
PART V 
CHAPTER 13 
 
 
Problem 13-1:  Planar Shearing Flow 
 
(a)  Starting from Navier-Stokes and continuity equations, derive the fully developed, steady     
      laminar velocity profile (Eq. 13-2-3) for an incompressible Newtonian fluid flow between  
      parallel plates as shown in Fig. 13.2-1.   Note that the plate is open at both ends to the  
     atmosphere. 
(b) Develop an expression for the x-component of the force F exerted on the bottom plate. The  
     total surface area (x-z plane) of the bottom plate is S. 
 
 
Problem 13-2: Couette Viscometer 
 
As mentioned in section 12.2 of the book, a simple shearing flow can be produced by placing a 
fluid in the radial gap between two vertical concentric cylinders.  The outer cylinder of radius R2 
spins at a rotation rate Ω[rad/s] in order to produce a shear rate γθr [s

-1] on the fluid in the gap.  
The resulting torque T[N-m] is measured on the inner cylinder of radius R1 that is stationary.  
The liquid column filling the gap has a height H. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analyze an incompressible Newtonian fluid in this viscometer using a cylindrical coordinate 
system.  The z axis coincides with the axis of the inner cylinder and points downward from the 
top of the liquid column. The r axis is perpendicular to the cylinder walls.  In a steady laminar 
shearing flow, uθ is the only non-zero velocity component.  In addition, the kinematics are 
independent of θ when the flow is axisymmetric flow. 
  
                                               uθ=uθ(r,z), ur=uz=0 , P=P(r,z) 
 
(a)  Given these kinematics, reduce the r, θ and z components of the Navier-Stokes equation. 
(b)  Integrating the r and z components of the Navier-Stokes equation, determine how pressure P  
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      depends on  z.  At the fluid surface where z=0, P is equal to atmospheric pressure Patm.   
      Recall that modified pressure is defined as P≡ +ρϕP  and ∇ϕ- =G .  In this problem, the   
      gravitational vector G  points downward in the positive z direction so that its radial  
      component is zeror( 0)=G and its axial component is equal to its magnitude.   

(c) Express the θ component of the Navier-Stokes equation in dimensionless form.  Apply an  
     order-of-magnitude analysis to justify the approximation: 
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(d) State the necessary boundary conditions and apply them to the solution of this equation for  
      uθ(r). 
(e) From the velocity distribution, determine the nine components of the deviatoric stress tensor,  
    τ.  The only non-zero components should be τrθ and τθr. 
(f) Explain the following equation fot total torque on the inner cylinder.  
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(g) Describe how you would use T-Ω data to determine the unknown  viscosity of a  
     Newtonian fluid.  Assume that a fluid standard (i.e., a fluid of known viscosity) is available. 
 
 
Problem 13-3:  Shear Stress in Blood Vessels (courtesy of John Tarbell) 
 
(a) The definition of flow rate in a cylindrical tube is 
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   Assuming radial symmetry, relate Q to duz/dr (Hint: use integration by parts).  Then, show that  
   the following equation is valid for Newtonian as well as non-Newtonian fluids in a fully- 
   developed, steady, laminar flow. 
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     Here, τw is the shear stress at the tube wall, and τ≡τzr and γ≡γzr  are the shear stress and    
     corresponding deformation rate component within the fluid.  Use the general force balance  
     between wall shear stress and pressure drop (Eq. 13.4-12). 
 
(b) By utilizing the rheological equation for a Casson fluid in a simple shearing flow (Eq. 13.2- 
     16b), eliminate γ from Eq. (2) and integrate to find Q in terms of τw.  Note the sign of γ and  



     that the shear stress is at a minimum at the tube centerline. 
(c) Compute τw rate in the four regions of the circulation listed below when blood is modeled as  
    a Casson fluid with μ∞=0.005 Pa-sec and τ0=0.004 Pa.  Repeat these computations for a    
    Newtonian fluid whose viscosity is 0.005 Pa-sec.  What is the effect of the yield stress τ0 on  
    the results? 
 

Region Tube Radius (cm) Average Velocity (cm/sec) 
Ascending Aorta(AA) 0.75 20 
Femoral Artery(FA) 0.20 10 

Arteriole(A) 0.0025 0.75 
Capillary(C) 0.0003 0.07 

 
 
Problem 13-4: Channel Flow  
 
A parallel plate flow chamber with a thin gap δ compared to its width W and length L can be 
used in in vitro experiments to study the effects of shear stress on a cell monolayer. Cells are 
cultured on the bottom plate and a pressure driven steady flow of nutrient medium over the cells 
is established in the chamber. Beginning with the Navier-Stokes equation, develop a relationship 
for the velocity profile and the wall shear stress experienced by the cells in terms of the 
volumetric flow rate Q and viscosity µ of the nutrient medium and the geometric dimensions of 
the channel. Assuming fully-developed laminar flow, the kinematics nutrient medium are: 
  
                                           x x y zu u (x, y); u u 0; (x, y)= = = =P P   

 
 
 

 

 

 

 
 
Problem 13-5:  Flow of a Bingham Plastic Fluid Through a Tube 
 
A Bingham fluid has an apparent viscosity with that incorporates a yield stress τo at low shear 
rates and viscosity µ∞ at high shear rates. 
 
                                                         app o app2∞µ = µ + τ γ  

 
(a) Write the relationship between shear stress τ≡τrz and shear rate γ≡(1/2)duz/dr for a Bingham  
     fluid in steady-state, fully-developed, laminar flow through a circular tube. 
(b)  Solve the equation of motion for the velocity distribution uz(r) of this fluid.   
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(c)  Integrate the velocity distribution to obtain the volumetric flow rate QBing.  What does this  
     equation indicate about the size of the applied pressure gradient, L∆P , relative to the yield    

      stress τo? 
(d)  Find the ratio of QBing to QNewt for a Newtonian fluid with viscosity ∞µ = µ .  What is the  

      effect of the yield stress on the flow? 
  



CHAPTER 14 
 
 
Problem 14-1:  Radial Creeping Flow 

. 
 
 
 
 
 
 
 
 
 
 
 
 
A disadvantage of a rectangular flow channel design is that it can only subject a cell monolayer 
to one wall shear stress for a single flow rate (problem 13.4).  To overcome this, a design 
consisting of two parallel circular disks can be used. The fluid enters with a volumetric flow rate 
Q at the center core with a radius of R1.  It exits at a radial position denoted by R2.  We will 
assume that the fluid is in steady laminar flow at a low Reynolds number (creeping flow 
assumption). 
 
(a) State the kinematics you expect in this radial flow field at steady state. 
(b) Based on these kinematics, reduce the continuity and components of the Navier-Stokes  
    equation.  Further reduce this to a set of linear differential equations by assuming creeping  
    flow.  
(c) State the necessary boundary conditions, and solve for ur(r,z) as a  function of ∆P , the  
     modified pressure drop between r=R1 and r=R2.    
(d) Integrate this result between z=-δ and z=+δ to formulate Q.  Then, rewrite ur(r,z) as a  
     function of Q. 
(e) Derive an expression for the radial shear stress distribution along a cell monolayer placed on  
    the inner wall of one of the disks as a function of Q.  Make a sketch of this distribution. 
     
 
Problem 14-2:  Lubrication Creeping Flow 
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The lubrication of articulating joints by synovial fluid can be modeled by an idealized geometry 
consisting of two solid surfaces separated by a gap containing a highly viscous Newtonian fluid.  
The lower surface is stationary while the upper surface slides by at a velocity U.  Because the 
gap h(x) in the joint is so thin, relative to its perimeter around the joint, we can represent the 
surfaces as flat plates with a local irregularity on the joint surfaces accounted for by a linear 
variation in the gap thickness: h(x)=h1+(h2-h1)(x/L).  We also assume that the width of the plates 
is so large relative to their length L that we can treat this as a two-dimensional flow such that  

                                                       ux=(x,y), uy=(x,y), uz=0 
 
Using this model, we will show that because of this lubrication flow, a pressure is developed 
between the plates that keeps them separated. 
 
(a) After eliminating terms by accounting for these kinematics, state the continuity and x,y,z  
   components of the Navier-Stokes equation. 
(b)  Make these four equations dimensionless using the following variables: 
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   where Ux and Uy are velocity components of U, and x 1 1* (µU h )(L/h )=P  is a characteristic  
   pressure.   It is important to note that the scale factors are chosen so that the dimensionless  
   variables as well as their dimensionless x and  y derivatives have values that are of order one. 
 
