
PART IV  

 

CHAPTER 9. 

 

 

Problem 9-1: Parallel Convection and Diffusion 

 

Consider the transport of a solute s by parallel diffusion and convection at a molar velocity u* in 

the x direction.  Transport occurs through a slab of thickness L with surfaces located at x=0 and 

x=L at constant concentrations Cs0 and CsL, respectively  

 

(a) Beginning with the flux equation 

 

                                          s
s s s

dC
N u C

dx

∗= −D  

 

     show the steps in deriving the solution given Eq. 9.3-6: 

 

                                         

      State all assumptions. 

(b) Find the limit of sNɺ at small Peclet numbers, su L 0∗= →Pe D .   

(c) Find the limit of sNɺ at Pe→∞. 

 

 

Problem 9-2: Similarity Solution to a Transient Diffusion Problem 

 

Show the detailed steps of the analytical solution to the transient diffusion problem.  

 

(a) Express the governing equation (Eq. 9.5-1) and its boundary conditions (Eq. 9.5-2a-c) in    

    terms of the dimensionless variables:  
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     where α, β, and γ are arbitrary scale factors. 

(b) Set the two dimensionless parameter groups that appear in results to part (a) equal to unity. 

     Show that the equation and its boundary conditions reduce to 

 

                                                       

2

2

, 0   , 0 

   

      

( )

    0

( )

( , ) 1

= ∞ =

∂
∂

=

∂=
∂
C C

C

y

C

t

y

t

C t   



 

    Also show how the dimensionless variables defined in part (a) are now related to their  

    dimensional counterparts with β as the only undefined scaling parameter. 

(c) Define a new dimensionless independent variable, η = y t . Now, transform the  

     dimensionless problem from the original independent variables (t,y) to the new independent  

     variable η to show that:  
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     What are the transformed boundary conditions? 

(d) Show by two integrations that the solution to the ordinary differential equation (with  

     integration constants A and B) is 

                             

    ( )2
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    To obtain the final dimensionless solution, apply the two boundary conditions to evaluate A  

    and B noting that                                                    

                           ( )2
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(e) Express the solution in dimensional form Cs(y,t).  Notice that the undetermined scaling 

parameter β does not appear in the solution. 

 

 

Problem 9-3: Diffusion From a Small Drug Source  
 

Consider an implanted source of drug that is released into surrounding tissue at a prescribed rate 

R(t)ɺ .  To study long-range effects, we model this process by a singular source in an infinite body 

of tissue.  Assuming an isotropic medium, drug diffusion can be expressed in spherical 

coordinates: 

                                    

with the conditions 
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where Cd goes to zero faster than r goes to infinity. 

 

(a) The differential concentration equation for this model is linear but has variable coefficients. It   

     is simpler to solve a differential equation with constant coefficients.  Transform this model,  

     both the differential equation and its conditions, using a new dependent variable,  



     d(r, t) rC (r, t)φ = .   

(b) Apply the Laplace transform { }(r,s) (r, )φ = φ τɶ L , { }R(s) R(t)=ɶ ɺL  and find the solution in  

      the Laplace domain (see table C4-2).  

(c) Obtain the solutions for dC (r, t)  when 
d

R(t) R=ɺ , a constant. 

  

 

Problem 9-4: Spherical Drug Delivery Model Development 

 

9-4 : A spherical drug delivery device with a radius ‘a’, surface area S and volume V is 

implanted in a tumor.  The device is covered with a thin membrane.  Within the device, drug is 

bound to very small polymer particles that are suspended in an aqueous gel.  Bound drug 

gradually dissociates from the polymer to produce free drug at a molar rate per unit volume of 

gel, d exp( t / )α − τ .  Diffusion is so rapid in the gel that the free drug concentration in the device, 

dC (t) , is essentially uniform.  Diffusion in tumor tissue is a much slower process so that its drug 

concentration, tC (r, t) , depends on both radial position r and time. Drug is taken up by tumor 

cells and capillary blood at a first-order rate per unit volume.  Drug diffuses across the 

membrane from the device into the tumor with a molar flux permeability and equilibrium 

partition coefficient λ. 

