor located at (x=#2d) detected an NO concentration of
Guo(L/2,8)=125nM when a shear stresstpf=0.1 Pa-s was applied to the cells. Compute
the value ol required to impose this,,? Then, determine the corresponding NO
generation rate from numerical simulationthef simplified dimensionless model. The
known parameter values are: L=22nd+0).125mmp=8.5<10*Pa-sDno= 3.33%10°m?/s

and k=36.0(ni/mol-s).
(f) For the result found in part (e), plotvsy atx=0.1, 0.2 and 0.5.



Problem 16-6: One-Dimensional Dispersion With Chemcal Reaction

Rather than being inert, suppose that the tracaaritbed in the convection-dispersion model of
section 15.5.3 undergoes a first-order reactiahfémvs through a tube of diameter d at velocity
u. The cross-sectional average of tracer condemtr@(z,t) can then be modelled by:

=(p,+D.) aazzfs -k C, (z>)

aC, . aC,
+Uu

ot 0z

where the coefficients for diffusiom,, dispersionD,’ and reaction k are constants. Initially

no tracer is in the tube (z>0). At the tube erteaz=0), the tracer concentratiopi€a constant
at all times. At sufficiently large downstreanstdinces (z «), the tracer concentration can be
neglected.

(a) State the mathematical equations for theainéind boundary conditions necessary to solve
the differential concentration equation.

(b) Express the differential model equation asccd@nditions in terms of dimensionless tracer
concentratiol©(zt) using the same scaling factors and dimensiomjessp as in section
15.5-3. There should now be an additionaettisionless group (define it as=k;/u) which
is due to the chemical reaction.

(c) Under what conditions can the Laplace transfaith respect to time be applied to this

model? Obtain the Laplace transform solutimrttie dimensionless concentrati®fz, s).

(d) Invert the Laplace transform to obtain an eiguafor the dimensionless concentratioz,t)
in the dimensionless time domain. Note tloat will have to use three relations
obtained from: Roberts GE, Kaufman H, Tabléalace Transforms, 1966.

L"l{f(as+b)}=lexp(—htjf(ij p 169, entry 3
a a a
P t
L‘l{®}= [f&)de p 170, entry 13
S 0
-1 \/_ 1 1
L exp(— s) —Wexp o p 246, entry 14

(e) The correct result to part (d) is

C(z,t):,/Pj‘;TZ exp( Pezdzj jngl,z ex{—P—z"(E+%J—aE} d

Numerically integrate this equation to obtain at@bC versusz in the domain, 48z>0, when
Pe=1, t=10 anda=0.1. In the same graph, plot the correspondingedsionless concentration
distribution for the case of an inert tracer. Wimitthe effect of the chemical reaction on
dispersion?




Problem 16-7: I sotopic Tracersfor Kinetic Analysis

Radioactive isotopic tracers can be used to quatii¢ transport and chemical kinetics of
metabolites or drugs in the body. The count ratm®s an isotope in samples of body fluids or
from external detection is a measure of tracer eotmation. The purpose of this problem is to
determine the physicochemical properties of théom® and the metabolite or druige(, the
tracee) such that tracer kinetics follow the bebiawf the tracee.

Let C*(z,t) be the isotopic tracer concentration at sonaialppointz and time t, and let @)
be the corresponding tracee concentration. By nilein, specific activity is

S(z,t)=C*(z,1)/C(z,t). Physical equivalence of the tracer and traodsts at any poirt in the
system if: 1) the same velocity field applies tahy@®) their diffusion coefficients are equal,

D=D* 3) the initial and boundary conditions on the camiion of both are the same.
Chemical equivalence of the tracer and tracee éxtls¢ chemical reaction rate of tracer R* and

of tracee are related by*®,t) = (C*/C)R=SR at any point in the system. In this problem, we
assume that that the tracer and tracee are bogigally and chemically equivalent.