(c)   Simplify the dimensionless equations by realizing that h1/L<<1, and by assuming that this is  
     a creeping flow in which the Reynolds number, Re= xU L /≡ ρ µRe  , is much less than one.   

    Your result should be the lubrication equation. 
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(d)   Integrate this equation twice using the velocity conditions at y=0 and y=h to obtain  
      ux(x,y).   Then integrate this result from y=0 to y=h to obtain the local value of  the  
     dimensionless volumetric flow per unit width, Q≡∫uxdy. 
(e)  Using the facts that Q is constant at steady state, and P=Po  has the same values at the two  
     open ends of the film, formulate a second order ODE and its boundary conditions for P(x).   
     The only parameters in these relations should be Po  and 1 2 1(h h ) / h∆ ≡ −h .    
(f)  Solve this equation numerically for alternative ∆h values of 0, 0.6, 0.8 and 0.9 with a fixed  
      value of  Po=1.  Plot the resulting pressure distributions,  P(1≥x≥0).  Can you explain why P  
      exhibits a maximum value when 0∆ >h ? 
(g) The choice of  x 1 1* (µU h )(L/h )=P  is a critical aspect in obtaining the lubrication equation.   
      Explain what this characteristic pressure represents. 
 
 



Problem 14-3:  Mobility of a Sphere in Creeping Flow 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Newtonian liquid of viscosity µ and density ρ is in laminar flow around a sphere of radius ‘a’.  
The liquid impinges on the sphere at a uniform velocity U, and the pressure at the stagnation 
point (r=a, θ=2π) is Po.  When the characteristic Reynolds number 2UR/υ is very small such that 
fluid inertia can be neglected, the steady-state solution to the Navier-Stokes equation is 
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(a) Excluding the effect of gravity, formulate the pressure distribution P(r,θ,φ) due to fluid  
      motion alone. 
(b) Integrate the pressure distribution to obtain the net force of pressure on the surface of the  
     sphere in the z direction, Fz,p.  Note that a spherical surface element is given by a2sinθdθdφ. 
(c) Formulate the elements of the viscous stress tensor at the surface of the sphere.  
(d)  Integrate the shear stress distribution [τθr]r=a to obtain the net force of friction on the surface  
      of the sphere in the z direction, Fz,f. 
(e) The hydrodynamic mobility δ of a sphere is the velocity at which it moves relative to the  
      frictional force (skin friction) and the pressure force (form drag) that retards that motion.   
      This is equivalent to the ratio U/(Fz,f+Fsp) for a stationary sphere.  Formulate δ from the  
      results of parts (b) and (d). 
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Problem 14-4:  Boundary Layer Flow on a Rotating Disk  
 
By approximating the velocity field near the surface rotating disk (Fig. 14.1-2), determine how 
the mean wall stress depends on radial position r, angular velocity Ω, fluid density ρ and 
viscosity µ without making use of the numerical solution in section 14.1.  
 
(a) Transform the dimensional continuity equation in cylindrical coordinates (table 13.1-1) using 
 
                                         ur=ΩF(ξ)r,  uθ=ΩG(ξ)r,    uz=(Ω/υ)0.5H(ξ) 
 where 
                                                                    ξ=(Ω/υ)0.5z 
  
Show that for cylindrical symmetry:  
                                                                     
                                                                ′H (ξ) = −2υF(ξ)  
 
(b) Show that the r component of the steady-state Navier-Stokes equation in cylindrical 
coordinates (table B4-5) can be written in terms of F and G as: 
                 
                                                [F(ξ)]2 - [G(ξ)]2 + F'(ξ)H(ξ) = F''(ξ) 
 
Note that  (…)′≡d(…)/dz and  ″(…)≡d2(…)/dz. 
 
(c) Approximate the independent variables F and G in the vicinity of the disk surface as linear 
functions:                                                         
                                                        F(ξ)≈b1+c1ξ,   G(ξ)≈b2+c2ξ 
 
State the boundary conditions for the three velocity components at the surface, z=0.  Using these 
boundary conditions, evaluate ‘b’ constants.  Determine an approximation for H in terms of ξ 
with additional unknown constant. 
 
(d)  Use the functions of F(ξ), G(ξ), H(ξ) to express the velocity components in the vicinity of 
the surface: ur(r,θ,z), uθ(r,θ,z) and uz(r,θ,z),    
  
(e)  Use Newton’s law of viscosity with deformation rate components in cylindrical coordinates 
(table B4-8) to obtain the shear stresses, rz(r)τ and z(r)θτ , acting in the vicinity on the surface.  

Formulate the mean shear stress on the surface: 
 

                                                2 2
wall rz z(r) (r) (r)θτ ≡ τ + τ   

 
How does this equation compare with Eq. 14.1-65?   What is a practical application of this 
result? 
 
 
 



Problem 14-5:  Tube Flow With a Non-Sinusoidal Pressure Distribution 
 
In the pulsatile flow illustration in Section 14-3, the pressure gradient involved a simple 
sinusoidal function. The pressure gradient can be more complex such as in arterial blood flow. 
To address this, researchers use a multiharmonic Fourier function to better represent the pressure 
gradient. In such a case, the pressure gradient is written in terms of a time average gradient X0 
and an oscillating component comprising the sum of N complex harmonics. 
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where Xn is the complex Fourier coefficient associated with the nth harmonic.  Using this 
representation of the pressure gradient, and assuming non-oscillatory transients have died out, we 
expect the velocity profile, uz, to have the multi-harmonic form: 
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(a) Starting from Eq. 14.3-2, derive separate equations for u0 and un in terms of X0, Xn, r and t. 
(b) Using the results of part(a), integrate uz over the tube cross-section to formulate the  
     volumetric flow rate Q(t).  Your result in dimensionless form should be 
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where r=r/a,  t≡ωt, 4
0 0Q ( a 8 )X= π µ  and n a n= ρω µWo . 

 
 
Problem 14-6:  Fourier Analysis of Blood Flow in a Dog Aorta  
 
In the ascending aorta of a dog, pulsatile blood flow was measured and then expressed as a 
Fourier series with 10 harmonics (Atinger, et al. p230-246, Circulation Research 1966). 
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n Qcn/Q0 Qsn/Q0 n Qcn/Q0 Qsn/Q0 
1 -0.465 1.34 6 0.103 0.079 
2 -0.739 -0.268 7 -0.099 0.003 
3 -0.043 -0.298 8 -0.037 0.075 
4 0.176 -0.228 9 0.0068 -0.115 
5 0.052 0.132 10 -0.0272 -0.0139 

 



 
(a) By equating Eq.(1) from problem 14.4 to above flow equation, find the dimensionless  
     relationship between cn 0 sn 0(Q Q ) j(Q Q )− and (Xcn/X0) –j(Xsn/X0).  

(b) With the aid of numerical software such as Mathematica, find the numerical values of Xcn/X0   

         and Xsn/X0 (n=1,2,…10) from the numerical values of Qcn/Q0, Qsn/Q0 given in the table. 
(c) Using these Xcn/X0  and Xsn/X0 values, plot the Q(t)/Q0 and -( )01/X z∂ ∂P  waveforms. 



 
CHAPTER 15 
 
 
Problem 15-1:  Alternative Forms of One Dimensional Transport Equations 
 
The one-dimensional transport model for solution (Eq. 15.3-25) is given by: 
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and for solute (Eq. 15.3-27) is given by: 
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(a) Assume constant mass density ρ and combine these two equations to show that  
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What is function F ? 
 
(b)  Starting with the model of (a), specify the conditions for which model takes the form: 
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where tϑ is the circumference of the tube at position z.  Explain ( )external
i i iP C C− . What is the relation of 

tφ  to t tAϑ ? 

 
(c) Show that the model of part (b) can be expressed as 
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Define functions G and H.  
  
(d)  Transform the spatial derivatives of the part (a) equation into cumulative volume: dV Adz= . 
 