 

(a)  Develop a model that describes the drug concentration dynamics for the device, 

      ddC dt ....= State any additional assumptions. 

(b)  Develop a partial differential equation that describes the drug concentration dynamics in the  

      tumor tissue, dC t ....∂ ∂ = State any additional assumptions.   How would you transform the  

      drug concentration equation in the tumor domain such that it has constant coefficients?   

(c)  What are appropriate initial and boundary conditions to solve this model with coupled 

       equations ? (Note: Since the solution in the device and the external solution are separated by   

       a  membrane, the drug is not in interfacial equilibrium between the two solutions). 

(d)  Explain what numerical method could be used to solve this problem, which involves both  

      ordinary and partial differential equations. 

 

 

Problem 9-5: Oxygenation of a Cell Monolayer  

 

A monolayer of endothelial cells is being maintained on the bottom of a Petri dish.   The cells are 

covered with a nutrient solution of height L whose surface is in contact with atmospheric air at 

an oxygen partial pressure is po.  The surface of the solution-cell interface per unit volume of the 

cell layer is φ.  Oxygen diffuses from the atmosphere through the nutrient layer and into the cells 

where it is metabolized at constant molar rate R per total cell volume. 
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(a) Write the equation that describes the oxygen concentration distribution in the nutrient  

       solution C(z) under steady state conditions. 

(b) What are the boundary conditions at z=0 and z-L ? 

(c)  Solve for the concentration distribution. 

(d) Determine the oxygen flux at the interface of the nutrient solution with air.  Explain why this  

      is the case. 

 

 

Problem 9-6:  Polarographic Electrode With Finite Reaction Rate  

 

In example 9.2-1, we assumed that the O2 reduction by a polarographic cathode immerged in a 

large volume of fluid is so fast that O2 concentration is zero at the electrode surface.  Here, we 

extend this analysis to account for first-order reaction kinetics at the surface of a spherical 

cathode of radius r=a.   

                                                    RO2[mol/s-m
2
]=-krCO2(a)   

 

where kr[m/s] is a surface rate coefficient.  Far from the electrode surface, the concentration 

CO2(∞)≡C∞ is at a value that is undisturbed by the presence of the electrode. 

 

(a)  For this steady-state diffusion problem, what are the governing molar concentration equation 

and its boundary condition at r=a?  Assume a constant diffusion coefficient 
2O

D . 

(b)  Convert O2 concentrations in the results of part (a) to the equivalent O2 partial pressures  

      using the relation 
o

O2 O2 G O2p (r) C (r) c= α  

(c)  Solve for pO2(r) in the domain ∞>r>a.   

(d)  From this analytical solution, obtain 
2ON (a)ɺ , the molar O2 transport rate at r=a.   

(e)  Formulate the sensitivity of the electrode in terms of 
o

Gc , a, αO2,
2O

D and kr.   

       

                                                       
O2
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where 
o

G O2p C c∞ ∞= α , and O2N (a)ɺ is the molar oxygen transport rate at the electrode surface. 

Under what condition does the sensitivity reduce to Eq. 9.2-13?  

 

 

Problem 9-7:  Growth Factor Transport in a Vascular Graft 

 

In fabricating a vascular graft, vascular smooth muscle cells are uniformly seeded throughout a 

collagen-based hydrogel scaffold in the shape of a cylindrical shell with a length L=10 cm, inner 

radius a1=2.25 mm and outer radius a2=3 mm.  A flow of nutrient solution containing PDGF, a 

molecule which is necessary for cell proliferation, is supplied to the inside surface of the 

hydrogel shell.  For simplicity, we consider the cell-hydrogel mixture to be a homogenous phase.  