(a) Show that when th&is independent of time, the relative change ofttheer and tracee
concentrations at two different times are é¢ua 0C"/at=(C’/C)oC/a ).
(b) Let us consider the total reaction rafehe tracee and tracer in a general form:

R+R'=-k (c+C)

ForS<<1, which is typically the case, show that theerskinetics are first order with respect
to tracer concentration, even when n>1. W#el, show that the rate equations reduce to
the analogous forms: R7¥kand R*=-kC .

(c) In that case, the transport equations of tracektracer also have analogous forms:

%—(t: +u.0C=D0*C-k,C

*

aaitw-mc* =D*C -k, C’

If the specific activitysis constant everywhere, show that the solution fois@lso the
solution for C.
(d) WhenSis not constant, obtain the dynamic equation thateisents the specific
activity:
s_,
ot

Will this equation allow us to computezi) from C*(z,t)?



Problem 16-8 Drug-Eluting Stent

Drug-eluting
Stent

Vessel Wall

In a common cardiovascular surgery, a ring-shapauat & inserted on the surface of a partially
blocked artery to increase blood flow. Often, #tent is impregnated with an anticoagulant
drug. Time release of the drug into the blood prés the formation of clots on the device. As
drug is transported downstream from the stentlsbebs onto to the vessel surface and prevents
clot formation on the endothelial wall. For a slifigd analysis, assume that the artery can be
modelled as a rigid straight tube of radius R asmagth L. In addition, consider the stent
thickness to be negligible compared to R, and tiet $ength h<<L.

(a) Starting with the appropriate equation fromedlb.2-1, write the local drug concentration
C(r,z,t) assuming that:

1) the velocity field in the blood correspondsmiseulle flow at a mean velocity u;
2) C(r,z,t) is axisymmetric;
3) drug diffuses radially and axially with a caanst diffusion coefficienD.

(b) Specify mathematically the five conditions @egary to solve this concentration equation
given the following information. Initiallyhere is no drug in the blood, and drug does not
enter at the tube entrance. For the steface at h>z>0, the molar flux of drug release N
Is approximately constant. Downstream efgtent at z>h, the flux of drug uptake by

endothelial cells is proportional to localid concentration, N kC. Axial diffusion can be
neglected at the tube outlet.

(c) Derive the governing equation in the dimenkass form

2
Aa_c+(1_r2)a_c:a{sac+;a(racﬂ (Br>0, ®z>C

ot 0z 022 rorl or

using the scaled variables (whega<Oyet to be determined)

C=£, z r, t
C, L R 0

Specify the dimensionless parameterd andein terms of the original model parameters.

(d) Explain the physical conditions necessarythierdimensionless concentration equation to be
simplified to:



(1—r2)—=——(r—j (Br>0, pz> C

(c) Show that, with appropriate selection @f tbe dimensionless boundary conditions to solve
the simplified concentration equation oftdd) have the form

z=0: Cc=0
r=0: a—C:O
or
—y _0C _ 1 h 2> C
T o |-BC 12 h

What is the physical significance /8

Problem 16.9: Spinning Disk With Zeroth Order Surface Reaction

Consider a rotating disk with solute depletion bemical reaction on the disk surface. Unlike
section 16.3.1 in the textbook where the chemeattion rate was assumed to be first order, we
now consider the case when it is zeroth order.

(a) Specify the boundary condition at z=0 for $hieface reaction which occurs at a constant
molar depletion rate per unit areRSfmol/ m*—-s]. Using the same dimensionless
variables as in section 16.3.1, expresscthiglition in dimensionless form. What is the
physical meaning of the Damkohler numbBxa; = —Rf/(cg,\/@) , that appears in this
condition?

(b) With this zeroth-order boundary condition a@zsolve for the dimensionless concentration

distributionC(z) by performing two successive integrations of Eg3-7.
(c) For a mass transfer coefficient defined as:

ks = Ns,wall
C.(0)-C,,

formulate a dimensionless correlation for #fierwood numbergh, =k d/D,) in terms of
the Schmidt numbeiSt = v/D; ) and the Reynolds numbdReEd’Q/4v). Use the following

relationship between the integral appeanmthe equation fo€(z) and the gamma function,
I'(1/3), to simplify the correlation as much as pblesi

Jex{-ag?)e= "1 =029
0

a



(d) Compare your results for zeroth ordectiea to those in section 16.3 when the reaction
is first order.