 
Problem 15-2: Cell Monolayer Oxygenation in a Two-Dimensional Channel 
 
Buffered saline containing a nutrient concentration Cs,in flows through a thin rectangular channel 
of thickness H and Length L>>H.  A confluent cell monolayer is adherent to the lower channel 



wall at y=0.  The cells absorb the nutrient according at a rate given by a Michaelis-Menten type 
equation.  Nutrient is also supplied through a permeable membrane that forms the upper wall of 
the channel at y=H.  The outside surface of this membrane is in contact with a large pool of 
nutrient at a constant concentration at a constant concentration external

sC .  The following equation 

models the steady-state O2 concentration Cs(y,z) in the channel: 
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where the longitudinal velocity distribution is  
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and the boundary conditions are  
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The dimensional parameters of this model are external

0 s s,in m m s sU ,  H,  ,  L,  C ,  V ,  K ,  P ,  CD  

 
(a) Express the model in dimensionless form with the variables:  
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Show that the dimensionless parameters are  
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(b) Assuming 2

s 0 1L U H= >>Dα , how does the model simplify?  Explain the physical 
significance of this case. Obtain the solution for C(y,z). 
 
(c) Simplify the original model, Eq 1, assuming that u is constant and << Cγ .  Use the linear 
transformation = + +C ay bϑ  to obtain a homogeneous governing equation. Under what 
conditions will the boundary conditions in the ζ domain also be homogeneous? 
 



Problem 15-3:  Dispersion With a Rapid Tracer Input 
 
Often dispersion is studied by the rapid injection of a non-reactive tracer at the entrance of the 
vascular system.  If the system can be modeled as a long cylindrical tube and axial diffusion is 
negligible, then the convective-dispersion equation (Eq. 15.5-51) is 
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where the axial velocity uz and the dispersion coefficient s

∗
D  are constants.  The appropriate 

initial and boundary conditions for an injection that creates a concentration pattern Coθ(t) are: 
 
                 s s o st 0 : C 0,    z 0: C C (t) , z : C 0= = = = → ∞ →θ  
 
(a)  Using the dimensionless variables 
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where to and zo are arbitrary scale factors, show that the dimensionless model can be expressed 
as: 
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To obtain this result, what must be the relationship of  to  and of zo to uz and s

∗
D ? 

 

(b) Apply the Laplace transforms, { }( , ) ( , )= ɶC z t C z sL and { }( ) ( )= ɶt sθ θL , to the governing equations 

and boundary conditions.  From the differential operator of the transformed differential equation 

obtain the roots, r1 and r2. Then, write a general solution for ( , )ɶC z s .  
       

(c)  Apply the boundary conditions to get the transfer function, ( , ) ( )ɶ ɶC z s sθ , for this system. 
      
(d) For a very rapid tracer injection, we can idealize the input as an ideal unit impulse (see section 

18.1.2 in the textbook) for which the input is( ) 1=ɶ sθ . For this case, find the inverse transform.  Note 
that 
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Then , obtain the dimensional concentration, C(z,t).   



 
Problem 15-4  Dispersion by Pure Convection in Poiseulle Flow 
 
Consider dispersion of solute s by pure convection along a tube in which fluid flows in well-
developed laminar flow with an axial velocity distributed from the tube center (r=0) to the tube 
wall (r=a): 
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A planar dividing front initially separates upstream solution at solute concentration Cs=Cso from 
downstream solvent. Thereafter, solute moves by axial convection at a rate uz(r)Cso.  At a time 
t>0, the dividing front assumes a parabolic shape located between z=0 and z 2ut= ; 
consequently, the solute concentration changes according to 
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Here, r*(z,t) is the radius to which solute molecules are just able to translate to position z during 
a time interval {0,t}.  At r<r*, the solute molecules are fast enough to surpass position z.   At 
r>r* solute molecules are too slow to reach position z.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Solve for r* as a function of axial position z and time t. 
(b) Determine the cross-sectional average solute concentration iC  as a function of z and t. 

     Obtain the concentration derivative. 
(c) Express the average cross-sectional axial solute flux s,zN  (per tube cross-section area) as a    

     function of z and t:
 
 

(d) Starting with the flux equation: 
                                        

                                                       * s
s,z s s

C
N uC

z

∂= −
∂

D  

 

  Time, t=0 

 Cs=Cso  Cs=0   2a 

 Time, t >0 

0 

 Cs=Cso  Cs=0 

 z 

 2r* 

 uz 

  r 



     formulate the dispersion coefficient *iD  as a function of z and t.  

(e) Describe how *
iD changes with z at a particular time t.  At what values of z is *

iD  at a  

     minimum and at a maximum ?  What are the minimum and maximum values of *iD ? 

 
 
Problem 15-5:  Drug Transport in the Liver 

 
Drug transport in liver tissue (Fig. 1.2-7 in textbook) has been modeled as diffusion across a 
parenchymal layer, which consists of a planar slab of hepatocytes that separate liver sinusoids on 
one side from bile canaliculi on the other side (Yasui, H et al. Hepatocellular diffusion model, J. 
Pharm. Biopharm. 23:183-203,1995).  Consider drugs (e.g., cefixime) that are not metabolized in 
the hepatocytes and are actively transported in their intact form into the bile.  Initially, there is no 
drug in the liver tissue. Thereafter, the introduction of a drug pulse into the body results in a drug 
concentration in the sinusoid that can be approximated by b

AC =C0e
-kt.  Develop a model for drug 

concentration in the parenchymal layer. 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Under conditions of constant density and diffusion coefficient DA, what is the PDE that 

describes the dynamic drug concentration CA(x,t) in the parenchymal domain δ>x>0?    
(b) At the x=0 boundary, the diffusion flux of drug from the sinusoids is the product of a mass 

transfer coefficient  kA and the difference between the concentration in the sinusoid, b
AC , and 

that in the parenchyma, CA(0,t).  What is the equation that expresses this boundary condition? 
(c) Drug transport across the x=δ boundary occurs by the facilitated transport rate given by Eq. 

11.1-12b. What is the equation representing this boundary condition? 
(d) Express the model including initial and boundary conditions in dimensionless form using: 
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 What are the dimensionless parameters in the resulting mathematical model? 

(e) Simulate the model by numerical solution with all the dimensionless parameter values set to 
1. Plot the concentration profiles as a function of dimensionless distance at different 
dimensionless times (10>t>0) 

x δ

Sinusoid, 

Bile Canaliculi

Liver Parenchyma



(f) The dimensionless liver excretion rate of the drug into the bile is defined in terms of the flux 
NAx at the x=δ boundary. 
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    Formulate ER in terms of [CA]x=δ and then plot ER as a function of dimensionless time   
    (10>t>0). 
 
 
Problem 15-6: Oxygen Limitation in Tissue Engineering 
 
A tissue-engineered construct consists of a spherical scaffold that is initially loaded with a dilute 
cell suspension and then cultured in a bioreactor for several days.  Experiments have shown that, 
as they propagate, the cells consume O2 at a rate, RO2(moles O2/s/cm3)

, that is proportional to the 
cell number density Ω(cells/cm3). 
 

                    O2 O2R (r, t) k (r, t)= − Ω  

 
(a)  Assuming that the construct is so porous that its effect on O2 diffusion can be  
       ignored, write the dynamic concentration equation.   
(b) Formulate the boundary and initial conditions to solve this PDE for a construct of  
     radius ‘a’, an initial cell number density Ωo, and O2 concentration Co initially in  
     the construct.  Oxygen concentration Co is also maintained at the construct surface  
     for all later times.  
(c) Express the PDE and its conditions in terms of the dimensionless variables: 
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Ω
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            where T is the characteristic time of cell propagation. 
(d)  Under what conditions can the transient term be neglected so that simultaneous O2  
      diffusion and consumption can be treated as a pseudo-steady process?  Under  
      what conditions are the diffusion and consumption terms of equal importance? 
 
 
Problem 15-7 : Alternative Models of Capillary-Tissue Transport 

 
The following dimensionless models are different representations of solute transport from 
capillary blood to surrounding extra-vascular tissue.  What do these models have in common?   
Briefly explain the processes and assumptions associated with each model.   
 

Crone Model: The solute concentration in capillary blood   C
Cchanges according to 

    

                                     ( )
C C

CPS
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Q
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where PS/Q is the ratio of capillary permeability×surface area to volumetric blood flow.  The boundary 

and initial conditions are 

                                 

C

C

0 : 1

0 : 0

t = C =   

x = C =
 

Sangren-Sheppard Model:  The solute concentration in capillary blood   C
C and in extra-vascular 

tissue   C
Tchange according to 
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where VC/VT is the capillary-tissue volume ratio. The boundary and initial conditions are 
 

              
C T

C
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Turner Model:  The solute concentration in blood   C
C and in extra-vascular tissue   C

Tchange 
according to 
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The boundary and initial conditions are 
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C

C
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∂
∂
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C
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where D is the dispersion coefficient and AC the capillary cross-sectional area. 