Also, we assume that: 1) the nutrient flow is so rapid that PDGF concentration is maintained at 

C0=10
-12

 mol/L everywhere in the nutrient solution including its entry point; and 2) PDGF is 

depleted in the cell-hydrogel phase at a uniform and constant rate of RP=-1 x 10
-15

 mol/s/L.  The 

concentration partition coefficient of PDGF between the nutrient medium and the cell-hydrogel 



phase is λ=0.8.  The diffusion coefficient of PDGF through the cell-hydrogel phase is 

DP=2.25x10
-6

 cm
2
/sec.  To provide stability, the outer surface of the scaffold is coated with a 

hard plastic that is impermeable to PDGF.  

  

 
(a) Formulate the differential equation for the PDGF concentration CP(r) in the graft a2>r>a1  

     based on steady-state radial diffusion with reaction in a material of constant density. 

(b) What are the boundary conditions at the inner hydrogel surface r=a1 and the outer hydrogel  

      surface r=a2? 

(c) Using results from (a) and (b), develop an algebraic expression for CP(r). 

(d) Using the result of part (c), develop a formula for the radial PDGF flux Nr,P(r).  

(e) Formulate the minimum volumetric flow rate Qmin of culture medium to meet the PDGF  

     requirement for all of the cells.  Compute the numerical value for this flow. 

 

 

Problem 9-8:  Derivation of Mole Balance Equations 

 

Derive the mole balance equation for species i during rectilinear transport through a flat slab of 

constant molar density (Eq. 9.1-12b).  Begin with the species mass balance (Eq. 9.1-5) and the 

equation for the molar flux of a material of constant molar density (Eq. 7.1-5). 

 

 

Problem 9-9:  Derivation of Mean Convective Concentration 

 

Derive Eqs. 9.3.8 for the constant molar flux and 9.3-9 for a representative convective  

concentration 
iCɶ  beginning with Eq. 9.3-6 for the molar transport rate by parallel convection and 

diffusion. 

 

Problem 9-10:  Nutrient Diffusion in a Single Cell With First Order Kinetics 

 

Consider a variation of the steady-state, diffusion-reaction model presented in section 9.4.1. 

 

(a)  Start with the dimensionless concentration Eq. 9.4-6.  Linearize this equation assuming that  

       the concentration is very small relative to the Michaelis constant, C<< K. 

(b)  Transform this linearized equation by introducing a change of independent variables:  

       C(r)=f(r)/r.  

(c)  Also letting C(r)=f(r)/r, transform the boundary conditions, Eqs. 9.4-7a,b,  

Qmin 

Np,r(r) 

Np,r(r) 

   a1        a2         r  

Cp(r) 

L   



(d) Solve the transformed model using hyperbolic functions, sinh and cosh, to find  f(r). 

(e) Formulate the ratio of central concentration C(0) to the surface concentration C(1). 

(f)  Plot C(0)/C(1) for values of Da between 0 and 1000 at a value of K=10.  Explain your  

      results. 

  



CHAPTER 10. 

 

Problem 10-1: Effect of Cell Membrane Curvature on Membrane Permeation 

 

At some time during dialysis, the intracellular urea concentration of 20mM lags the extracellular 

concentration of urea that is 10 mM.   A nearly spherical cell with an outer diameter of 15.0 µm 

has a membrane with a thickness of 10 nm and urea permeability of 7.70 nm/sec.  Assuming 

equal solubility of urea in intracellular and extracellular fluid, compute the urea transport rate out 

of the cell when the membrane (a) is accounted for and (b) is assumed to have an infinitesimal 

thickness. 

 

 

Problem 10-2:  Membrane Permeability Measurement  

To determine permeability Ps of dextran through a non-porous membrane, a diffusion cell was 

constructed in which a membrane was held in place between two well-mixed chambers (A, B).  

The chambers were then filled with phosphate-buffered saline (PBS) solution. At t=0, 

fluorescently labelled 3 kDa dextran was added to chamber A such that its concentration was Co. 

Chamber B was sampled continuously to monitor the increasing dextran concentration B

S
C  as a 

function of time. The volume of the chambers were V
A
=V

B
=5 ml and the surface area of the 

membrane was Sm=2 cm
2
.  In analyzing transport in this apparatus, assume that material 

transport is so small that the solution volumes in the chambers remain constant and the 

concentration of solute in chamber A remains constant.  Also, assume that the chambers are 

well-mixed throughout so there are no film resistances at the membrane surfaces. 