Problem 16-10 Gas Phase Resistance to Uptake into Airway Mucous

Airway
Mucous
Lining

Respired Gas Cggq _— Gas BL

L0
5 +«—— C_=Cs
3 Mucus C_(y)
y i
+«——— C_=0

Tissue

Transport of an inhaled reactive gas s into anajrwall was modelled in section 16.1.1 as a
one-dimensional, steady state, diffusion-reactimtgss through a stagnant mucous layer of
thicknes,. More realistically, the transport domain corssist the respired gas phase in
contact with the mucous layer. In this two-phasseh, convection-diffusion through the gas
phase can be modeled as a boundary layer proctes gds side of the air-mucous interface.
The molar flux through the boundary layer is givsn

[N.], o=k Cy~AC]

Here, k is a gas-phase mass transfer coefficiegfisGhe molar concentration of s in the bulk
gas phase; &is the concentration of s in mucous at the gasemsiinterface) is the
equilibrium partition coefficient between the contration of s in gas relative to mucous.
Follow the steps outlined below to analyze thisrowed model.

(a) Based on Egs, 16.1.12, 16.1-18 and 16.1-18uiate the flux of species s in mucous at the
gas-mucous interface Jjo and at the mucous-tissue interface]{N .

(b) What must be true if there is no accumulatibepecies s at the gas-mucous interface? Use
this concept to relates§2o0 Csgand the other parameters in the model. Then mditaiG,
from the equation for [fN-1. From this result, explain how the gas phasentary layer
affects the penetration rate of speciesastissue.

(c) What condition onis necessary for equilibrium to (approximatelylsebetween ¢ and
Go? Reduce the equation ford) for this case. Compare this to Eq. 16.1-20 ?



CHAPTER 17

17-1: Tissue Engineered Cartilage

Chondrocytes produce the extracellular matrix pnotellagen type Il (A) which is known to
resist compressive strain in native cartilage.is&ue cartilage construct is produced by seeding
chondrocytes onto hyaluronate-based scaffolds. ddleagen production rateafig/min] is
proportional to the number density of chondrocy®sells/ml] provided that there is cell-cell
contact.

ANQ if Q=2Q,

rh = )
0 if Q<Q,

Here, .=2x10"%g collagen/(cell-min) is a rate constant aRg=10'cells/ml is the critical cell
concentration necessary to maintain cell-cell anfAn implicit assumption in this equation is
that the porosity of the construct is sufficientirge that it does not interfere with cell-cell
contact).

The growth rate of chondrocyt&gcells/ml/day] is expressed by the rate expression:

==pQ.
wheref=0.2 day".

(a) Perform a mass balance for type Il collagen demsifg collagen/ml scaffold] and a number
balance for chondrocyte number dens@®(t) in a construct with a porosity greater than
98%. Be sure to state your assumptions.

(b) With Qg[cells/ml] signifying the initial seeding densitgplve the ODEs formulated in part
(@) for Q (t) andpa(t).

(c) In an experiment in which 1 million cells are ialty seeded per milliliter of the scaffold,
what is the timectrequired for cell-cell contact? How long doedake for the collagen
density to reach that found in the native cartildgasity, which is about 0.1 g/ml.