 
 
Problem 15-8:  Concentration Boundary Layer On a Flat Plate 
 
Consider a wide flat plate with a concentration Cs(x,y=0)=Csw of inert solute at the plate surface 
and a solute concentration at Cs(x=0,y)=Cs0 in the impinging flow (Fig. 15.5.4).  At a sufficiently 
rapid impinging velocity ux(0,y)=U, momentum and concentration boundary layers will both be 



formed.  At a downstream position x=L, the concentration boundary layer thickness δc is much 
less than L. 
 
 
 
 
 
 
 
 
 
 
 
The objective of this problem is to find the criteria to justify the assumption that δc<<δ under 
steady state conditions.  From an analysis of the velocity field using the Navier-Stokes equation, 

we know that L Uδ υ∼ (Eq. 14.1-29b), and the velocity components near the plate surface are 

3
xu y U xυ∼ (Eq. 14.1-32) and 2 3 3

yu y U xυ∼ (Eq. 14.1-33). 

 
(a)  Incorporating the assumptions given above, simplify the governing equation for the solute  
      concentration Cs(x,y) in rectangular coordinates (table 15.2-1): 
 

                 

 
(b)  Make the governing equation dimensionless using the following scaled variables: 
 

                                       s s0

sw s0 c

C C x y
 , ,

C C L

−= ≡ ≡
− δ

C x y  

 
(c) From an order of magnitude analysis, simplify the dimensionless equation and find δc in  

     terms of U, L, υ and D.  Then, relate δc to L Uδ υ∼ .  Specify the criterion to justify    

    δc/δ<<1 . 
 
 
Problem 15-9:  Diffusion in Central Nervous System : Alternative Models 
  
L-Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). 
Initially, a micropipette containing CD=5 mM L-glutamate is inserted into the CNS.  At the end of the 
micropipette, a drop is formed by a 10 ms pressure pulse.  The drop has a radius around rD=25 µm. 
Surrounding the drop is a much larger medium into which the L-glutamate diffuses .  The governing 
equation for concentration of L-glutamate in either the drop or surrounding medium is 
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C
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where H( ) is the unit step function; δ() is the Dirac delta function; D is a diffusion coefficient, which is 
the same in the drop and the external medium.  The conditions are 
 
                           t<0:    C=0 
                           r=0:   ∂C/∂r=0 
                          r→∞:   C=0 
   
(a) What are the key assumptions of the governing equation and their justifications?   
(b) Explain the source term, initial condition, and boundary conditions. 
(c)  What is the number of micromoles mD of L-Glutamate in the drop?   

(d) Use the Laplace transform { }C(r,t) =C(r,s)ɶL  to show that the following is an alternative form of the       

      governing equation: 
 

  2
2

C C
= r (r>0, t > 0)

t r r r

∂ ∂ ∂   
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D

 

        
       with conditions: 
 
                         t=0:    C=CDH(rD-r)  
                          r=0:   ∂C/∂r=0 
                          r→∞:   C=0  

 

Problem 15-10:  Diffusion in Central Nervous System : Model Transformation 
  
Consider the model for the radial diffusion of L-Glutamate in the mammalian central nervous system 
described in problem 15-9: 
 

  2
2
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t r r r
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D
  

                         
                             t=0:    C=CDH(rD-r)  
                             r=0:   ∂C/∂r=0 
                             r→∞:   C=0  
 
where H( ) is the unit step function; δ() is the Dirac delta function; D is a diffusion coefficient. 
  
(a)  Show that the model can be expressed with dimensionless variable in the following form: 
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What are the scale factors (a, b, c) that relate the dimensionless variables to the dimensionless variables ? 
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a b c
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(b) Transform the dimensionless problem by letting C = rC .  What simplification occurs ?  What are the  
      dimensionless conditions ?  
 
 
Problem 15-11 : One Dimensional Transport in a Tube with Variable Dimensions  
 
Under some conditions, the one dimensional solute concentration C(z,t) in liquid  flowing through a tube 
surrounded by an external phase with solute concentration CE  changes according to: 
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where LS (z)the tube circumference and A(z) the cross-sectional area vary with axial position z . 
 
(a)  Assume that: 1) the solute diffusion coefficientD  is constant; 2) the tube has a circular cross-section  
      whose radius is a function f(z) of axial position z.  Express LS (z) and A(z) in terms of f(z).  Then    

      express the dynamic concentration distribution in the form: 
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     Specify F, G and H in relation to f(z) and df/dz as needed. 
 
(b) The differential change in volume of the tube lumen between axial positions z and z+dz is dV=A(z)dz.   
      Given f(z), how is the derivate of V with respect to z evaluated ?   Using the chain rule of     
      differentiation, transform the result of part (a) from C(z,t) to C(V,t). Express your result in the form: 
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     Relate FV ,GV ,HV
 to f and df/dV as appropriate. 

  



CHAPTER 16 
 
 
Problem 16-1:  Oxygenation of a Tissue Layer 
 
A tissue layer of thickness Lt is being maintained on the bottom of a Petri dish.  The tissue is 
covered with a nutrient solution of height Ls that is in contact with atmospheric air whose oxygen 
partial pressure is po.  Oxygen diffuses from the atmosphere through the nutrient layer and into 
the tissue layer where it is metabolized. 

 
 
The diffusion domain in this problem can be spatially subdivided into the nutrient layer located 
at Ls>z>Lt (zone I) and a homogeneous tissue layer located at Lt>z>0 (zone II).  The O2 diffusion 
coefficients, DI and DII, as well as the O2 solubilities, αI and αII, are different in the two zones.   

While there is no O2 reaction in zone I, O2 in zone II is utilized at a constant molar rate per unit 
volume, RII .  
 
(a)  Write the second-order differential equation for O2 concentration in the two zones, CI(z) and  
      CII(z).  In each zone, assume a steady-state process, a stationary phase, a constant diffusion  
      coefficient and constant mass density  
(b) How many boundary and how many initial conditions are necessary to solve the two ODE  
     found in part (a)?  Give the conditions that you would use to solve this problem; write the  
     formulas and state what each one means. 
(c) Find the O2 distributions in the two zones by integrating the differential equations and  
     applying the boundary conditions. 
(d) Using the solution for CI(z), formulate the oxygen transport rate into the surface area S of the      
     monolayer at z=Lc.  Explain this result. 
 

Problem 16-2  Heparin Distribution in Arterial Wall 

Placement of stents in coronary arteries frequently results in lesions on the vessel walls.  Locally 
applied heparin is a possible treatment for suppressing a proliferation response that exacerbates 
this damage.  Consider a mathematical model for heparin delivery through a coronary arterial 
wall from a locally-applied hydrogel film (Lovich MA, Edelman ER. Am. Physiol. Soc. 
271:H2014-H2024, 1996).  We represent the arterial wall as a series of endothelial-intimal, 
medial and adventitial layers bounded by the hydrogel.  Between these planar layers, the 
(uniform) cross-sectional area is S.   
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CII(z) 



 

 

 

 

 

 

One-dimensional diffusion occurs in the x direction through the media (x2>x>x1), the adventitia 
(x3>x>x2) and the myocardium (x4>x>x3). The hydrogel layer (x1>x>0) is considered to be a 
well-mixed reservoir of heparin.  The endothelium-intimal layer (x=x1) is represented as a 
membrane with a heparin permeability PE[mol/s/m2].  The media is modeled as a uniform, fixed 
tissue of cells surrounded by interstitial fluid.  As free heparin diffuses through the media, it 
reacts with cell surface receptors to form bound heparin. Once bound, heparin can be internalized 
across the cell membranes with a permeability PC.  Within the cells, the heparin is metabolized 
by Michaelis-Menten kinetics at a maximum intensive rate α and a concentration at half 
maximum of β.  Free heparin is also metabolized in the peripheral myocardium with a first-order 
rate coefficient kP[s-1].  At the proximal boundary of the arterial wall (x=0), heparin moves into 
the arterial blood of the lumen with an irreversible loss rate coefficient kH[s-1].  At the distal 
boundary (x=x4) of the myocardium, heparin concentration is very small compared to that in the 
hydrogel.  For uniformity of symbols, represent the equilibrium partition coefficients of heparin 
between any phases I and J as I,Jλ  and the diffusion coefficients of free heparin in phases I=M, 
A and P as DI. 