 

 

 

 

 

 

 

 

(a) Perform a material balance in B to show the dynamics of dextran concentrations in both  

     chambers. Obtain an ODE equation that describes B

S
C  vs. t with Ps, V

A
 and V

B
 as parameters. 

(b) Integrate the above equation to obtain B

S
C  as a function of time. 

t (hr) 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4 4.5 5 5.5 6 
B

S
C  (µM) 3.0 5.1 6.7 8.8 10.5 12.5 14.6 16.3 17.9 20.0 25.4 30.3 34.1 41.5 46.5 52.3 58.1 63.5 

A B

A

S
C B

S
C

Membrane

VA VB
S

Nɺ



(c) In a particular experiment, A

S
C  was set to 1 mM at t=0 and the following data ( B

S
C  vs t) were  

    obtained. Estimate Ps using a least-squares regression. 

 

 

Problem 10-3: Transport Through a Composite Membrane 

 

A membrane blood oxygenator separates pure oxygen at atmospheric pressure 
2

A

O
p 101.3kPa=

on one side of a planar membrane of surface area Sm from blood on the other side.  At a point in 

the device where the oxygen partial pressure in the blood is 
2

A

O
p 6kPa= , compute the local flux 

2O m
V /Sɺ [ml(STP)/(min-cm

2
)] of oxygen for the following membranes: 

a)  Teflon: 1 mil thick. 

b)  Silicone Rubber: 12 mil thick . 

c)  Composite Sandwich: 1 mil teflon and 12 mil silicone rubber.  Specify any assumptions. 

 

Problem 10-4:  Red Cell Shrinking in Hypertonic Solution 

Suppose a small amount of solid urea is added to a suspension of red cells in buffered saline 

solution.  Before adding the urea, the saline solution is isotonic so that the cells are in their 

normal biconcave configuration.  Once the urea is added, however, the suspending medium 

suddenly becomes hypertonic at a concentration of 100 mM.  Using Eqs. 10.2-1 and 10.2-2, 

determine the initial rate of cell volume change, the initial urea flux due to convection and the 

initial urea flux due to diffusion.  Note that the red cell membrane is normally in an unstressed 

state. 

The Kedem-Katchalsky parameters for transport of urea through the red cell membrane are: 

Lc=4.38 µm/s, Lp=0.00092 µm/kPa/s and σ=0.62.  Geometric parameters for the red cell can be  

found in example 4.3-3.  

 

Problem 10-5: Voltage Clamp Model 

 

The steady-state electro-diffusion model may be improved by relaxing the Goldman assumption.  

In this model, a channel passes only potassium ion and has a negligibly small fixed protein 

charge (i.e. σp=0). 

 

(a) Transform the model (Eqs. 10.3-2 through 10.3-5) into two dimensionless ODEs and four  

      boundary conditions in terms of the following variables: 

                                        

                                          
c
i

A
m mi i

C y
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hC
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ψ

ψ
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     with dimensionless parameters defined as: 



 

               c A A 2 A B A
m i i i i m m i m i o m i ih J C , T, h C , C /C≡ ≡ ψ ≡ ε ψ ≡D F R FJ Cϖ ψ ϖ α  

 

(b)  Take the y derivative of the dimensionless flux equation in order to eliminate J and then  

       solve the two second order ODE’s for C(y) and ψ(y) using physiologically reasonable    

      parameter values (relative to the extracellular fluid at y=0) of ψm=-3, C
A
=-30) for the case  

     that α=0.  Make a plot of ψ(y) and superimpose the electrochemical distribution  

     corresponding to the Goldman assumption.  

 

(c)  Numerically solve the two second-order ODE’s for C(y) and ψ(y) that involve the parameters  

     ψm, C
A
 and α.  Let α=0, ψm=-3, C

A
=-30, which are physiologically reasonable parameter      

     values relative to the extracellular fluid at y=0.  Compare a plot of ψ(y) to the potential    

     distribution when the Goldman assumption is made.  