Problem 17-2: Moments of Axon Migration

Consider ann vitro experiment of axon tip migration with taxis inang) tube. When the
gradient of the chemotactic agent is constantptiplation balance for the number density of
axon tipsQ (Eq. 17.3-3) is

a_Q+Va_Q—HGZQ:O (oo> 7> Q
ot 0z = 07

Here, the transport coefficieni§m?s] for random migration ane{m/s] for chemotaxis are
constants. The initial and boundary conditions are



t=0: Q=0
z=0:Q=Q, "
20, Q-0

Note that the boundary condition at z=0 approximateapid seeding of the axons at the mouth
of the tube during the time interval {0,

(&) Transform the governing differential equatéord its conditions in terms of the following
dimensionless variables:

V4
y L=
L

The scaling parameters T and L representiegliaracteristic time and distance of tip
migration are, as of yet, not known.
(b) Determine T and L such that the dimensionles®ming equation becomes

0Q _9°Q 00

PR 0>7>0
ot 0z 0z

How are T and L related fpandv?
(c) The K" moment of thelimensionless axon tip distribution is defined as

0 =[ 720

What are the dimensionless initial conditiarsthe zero and first moments(0) andA;(0)?
(d) By integrating the equation féx2/dt in part (b), obtain d(0)/dt =d(2dz)/dt and
dhy/dt= d(zQ dz)/dt. You should assume that2/9z is negligible at the boundaries of the
domain.
(e) For k=0 and then k=1, solve f&(6) using the two ODE’s found in part (d) and theiahi
conditions from part (c)
() The mean distance that the axon tips migrateg time can be represented by

Tszz
Z(t) =2

0

Jde
0

What is the correspondidgnensionless mean migration distanc& =z /L in terms of
the dimensionless momen#(t) andA(t) .



(g9) Under what physical conditions are the charéstic times very different, that is<<T ?
Simplify the dimensionless migration distarxg) for this situation. Then formulate the

corresponding dimensional migration dista@€gin terms of the parametejs andv.

Problem 17-3 Oxygen Limitation in Tissue Engineering

A tissue-engineered construct consists of a higblpus, spherical scaffold of radius ‘a’ that is
initially loaded with a dilute cell suspension athen cultured in a bioreactor for several days.
The bioreactor needs to be optimized for adequalevredty of nutrient (oxygen) delivery
throughout the scaffold.

(a) By integrating a dynamic cell number balanoemiulate an algebraic expression
for cell number densi®(t) (cells/cn) starting with a uniform, initial cell
distributionQ.=Q(0). The proliferation rate of cel&cells/ cni/time) is given by
the following kinetic model:

= =k,Q(k,-Q)

The parameters lnd k are constant. Neglect cell transport (migrationghie
construct and assume that the construct voh@meins constant.

(b) Separate experiments have shown that the oxygesumption rate of cells g2
(moles of @'sec/cr) is proportional to the cell density:

Rz =KoL

Assuming that the oxygen transport can beadteas a pseudo-steady process (see
problem 15-5), write the pseudo-steady diffiie¢ equation that determines the O
concentration distribution and specify the kaany conditions.

(c) Obtain the analytical solution from part (bdashow that the oxygen
concentration profile is given by

_ ko2Q(1) (a2 - rz)

C ,1)=C
02(r ) o Doz 6

whereQ(t) is the time-dependent cell density from pa)t @=Co(a,t) is the
oxygen concentration at the periphery of thestruct, andD,, is the diffusivity of
oxygen in the construct.
(d) Based on the solution of part (c), formuldte tate of oxygen uptakid,(t) at
r=a.
(e) Compute,for a construct of radius a=1cm that initially cains a uniform
distribution of 5 million cells. Then comgul,,(t) (umol/day) as a function of

time given the remaining parameter valuBs,= 2x10°cmf/sec, k=50 million



cells/cm, kik,=0.2 day*, ko;=0.5 x 10> moles Q/sec/million cells and ,=0.12
umoles/cn.

(f) Judging from the oxygen concentration profig@ression, where in the constri
is Gz at its minimum? Make a plot of this minimung, as a function of time.
What is the critical time &t which oxygen transport can no longer suppor
cellular oxygen demand? Compute the cell numbesiteQ(t)=Q. that is
reached at.t

Problem 17-4: Stem-Cell Differentiation With Replication

In a model of a stemell differentiation with replication, a populatioof stem cells (0O
undergoes differentiation into progenitor cell$ @hile also undergoing serenewal to form
new stem cells. The progenitor cells propagatetmfnew progenitc cells or they can becon
terminally differentiated cells (2) that no longamopagate. The rates of all three cellular
processes—seltkenewal, propagation, terminal differentia—are firstorder with respect to
cell number density with the ratenstants shown in the figure.