(a) For the well-mixed hydrogel layer, derive an equation for the concentration dynamics of free  
      heparin, CH(t).  Account for transport across both the x=0 and x=x1 surfaces. 
(b)  Develop an equation for the overall formation rate RM[mol/s/m3] of free heparin in the   
       medial layer resulting from reversible monovalent binding to unoccupied receptor sites.   
       This equation should depend on the molar concentrations of free and bound heparin, CM(x,t)  
       and M

bC (x, t), as well as the total concentration of occupied and unoccupied receptor sites,  

       TM
,  which is assumed to be constant.  The forward and reverse rate constants for the  

       reaction are kon and koff, respectively.   
(c) For the medial layer, derive an equation for the dynamics of free heparin CM(x,t)  and an  
      equation for the dynamics of bound heparinM

bC (x, t).  Since the cells are stationary, the  

     bound heparin does not move through the medial layer.   
(d) What are the boundary conditions for the free heparin concentration at the medial boundaries,  
      x=x1 and x=x2?   
(e) For the cell interior, derive a concentration dynamics equation for internalized heparin,  
       CC(x,t).   
(f) For the adventitia, derive the PDE for the concentration dynamics of free heparin CA(x,t).   
     What conditions relate CA to the myocardial concentration CP(x,t) at the x=x3 boundary? 
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(g) For the peripheral myocardium, derive the PDE for the concentration dynamics of free  
      heparin CP(z,t).  What alternative boundary conditions would be appropriate at the distal  
      myocardial boundary x=x4?   
(h)  Do the number of boundary conditions specified match the number of boundary conditions  
       that are necessary for this model ? 
(i)   What are reasonable initial conditions? 
 
 
Problem 16-3:  Carbon Dioxide Excretion From Pulmonary Capillaries 
 
In the pulmonary capillaries, CO2 is eliminated from flowing blood to the well-mixed alveolar 
gas.  Within the blood, carbon dioxide is transported as dissolved CO2 molecules as well as in 
hydrated form as 3HCO−  ions.  

                                                  2 2 3
f

r

k

k
CO H O HCO H− +→+ +←  

 
Although this reversible hydration reaction occurs in any aqueous solution, it is greatly 
accelerated by the action of the carbonic anhydrase, an enzyme that is present in the RBC.  
 
In this problem, we model the transport of CO2 in pulmonary capillaries in a similar fashion as 
the blood oxygenation model in section 16.2.3.  Blood is treated as a two phase system 
consisting of a RBC core encircled by a plasma layer.  The plasma layer is separated by an 
alveolar-capillary membrane from a surrounding alveolar gas layer that contains a constant 
concentration a

CO2C  of CO2.   

 
Additional symbols not shown in the figure are: RCO2, the net formation rate of CO2 by the 
hydration reaction per unit RBC volume; a,p

CO 2λ , the partition coefficient of CO2 between alveolar 

gas and plasma; Vb, the volume of the RBC phase; εH, the volume fraction of the RBC phase in 
blood.  
      
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)  What conditions must be met if the net production rate of CO2 by the hydration  
       reaction is given by: 
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      Here kr and kf are constant rate constants for the forward and reverse reactions.  If this  
      reaction reaches equilibrium, what is the relationship between r

CO2C  and r
HCO3C ?  

(b)  Rewrite Eqs. 16.2-45 and 16.2-46 from the textbook so that they apply to CO2 transport in  
      the plasma and the RBC phases.  For simplicity, assume that the solubility of CO2 is equal in  
      the plasma and RBC phases. 
(c)  Develop the corresponding equations for 3HCO−  transport in the RBC and plasma phases.  

      Assume that the solubility of 3HCO−  is equal in the plasma and RBC phases.        

(d)  As a first step in reducing the two-phase model of blood developed in parts (b) and (c) to a  
      single-phase model, we define the volume average CO2 and 3HCO− concentrations in blood    

       as  
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      Combine the concentration equations obtained in part (b) for CO2 transport in the RBC and  
      plasma phases to obtain one concentration equation in which the unsteady and convection  
      terms are given in terms of bCO2C .  Assume that the velocity of the two phases are equal,  

      ur=up≡ub. 
(e)  Repeat this derivation to obtain one equation for b

HCO3C  from the separate concentration  

      equations determined in part (c).   
(f)  In the special case of interfacial equilibrium of CO2 between the RBC and plasma phases,  
       and reaction equilibrium between CO2 and 3HCO−  in the RBC phase, combine the results of  

       parts (d) and  (e)  to obtain a single concentration equation with  b
CO2C as the only dependent  

      variable. 
(g)  If the inlet concentration of CO2 in blood is Co, integrate this equation to determine the CO2  
      concentration distribution bCO2C (z) under steady state conditions .   

 
 
Problem 16-4:  Artificial Membrane Model 
 
 
 
 
 
 
 
Broun and colleagues (J. Membrane Biol. 1972. 8:313-332) describe an artificial membrane 
consisting of two active protein layers enclosed by two selective films located at positions z=zA 
and z=zB.  The protein layers containing ATP and ADP meet at a dividing surface z=zm. To 
promote a reaction-driven diffusion of glucose(GL), protein layer 1 incorporates immobilized 

Compartment A          HK - Layer 1           PT- Layer 2              Compartment B 
           CGL,A                          CGL,1, CGP,1             CGL,2, CGP,2                         CGL,B     
                             
                           z=zA                                    z=zB                                      z=zB 



hexokinase (HK) whereas layer 2 incorporates phosphatase (PT).  Well-mixed, external 
compartments A and B that surround this artificial membrane both contain GL. 
 
The HK in layer 1 catalyzes the phosphorylation of GL by ATP to form glucose-6-phosphate 
(GP) by the reaction  
                                                  HKGL ATP  GP ADP+ → +                                       
 
The PT in layer 2 catalyzes the dephosphorylation of GP to form GL and inorganic phosphate 
(Pi):          
                                                                 PTGP  GL Pi→ +   
 
The overall reaction occurring in the two layers is given by the sum of these two reactions. 
 
                 iATP  ADP P→ +   

 
This hydrolysis of ATP to ADP liberates a bond energy which can possibly promote active 
transport. 
 
The films at z=zA and z=zB are highly permeable to GL but impermeable to GP.  Both GL and 
GP readily pass through the dividing plane at z=zm.   Dehosphorylation in layer 1 is limited by 
the presence of GL while phosphorylation in layer 2 is limited by the presence of GP.  In that 
case, the enzymatic reaction rates follow Michaelis-Menten kinetics that depend only on GL and 
GP concentrations: 
 

                               HK GL,1 PT GP,2
GL,1 GP,1 GL,2 GP,2

HK GL,1 PT GP,2

C C
R R , R R

C C

−α α
= − = = − =

β + β +
 

 
Initially, GL and GP concentrations, CGL,j and  CGP,j, in the two layers (j=1,2) are zero.  The GL 
concentrations in the external compartments, CGL,A and CGL,B, are constant.  The diffusion 
coefficient D  of GL and GP are equal to each other and are the same in both layers.  You can 
neglect differences in solubility of GL and GP in the two layers and in the external 
compartments. 
 
(a) Assuming a 1-dimensional diffusion-reaction system with no convection, what are the  
     dynamic mole balance equations for CGL,i(z) and CGP,i(z) in the i=1 and i=2 layers? 
(b) State the total of eight boundary conditions for CGL,i  and CGP,i  in the two layers (i=1,2) at  
      z=zA,zB,zm .  What are the initial conditions at t=0 in the two layers? 
(c) Non-dimensionalize the mole balance equations and their boundary conditions using the  
      dimensionless variables: 
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     and the dimensionless parameters: 
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(d)  Simulate the behavior of the dynamic  GL and GP concentrations in the i=1 and i=2 layers  
      when the dimensionless parameters have the values: 
 
                                       m HK PT HK PT0.5, 2, 200, 100, 1= = = = = =γ α α β βz  

 
      Then make a plot of CGL(z) and CGP(z) between z=0 and z=1 when the simulations reach  
      steady state. 
(e)  Solve for the dimensionless molar flux of GL across each of the two membrane surfaces. 
 

                                                               GL
A,z

d

d
≡ − C

N
z

 

 
    What should be true of these two values at steady state?   Is the GL flux in the same direction   
    as the GL concentration driving force across the membrane, or are they in opposite directions  
    (i.e. primary active transport)? 
 