 

(d)  Compute J and compare it to the value obtained with the Goldman assumption (i.e., Eq.  

      10.3-12).   

 

 

Problem 10-6:  Alveolar-Capillary Permeability 

 

Compute the specific permeability 
G

sP
⌢

 of the alveolar-capillary membrane (approximated as 

water) for s=O2 and s=CO2, as modeled in example 9.2-2.  Compare these values to those in table 

10.1-1 for teflon and silicone rubber membranes that are sometimes used in blood oxygenators.  

 

 

Problem 10-7:  Membrane Transport by Diffusion and Convection 

 

Derive Eq. 10.2-9 for transmembrane transport by simultaneous diffusion and convection when 

the molar flux is constant 

 

(a) Begin with Eq. 10.2-5, which describes 
 
C

s
(y) .

  
Integrate between y=0 and y=hm to find the  

     equation relating the macroscopic concentrations, 
sC (0)  and 

s mC (h )  at the membrane  

     surfaces. 

(b) Simplify the result of (a) by introducing a membrane Peclet number 
s F m m s mQ h S≡ β ε DmPe   

     and then for solve for .  Using Eqs. 7.4-42 that relate 
sC (0)  and 

s mC (h )  to the    

     concentrations in the external continuous media, A

sC  and  B

sC , show that  

 

                                                      

 

(c)  When convection is absent, purely diffusive transport rate through a membrane   

       can be inferred from the diffusion flux, Eq. 7.4-45.  Subtract this diffusive component from  



       the result of part (b) to determine the transport rate due to convection alone: 

 

  . 

 

(d) Combine the diffusive and convective contributions 

  

                         

 

     to verify Eq. 10.2-9 . 

 

 

Problem 10.8:  Membrane Resting Potential 

 

A thin uncharged membrane separates two well-mixed compartments (A and B) of aqueous 

solutions containing 2-2 electrolytes (e.g. CaSO4, MgSO4, etc.). Each electrolyte i is completely 

dissociated into its corresponding cations ci and anions ai.  These ions each have a different 

concentration, 
B

ciC  and 
B

aiC , in the two compartments and a different permeability, Pci and Pai, 

through the membrane.  Assume steady-state and unidirectional transport. 

 

(a) Starting with Eq. 10.3-17 in which the dimensionless electrical potential difference is ψm,  

      show that  

   
( )

( )
A B

i i i2

i i

i i

C C exp / T
P 0

1 exp / T

 − ∆ψ
= − ∆ψ 

∑
F R

F R

z
z

z
 

 

      where  ∆ψ=ψA
-ψB 

is the electrical potential difference between the compartments.  

(b) Express the equation of part (a) in terms of the ion permeabilities, the ion concentrations and  

     a single exponential, . 

(c)  Solve the result of part (b) for  and then for ∆ψ. 

(d)  Compare your result to the analogous equation for 1-1 electrolytes given in textbook.        

      Judging from this result, how is the potential difference across a membrane affected by the        

      magnitude of the charge of permeable ions.  

  



CHAPTER 11. 

 

 

Problem 11-1: An Alternative Uniport Model 

 

Derive the uniport flux equation when the equilibrium binding coefficients for solute-transport 

binding have different values (κ1≠κ2), and the translocation constants do not depend on direction 

(P1=P-1 and P2=P-2).   

(a)  Combine Eqs. 11.1-8a,b with Eq. 11.1-6 to formulate the ratio B A
ST STC C . 

(b)  Combine Eqs. 11.1-8a,b with Eq. 11.1-7 to formulate the ratio A
ST TC T . 

(c)  Combine the results of parts (a) and (b) with Eq. 11.1-4 to obtain the net flux NS in terms of  

     A
SC , B

SC  and TT . 

(d) Show that this result reduces to Eq. 11.1-11 when the binding equilibrium constants are equal  

     on the two sides of a membrane. 