Stem Cell Progenitor Cell Terminally
Differentiated
Cell

(a) DefiningQ;(t) as the number density of cell type j (j=0,1aR}Jime t, formulate rat
expressiong; for the cellular fate processes associated withitttee cell type

(b) Consider the case wherestem cells per cirare added to a wethixed reactor. Develop
cell population model by performing a number batafur three the cell types in the syste

(c) Specify the initial condition§;(0) when j=0,1,2.

(d) Apply the Laplace transfor L{Qj(t)} = Qj(s)to these equations and solve fzj(s)when

j=0,1,2.
(e) Expand£~23(s) as the sum of partial fractions (appendix C Obtain the dynamic change

the cell number density of the terminally differated cells, by taking the inverse transfo
Q, (1) = L{Qy(s) -

(f) Consider a chondrogenic differentiation proces®lving mesenchymal stem cells . The s
cellsupon exposure to chondrogenic medium in a closeabation chamber under:
differentiation to form transitory chondrocytes waiiterminally differentiate int
chondrocytes . During this process, the- renewal rates are zero, and the rionstants for
the differentiation steps ar4=0.1 day*and k=0.2 day". Plot relative cell densitieQi/N as a
function of time. Determine the relative propomnscof the three cell types at the end o
days of differentiation.Assume we-mixed conditions.



Problem 17-5: Antibiotic Treatment of an Infected Tissue

A serious infection with bacteria can be treatedcbgtinuous infusion of an antibiotic into the
blood stream. We can analyze the dynamics of #utebal distribution using a Krogh model
(Fig. 16.2-3) consisting of a representative capyllof radius gand a surrounding tissue region
of inner radius @and outer radiusi.a Within the blood flowing through the capillarthe
antibiotic concentration is everywhere constarg adlue G. In the tissue, the number density of
bacteria iQ(r,t) and the antibiotic concentration is C(r,ilfhe bacteria proliferate at a rate per
unit volume R"Q[cells/s/nf]. They randomly migrate at a flux"2KtQ/dr{cells/s/n] in the r
direction, which is much greater than migratiorthia axial direction. When the local antibiotic
concentration is above a critical level, GxCthe bacteria die at a rat&f¥tQ[cells/s/n].

Antibiotic diffuses at a flux®dC/dr in the r direction that is much greater thigfusion in the

axial direction. Further, antibiotic is clearedrfr the tissue at a rat8%, which is independent
of the bacteria. At the capillary blood-tissue hdary r=p, the antibiotic is in interfacial
equilibrium with partition coefficient!"® . Because it is a local infection, bacterial transpor
across this boundary is negligible. Initially, thacterial number density, is uniform and there
iS no antibiotic in the tissue.

(a) Formulate the unsteady state governing equétioihe number density distribution of
bacteriaQ(r,t) in the tissue region.

(b) Formulate the unsteady state governing equébiotihe concentration of antibiotic, C(r,t) in
the tissue region.

(c) Formulate the initial and boundary conditiodssume radial symmetry with adjacent tissue
regions at rgr

(d) Express the model equations in dimensionless feith the variables:

(e) Simulate the radial distributions of bactenamber density and antibiotic concentration at
t=50, 100 and 200 given the following dimensionieasameter values:

rand prolif 42 deathA 2 ab,2
K™ _po1 K& _gq KTAG_ 5y KA
D D D D

Cou=Set=01, 2=01, av=
C &

o]

(f) In this simulation, is the infection controlléy the antibiotic? What do think would happen
if the antibiotic is stopped?



(g) A different class of antibiotic with characsits that lead to a new value for the
dimensionless paramet&™*"'aC, /D = 0.2 is to be tested. Determine whether the infection i
treatable with this new antibiotic.