 
Problem 16-5: Nitric Oxide Generation and Shear Stress 
 
Nitric oxide (NO) is a cell signaling molecule released by endothelium to regulate vascular 
smooth muscle tone.  In an experiment designed to observe the effect of hydrodynamic shear 
stress on NO generation rate (Kansai et all, Circulation Research. 77: 284-293, 1995), a 
monolayer of bovine aortic endothelial cells was placed on the lower wall of a rectangular 
channel.  While a flow of culture medium produced a desired shear stress τwall on the monolayer 
surface, NO concentration CNO was measured by a miniature sensor mounted flush with the 
upper channel wall and directly above the center of the cell monolayer. 
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mathematical model that relates the shear stress to the NO concentration that would be detected 
by the NO sensor once steady state is reached. The following additional information is available:  
 

• The flow channel has dimensions of length L, height 2δ and width W.  
• Assume steady state, fully-developed laminar flow of a Newtonian medium, the velocity 

field and wall shear stress are then given by (problem 13-4) 
 

                                    
2

x y z wall2

3 y 3 u
u u 1 , u u 0, =

2

  µ= − = = τ δ δ 
 

 
             where u  is the average velocity. 

• In addition to convection and diffusion, NO undergoes oxidation in the medium at an 
intensive reaction rate 3 2

NO r NOR [mol/(m -s)] k C= − (The minus sign indicates that 
oxidation depletes NO). 

• NO generation rate at the monolayer surface RNO,wall[mol/(m2-s] is only a function of 
τwall. 

 
(a)  Write the steady state concentration equation for CNO(x,y,z) due to convection, diffusion and  
       reaction if the flowing medium has a constant molar density and constane NO diffusion  
      coefficient NOD .  

(b) Make the concentration equation dimensionless using the dimensionless variables: 
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NO
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x y z
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      Arrange the equation such that the coefficient of the diffusion term in the y direction is unity.   
      Explain the significance of the two dimensionless parameter groups, NOu≡ δPe D and    

      3 2
r NO,wall NOk R .≡ δR D  

(c) Based on the dimensionless equation, specify the conditions under which we can neglect  
       diffusion in the x and z directions relative to diffusion in the y direction. Write the  
       dimensionless concentration equation when these conditions are met. 
(d) Formulate the dimensional and dimensionless boundary conditions.  
(e) In one experiment, the sensor located at (x=L/2, y=+δ) detected an NO concentration of  
     CNO(L/2,δ)=125nM when a shear stress of τwall=0.1 Pa-s was applied to the cells.  Compute  
     the value of u  required to impose this τwall?  Then, determine the corresponding NO  
     generation rate from numerical simulations of the simplified dimensionless model.  The  
     known parameter values are: L=22mm, δ=0.125mm, µ=8.5×10-4 Pa-s, DNO= 3.33×10-9m2/s  

     and kr=36.0(m3/mol-s). 
(f) For the result found in part (e), plot C vs y at x=0.1, 0.2 and 0.5. 
 
 
 



Problem 16-6: One-Dimensional Dispersion With Chemcal Reaction 

Rather than being inert, suppose that the tracer described in the convection-dispersion model of 
section 15.5.3 undergoes a first-order reaction as it flows through a tube of diameter d at velocity 
u.  The cross-sectional average of tracer concentration Cs(z,t) can then be modelled by:  
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where the coefficients for diffusion sD , dispersion s

∗
D  and reaction kr  are constants.   Initially 

no tracer is in the tube (z>0).  At the tube entrance (z=0), the tracer concentration Co is a constant 
at all times.   At sufficiently large downstream distances (z→∞), the tracer concentration can be 
neglected. 
 
(a)  State the mathematical equations for the initial and boundary conditions necessary to solve  
       the differential concentration equation. 
(b)  Express the differential model equation and its conditions in terms of dimensionless tracer  
      concentration C(z,t) using the same scaling factors and dimensionless group as in section  
      15.5-3.  There should now be an additional dimensionless group (define it as  α=kr/u) which  
      is due to the chemical reaction.   
(c) Under what conditions can the Laplace transform with respect to time be applied to this    

    model?  Obtain the Laplace transform solution for the dimensionless concentration ( ,s)ɶC z .                                         
(d) Invert the Laplace transform to obtain an equation for the dimensionless concentration C(z,t) 
      in the dimensionless time domain. Note that you will have to use three relations  
     obtained from: Roberts GE, Kaufman H, Table of Laplace Transforms, 1966. 
 

                              

 
(e)  The correct result to part (d) is 
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Numerically integrate this equation to obtain a plot of C versus z in the domain, 40≥z≥0, when 
Pe=1, t=10 and α=0.1.  In the same graph, plot the corresponding dimensionless concentration 
distribution for the case of an inert tracer.  What is the effect of the chemical reaction on 
dispersion? 



Problem 16-7: Isotopic Tracers for Kinetic Analysis 
 
Radioactive isotopic tracers can be used to quantify the transport and chemical kinetics of 
metabolites or drugs in the body.  The count rates from an isotope in samples of body fluids or 
from external detection is a measure of tracer concentration.  The purpose of this problem is to 
determine the physicochemical properties of the isotope and the metabolite or drug (i.e., the 
tracee) such that tracer kinetics follow the behavior of the tracee.  
 
Let C*(z,t) be the isotopic tracer concentration at some spatial point z and time t, and let C(z,t) 
be the corresponding tracee concentration.  By definition, specific activity is 
S(z,t)=C*(z,t)/C(z,t).  Physical equivalence of the tracer and tracee exists at any point z in the 
system if: 1) the same velocity field applies to both; 2) their diffusion coefficients are equal, 
D=D*; 3) the initial and boundary conditions on the concentration of both are the same.  

Chemical equivalence of the tracer and tracee exist if the chemical reaction rate of tracer R* and 
of tracee are related by  R*(z,t) = (C* /C)R=SR at any point z in the system.  In this problem, we 
assume that that the tracer and tracee are both physically and chemically equivalent. 
  
 
(a)  Show that when the S is independent of time, the relative change of the tracer and tracee  
     concentrations at two different times are equal (i.e. C t C C C t∗ ∗∂ ∂ = ∂ ∂( ) ). 
(b) Let us consider the total reaction rate of the tracee and tracer in a general form:  

 

                              ( )n*

rk C CR R∗ = − ++  

 
     For S<<1, which is typically the case, show that the tracer kinetics are first order with respect  
     to  tracer concentration, even when  n>1.  When n=1, show that the rate equations reduce to  
     the analogous forms: R=-krC and R*=-krC

*.   
(c) In that case, the transport equations of tracee and tracer also have analogous forms: 
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     If the specific activity S is constant everywhere, show that the solution for C* is also the  
     solution for C.   
(d) When S is not constant, obtain the dynamic equation that represents the specific  
     activity: 
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     Will this equation allow us to compute C(z,t) from C*(z,t)?  
 
 



Problem 16-8   Drug-Eluting Stent  
 
 

 
 
In a common cardiovascular surgery, a ring-shaped stent is inserted on the surface of a partially 
blocked artery to increase blood flow.  Often, the stent is impregnated with an anticoagulant 
drug.  Time release of the drug into the blood prevents the formation of clots on the device.  As 
drug is transported downstream from the stent, it adsorbs onto to the vessel surface and prevents 
clot formation on the endothelial wall.  For a simplified analysis, assume that the artery can be 
modelled as a rigid straight tube of radius R and length L.  In addition, consider the stent 
thickness to be negligible compared to R, and the stent length h<<L. 
 
(a) Starting with the appropriate equation from table 15.2-1, write the local drug concentration  
      C(r,z,t) assuming  that:  
 1) the velocity field in the blood corresponds to Poiseulle flow at a mean velocity u;  
       2) C(r,z,t) is axisymmetric;  
 3) drug diffuses radially and axially with a constant diffusion coefficient D. 

(b)  Specify mathematically the five conditions necessary to solve this concentration equation  
       given the following information.   Initially, there is no drug in the blood, and drug does not  
       enter at the tube entrance.  For the stent surface at h>z>0, the molar flux of drug release No  
       is approximately constant.  Downstream of the stent at z>h, the flux of drug uptake by  
       endothelial cells is proportional to local drug concentration, Nr= kC.  Axial diffusion can be  
       neglected at the tube outlet.  
(c)  Derive the governing equation in the dimensionless form 
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       using the scaled variables (where Co is yet to be determined) 
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       Specify the dimensionless parameters α , λ and ε in terms of the original model parameters.  
(d)  Explain the physical conditions necessary for the dimensionless concentration equation to be  
              simplified to: 
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(c)  Show that, with appropriate selection of Co, the dimensionless boundary conditions to solve  
       the simplified concentration equation of part (d) have the form 
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      What is the physical significance of β? 
 