 

 

Problem 11-2: Completion of the Static Head Graph for Antiport 

 

Sketch the static head graph for antiport (Fig. 11.2-2) in all four quadrants of the x-y plane.  

Label the direction of the S1 and S2 fluxes (either >0 or <0) in each of the eight regions between 

the static head lines.  In which regions will secondary active transport of S1 occur and in which 

regions will secondary transport of S2 occur?  

 

 

Problem 11-3: Numerical Illustration of Cotransport 

 

Species S1 and S2 undergo cotransport across a cell membrane according to the competitive 

binding model shown in figure 11.2-1.  The equilibrium parameters are known to be κ1=3.0mM 

and κ2=1.0mM. The concentration of S1 on the two sides of the membrane are 
1

A
SC 20mM=  and 

1

B
SC 2.0mM= .  The concentration of S2 on the A side of the membrane is 

2

A
SC 25mM= . 

 

(a) Using these values, plot the zero flux lines on a graph of  ( )
1 1

A B

S S
C C−  versus ( )

2 2

A B

S S
C C−  as in  

      figure 11.2-2.  Label the region where secondary active transport occurs.    

 

(b) On the graph from part (a), mark the points corresponding to static head conditions of this  

      system.  What are the constraints on the value of 
2

B
SC  for active transport to occur?  What     

      range of 
2

B
SC values will not produce active transport? 

(c)  With trial values of 
2

B
SC 10, 0, 5=  that each fall within one of the three conditions found in  

      part (b), find the numerical signs of the S1 and S2 fluxes.  Do the flux directions relative to  

     their driving forces correspond to the expected behavior?   

 

 



Problem 11-4: An Alternative Inhibited Cotransport Model   
 

Derive a model of the inhibited cotransport of S and S* when the inhibitor I is on the outside 

surface (B) of the cell rather than on the instead surface (B).  Note that Eqs. 11.3-1 and 11.3-2 

still apply: 

                                  
( ) ( ) ( )

A A A A B B B B

S T S* T S T S* T

A A B B

ST STS T S T
A B A B B A

1 ST ST 1 2 T TS T S T

C C C C C C C C

C C C C

P C C P C C P C C

∗ ∗

∗ ∗

κ = = = =

− + − = −
 

 

(a)  Modify the equations for the inhibitor-transporter equilibrium constant κI (11.3-19) and the  

       total transporter concentration TR (Eq. 11.3-20). 

 

(b)  Using these four equations, show that 

 

              

( )
( ) ( ) ( )

A A

T T SB A A B B

T T 1 S 2 T 1 S 2B

S I I

T C C
C and C P C P C P C P

C C
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= + κ = + κ

κ + + κ κ
ɶ

ɶ ɶ

ɶ                    
 

    Then, for the free transporter at the two membrane surfaces obtain: 
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( )( ) ( )( )
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1 S 2 S I I 1 S 2 S

A
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=
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ɶ
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ɶ

ɶ ɶ ɶ ɶ

 

 

     where 
A A A

S S S
C C C ∗≡ +
ɶ

 and 
B B B

S S S
C C C ∗≡ +
ɶ

 represent the summed concentrations of labeled and   

     unlabeled solute molecules on the two membrane surfaces.  

 

(c)  With the net flux of tagged ligand S* through the membrane given by  

 

                                                        ( )A B

S* 1 S T S T
N P C C∗ ∗= −  

 

      derive the final model equation (analogous to Eq. 11.3-21). 

 

 

 

Problem 11-5: Charge Effects During Antiport   

 

Analyze the effect of electrical charge on the competitive antiport of ligands S1 and S2 by a 

transporter T in the presence of an electric field.  Consider the case in which the S1, S2 and T 

have the same charge number zX. In the absence of an electric field, assume that the translocation 



rate constant for S1, S2 and T has the same value (Po) and this value is independent of transport 

direction.  

 

(a)  In the presence of an electric potential difference ∆ψ , show that the translocation constants  

      of the three charged species remain equal and have a unique value (P+) for forward transport  

      and a different value (P-) for reverse transport.   