 
Problem 16.9:  Spinning Disk With Zeroth Order Surface Reaction 
 
Consider a rotating disk with solute depletion by chemical reaction on the disk surface.  Unlike 
section 16.3.1 in the textbook where the chemical reaction rate was assumed to be first order, we 
now consider the case when it is zeroth order.   
 
(a)  Specify the boundary condition at z=0 for the surface reaction which occurs at a constant  
       molar depletion rate per unit area, -S 2

sR [mol / m s]− .   Using the same dimensionless  

       variables as in section 16.3.1, express this condition in dimensionless form.  What is the  

       physical meaning of the Damkohler number , ( )S S
s sR C ∞≡ − υΩDa , that appears in this  

       condition? 
(b)  With this zeroth-order boundary condition at z=0, solve for the dimensionless concentration  
      distribution C(z) by performing two successive integrations of  Eq. 16.3-7.   
(c)  For a mass transfer coefficient defined as:  
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     formulate a dimensionless correlation for the Sherwood number ( d s sk d=Sh D )  in terms of    

     the Schmidt number ( s= υSc D ) and the Reynolds number (Re=d2Ω/4υ).  Use the following  

      relationship between the integral appearing in the equation for C(z) and the gamma function,      
      Γ(1/3), to simplify the correlation as much as possible: 
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     (d)  Compare your results for zeroth order reaction to those in section 16.3 when the reaction     
           is first order.  
 
 
Problem 16-10 Gas Phase Resistance to Uptake into Airway Mucous 

 

Transport of an inhaled reactive gas s into an airway wall was modelled in section 16.1.1 as a 
one-dimensional, steady state, diffusion-reaction process through a stagnant mucous layer of 
thickness δm.  More realistically, the transport domain consists of the respired gas phase in 
contact with the mucous layer.  In this two-phase model, convection-diffusion through the gas 
phase can be modeled as a boundary layer process at the gas side of the air-mucous interface.  
The molar flux through the boundary layer is given by: 

[ ]s s sg soy 0
N k C C

=
 = − λ   

Here, ks is a gas-phase mass transfer coefficient; Csg is the molar concentration of s in the bulk 
gas phase; Cso is the concentration of s in mucous at the gas-mucous interface; λ is the 
equilibrium partition coefficient between the concentration of s in gas relative to mucous.  
Follow the steps outlined below to analyze this improved model. 
 
(a)  Based on Eqs, 16.1.12, 16.1-18 and 16.1-19, formulate the flux of species s in mucous at the  
      gas-mucous interface [Ns]y=0 and at the mucous-tissue interface [Ns]y=1 .   
(b)  What must be true if there is no accumulation of species s at the gas-mucous interface?  Use  
      this concept to relate Cso to Csg and the other parameters in the model.  Then eliminate Cso  
      from the equation for [Ns]y=1.   From this result, explain how the gas phase boundary layer  
      affects the penetration rate of species s into tissue. 
(c)  What condition on ks is necessary for equilibrium to (approximately) exist between Csg and  
      Cso?  Reduce the equation for [Ns]y=1 for this case.  Compare this to Eq. 16.1-20 ? 
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CHAPTER 17 
 
 
17-1: Tissue Engineered Cartilage 
 
Chondrocytes produce the extracellular matrix protein collagen type II (A) which is known to 
resist compressive strain in native cartilage.  A tissue cartilage construct is produced by seeding 
chondrocytes onto hyaluronate-based scaffolds. The collagen production rate rA[g/min] is 
proportional to the number density of chondrocytes Ω[cells/ml] provided that there is cell-cell 
contact. 

 c
A

c

  if 
r

0      if 

Ω Ω Ω
Ω

λ ≥
< Ω
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Here, λ=2×10-13g collagen/(cell-min) is a rate constant and Ωc=107cells/ml is the critical cell 
concentration necessary to maintain cell-cell contact (An implicit assumption in this equation is 
that the porosity of the construct is sufficiently large that it does not interfere with cell-cell 
contact). 
 
The growth rate of chondrocytes Ξ[cells/ml/day] is expressed by the rate expression:  
 
                                                Ξ = βΩ .  
where β=0.2 day-1.   
 
(a) Perform a mass balance for type II collagen density ρA[g collagen/ml scaffold] and a number 

balance for chondrocyte number density Ω (t)  in a construct with a porosity greater than 
98%.  Be sure to state your assumptions. 

(b) With Ωo[cells/ml] signifying the initial seeding density, solve the ODEs formulated in part 
(a) for Ω (t) and ρA(t).  

(c) In an experiment in which 1 million cells are initially seeded per milliliter of the scaffold, 
what is the time tc required for cell-cell contact?  How long does it take for the collagen 
density to reach that found in the native cartilage density, which is about 0.1 g/ml.   

 
 
Problem 17-2: Moments of Axon Migration 
 
Consider an in vitro experiment of axon tip migration with taxis in a long tube.  When the 
gradient of the chemotactic agent is constant, the population balance for the number density of 
axon tips Ω (Eq. 17.3-3) is    
 

                                                  ( )
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Here, the transport coefficients µ[m2/s] for random migration and ν[m/s]  for chemotaxis are 
constants.  The initial and boundary conditions are 



 
          t=0:     Ω =0  

                                           z=0:     t /
0e

− τΩ = Ω  

                                           z→∞:  Ω→0 
 
Note that the boundary condition at z=0 approximates a rapid seeding of the axons at the mouth 
of the tube during the time interval {0,τ}. 
 
(a)  Transform the governing differential equation and its conditions in terms of the following  
      dimensionless variables:    
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     The scaling parameters T and L representing the characteristic time and distance of tip  
     migration are, as of yet, not known.  
(b) Determine T and L such that the dimensionless governing equation becomes 
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      How are T and L related to µ and ν?  
(c)  The kth moment of the dimensionless axon tip distribution is defined as 
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     What are the dimensionless initial conditions for the zero and first moments: λ0(0) and λ1(0)? 
(d) By integrating the equation for ∂Ω/∂t  in part (b), obtain dλ0(0)/dt =d(∫Ωdz)/dt and  
      dλ1/dt= d(∫zΩ dz)/dt.  You should assume that ∂ ∂zΩ  is negligible at the boundaries of the  

      domain.  
(e) For k=0 and then k=1, solve for λk(θ) using the two ODE’s found in part (d) and the initial  
     conditions from part (c) 
(f)  The mean distance that the axon tips migrate at any time can be represented by 
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       What is the corresponding dimensionless mean migration distance  z / L≡z  in terms of  
       the dimensionless  moments , λ0(t) and λ1(t) .      



 (g) Under what physical conditions are the characteristic times very different, that is Tτ << ?   
       Simplify the dimensionless migration distance ( )θz for this situation.  Then formulate the     

       corresponding dimensional migration distance z(t) in terms of the parameters  µ and ν. 

 
 
Problem 17-3 Oxygen Limitation in Tissue Engineering 
 
A tissue-engineered construct consists of a highly porous, spherical scaffold of radius ‘a’ that is 
initially loaded with a dilute cell suspension and then cultured in a bioreactor for several days.  
The bioreactor needs to be optimized for adequate delivery of nutrient (oxygen) delivery 
throughout the scaffold. 
 
(a) By integrating a dynamic cell number balance, formulate an algebraic expression  
     for cell number density Ω(t) (cells/cm3) starting with a uniform, initial cell  
     distribution Ωo≡Ω(0).  The proliferation rate of cells Ξ(cells/ cm3/time) is given by  
     the following kinetic model:  
 
                                                1 2k (k )Ξ = Ω − Ω  

 
     The parameters k1 and k2 are constant. Neglect cell transport (migration) in the    
     construct and assume that the construct volume remains constant.    
(b) Separate experiments have shown that the oxygen consumption rate of cells -RO2      
     (moles of O2/sec/cm3) is proportional to the cell density: 

                     
                             O2 O2R k= − Ω  

 
     Assuming that the oxygen transport can be treated as a pseudo-steady process (see    
     problem 15-5), write the pseudo-steady differential equation that determines the O2  
    concentration distribution and specify the boundary conditions.  
(c) Obtain the analytical solution from part (b) and show that the oxygen  
     concentration profile is given by 
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     where Ω(t) is the time-dependent cell density from part (a), Co=CO2(a,t) is the  
     oxygen concentration at the periphery of the construct, and O2D  is the diffusivity of  

     oxygen in the construct. 
(d)  Based on the solution of part (c), formulate the rate of oxygen uptake O2N (t)ɺ  at     

       r=a. 
(e)  Compute Ωo for a construct of radius a=1cm that initially contains a uniform  
      distribution of 5 million cells.  Then compute O2N (t)ɺ (µmol/day) as a function of  

     time given the remaining parameter values: O2D = 2x10-5cm2/sec, k2=50 million  



     cells/cm3, k1k2=0.2 day-1, k
     µmoles/cm3.   
(f) Judging from the oxygen concentration profile expression, where in the construct 
     is CO2 at its minimum?  Make a plot of this minimum C
    What is the critical time tc at which oxygen transport can no longer support the 
    cellular oxygen demand?  Compute the cell number density 
    reached at tc.  
 
 
Problem 17-4:  Stem-Cell Differentiation With Replication
 
In a model of a stem-cell differentiation with replication, a population of stem cells (0) 
undergoes differentiation into  progenitor cells (1) while also undergoing self
new stem cells. The progenitor cells propagate to form new progenitor
terminally differentiated cells (2) that no longer propagate.  The rates of all three cellular rate 
processes—self-renewal, propagation, terminal differentiation
cell number density with the rate co
 
 
 
 
 
 
 
 
 
 
 
(a) Defining Ωj(t) as the number density of cell type j (j=0,1,2) at time t, formulate rate 
     expressions Ξi for the cellular fate processes associated with the three cell types.
(b) Consider the case where N 
      cell population model by performing a number balance for three the cell types in the system. 
(c)  Specify the initial conditions 
(d)  Apply the Laplace transform

       j=0,1,2.   
(e)  Expand 3(s)Ωɶ  as the sum of partial fractions (appendix C.4).  

       the cell number density of the terminally differentiated cells, by taking the inverse transform, 
      { }1

3 3(t) (s)−Ω = ΩɶL . 

(f) Consider a chondrogenic differentiation process involving mesenchymal stem cells . The stem 
     cells upon exposure to chondrogenic medium in a closed incubation chamber undergo 
     differentiation to form transitory chondrocytes which terminally differentiate into 
     chondrocytes . During this process, the self
     the differentiation steps are k
     function of time.  Determine the relative proportions of the three cell types at the end of 21 
     days of differentiation.   Assume well

, kO2=0.5 x 10-12 moles O2/sec/million cells and C

(f) Judging from the oxygen concentration profile expression, where in the construct 
at its minimum?  Make a plot of this minimum CO2 as a function of time.   

at which oxygen transport can no longer support the 
cellular oxygen demand?  Compute the cell number density Ω(tc)=Ωc that is 

Cell Differentiation With Replication 

cell differentiation with replication, a population of stem cells (0) 
undergoes differentiation into  progenitor cells (1) while also undergoing self
new stem cells. The progenitor cells propagate to form new progenitor cells or they can become 
terminally differentiated cells (2) that no longer propagate.  The rates of all three cellular rate 

renewal, propagation, terminal differentiation—are first-
cell number density with the rate constants shown in the figure.  

(t) as the number density of cell type j (j=0,1,2) at time t, formulate rate 
for the cellular fate processes associated with the three cell types.

(b) Consider the case where N stem cells per cm3 are added to a well-mixed reactor. Develop a 
cell population model by performing a number balance for three the cell types in the system. 

(c)  Specify the initial conditions Ωj(0) when j=0,1,2. 
Apply the Laplace transform{ }j j(t) (s)Ω = ΩɶL to these equations and solve for 

as the sum of partial fractions (appendix C.4).  Obtain the dynamic change in 

the cell number density of the terminally differentiated cells, by taking the inverse transform, 

(f) Consider a chondrogenic differentiation process involving mesenchymal stem cells . The stem 
upon exposure to chondrogenic medium in a closed incubation chamber undergo 

differentiation to form transitory chondrocytes which terminally differentiate into 
chondrocytes . During this process, the self- renewal rates are zero, and the rate c
the differentiation steps are k1=0.1 day-1 and k2=0.2 day-1. Plot relative cell densities 
function of time.  Determine the relative proportions of the three cell types at the end of 21 

Assume well-mixed conditions.  

/sec/million cells and Co=0.12  

(f) Judging from the oxygen concentration profile expression, where in the construct  
as a function of time.    

at which oxygen transport can no longer support the  
that is  

cell differentiation with replication, a population of stem cells (0) 
undergoes differentiation into  progenitor cells (1) while also undergoing self-renewal to form 

cells or they can become 
terminally differentiated cells (2) that no longer propagate.  The rates of all three cellular rate 

-order with respect to 

(t) as the number density of cell type j (j=0,1,2) at time t, formulate rate  
for the cellular fate processes associated with the three cell types. 

mixed reactor. Develop a  
cell population model by performing a number balance for three the cell types in the system.  

to these equations and solve for j (s)Ωɶ when   

Obtain the dynamic change in  

the cell number density of the terminally differentiated cells, by taking the inverse transform,  

(f) Consider a chondrogenic differentiation process involving mesenchymal stem cells . The stem  
upon exposure to chondrogenic medium in a closed incubation chamber undergo  

differentiation to form transitory chondrocytes which terminally differentiate into  
renewal rates are zero, and the rate constants for  

. Plot relative cell densities Ωi/N as a  
function of time.  Determine the relative proportions of the three cell types at the end of 21  



Problem 17-5:  Antibiotic Treatment of an Infected Tissue 
 
A serious infection with bacteria can be treated by continuous infusion of an antibiotic into the 
blood stream.  We can analyze the dynamics of the bacterial distribution using a Krogh model 
(Fig. 16.2-3) consisting of a representative capillary of radius ab and a surrounding tissue region 
of inner radius ab and outer radius at.  Within the blood flowing through the capillary, the 
antibiotic concentration is everywhere constant at a value Co. In the tissue, the number density of 
bacteria is Ω(r,t) and the antibiotic concentration is C(r,t).  The bacteria proliferate at a rate per 
unit volume kprolifΩ[cells/s/m3].  They randomly migrate at a flux -kranddΩ/dr[cells/s/m2] in the r 
direction, which is much greater than migration in the axial direction.  When the local antibiotic 
concentration is above a critical level, C>Ccrit, the bacteria die at a rate kdeathCΩ[cells/s/m3].   
 
Antibiotic diffuses at a flux -DdC/dr in the r direction that is much greater than diffusion in the 

axial direction.  Further, antibiotic is cleared from the tissue at a rate kabC, which is independent 
of the bacteria.  At the capillary blood-tissue boundary r=rb, the antibiotic is in interfacial 
equilibrium with partition coefficient λt,b . Because it is a local infection, bacterial transport 
across this boundary is negligible.  Initially, the bacterial number density Ωo is uniform and there 
is no antibiotic in the tissue. 
 
(a) Formulate the unsteady state governing equation for the number density distribution of  
      bacteria, Ω(r,t) in the tissue region. 
(b) Formulate the unsteady state governing equation for the concentration of antibiotic, C(r,t) in  
      the tissue region.  
(c) Formulate the initial and boundary conditions.  Assume radial symmetry with adjacent tissue  
     regions at r=rb. 
(d) Express the model equations in dimensionless form with the variables: 
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(e)  Simulate the radial distributions of bacterial number density and antibiotic concentration at  
        t=50, 100 and 200 given the following dimensionless parameter values: 
 

                                            

prolif 2 death 2 ab 2rand
t t o t

t,rcrit b
crit

o t

k a k a C k ak
0.01, 0.1, 0.3, 2

C a
0.1, 0.1, 1

C a

= = = =

≡ = = =               C

D D D D

λ
 

 

(f) In this simulation, is the infection controlled by the antibiotic?  What do think would happen  
      if the antibiotic is stopped? 
 



(g) A different class of antibiotic with characteristics that lead to a new value for the 
dimensionless parameter death 2

t ok a C 0.2=D  is to be tested. Determine whether the infection is 

treatable with this new antibiotic. 
 