 

(b)  The model for the S1 flux during antiport (Eq. 11.2-6) was based on translocation rate   

      constants that were equal for the three species and had the same value in both transport  

      directions.  Derive the S1 flux when the translocation constant is different in the two transport  

     directions: P+ for all species when transport is from surface A to surface B and P- in the  

     opposite direction.   After modifying the model equation(s), show that 

 

                                       
( )
( )

1 2 1

1 1

1 2 1

A A A

1 S 1 S 2 SB A

S T S T B B B

1 S 1 S 2 S

1 C C CP
C C

P 1 C C C

+

−

+ κ + κ κ
=

+ κ + κ κ
 

 

     Then, use the equation 
1 1 1

A B

S S T S T
N P C P C+ −≡ −  to show that 

 

           

( ) ( )
1 1 2 1 1 2 1

1 1
A A A B B BT

S 1 S 1 S 2 S 1 S 1 S 2 S

T
N 1 C C C 1 C C C

1 P 1 P

− −

+ −

 = + κ + κ κ − + κ + κ κ
  +

 

 

 

(c) Determine the relative S1 flux
1 1

o

S S
N / N∆ψ

, where 
1S

N∆ψ
is the flux when a transmembrane 

potential ∆ψ acts across a cell membrane, and
1

o

S
N  is the flux when there is no transmembrane 

potential.  How does the sign of the charge affect the relative flux? 

 

  



CHAPTER 12. 

 

 

Problem 12-1: Multidimensional Transport Equations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applying the shell balance method to the control volume (∆V=W∆y∆z) shown above, derive Eq. 

12.1-7 for two-dimensional transport in the absence of chemical reaction. 

 

 

Problem 12-2:  Effect of Flow Orientation on Mass Transfer 

In designing an oxygenator with hollow fibers, an engineer is considering whether blood flow 

outside of the fibers should be in a cross-flow or parallel flow configuration. The device will 

contain hollow fibers that are 5cm long and have an outer diameter of 0.03 cm.  The blood flow, 

either parallel to or perpendicular to the outside of a fiber, will be set at a velocity of 10 cm/sec.  

Starting with appropriate correlations relating the Sherwood number to the Reynolds and 

Schmidt numbers, determine the ratio of the mass transfer coefficients in blood for these two 

flow configurations.  Which configuration will maximize the O2 transport rate into blood. 

 

 

Problem 12-3: O2 Supply to a Vascular Graft 

 

In fabricating an endothelialized vascular graft, cells are initially seeded onto the inner surface of 

a cylindrical tube made of a fluoropolymer with a constant and uniform density.  The tube has a 

length L=10 cm and an inside diameter d=3 mm.  After seeding, the cells are cultured to form a 

complete surface layer while fresh medium flows through the tube at a velocity u.  The medium 

entering the tube has been equilibrated with pure oxygen such that its oxygen partial pressure is 

100kPa.  The oxygen consumption rate per unit area of tube surface covered by cells is 
2

c c

r O
k C .  

Here 
2

c

O
C  is the molar O2 concentration at the cell surface and c

rk =0.3cm/hr  is a reaction rate 

constant, the kinematic viscosity of the medium is 7×10
-7

m
2
/s and the O2 diffusion coefficient is 

3.3×10
-9

m
2
/s. 



 

The objective of this problem is to determine u values that meet the following requirements: 1) to 

keep the cells alive, O2 partial pressure at the cell surface cannot go below 
2

c

O
p =60kPa ; 2) in 

order to minimize damage to the cells, the medium must be in laminar flow; 3) O2 partial 

pressure in the medium is to be maintained as close to 
2

b

Op =100 kPa as possible along the entire 

tube length.  Assume that the medium has a kinematic viscosity of υ=6.98×10
-7

m
2
/s and an 

oxygen diffusion coefficient of 
2

9 2

O
3.3 10 m /s−= ×D . 

 

(a) Recognizing that O2 transport to the cell surface and consumption by the cells are equal,  

     determine the minimum value of the mass transfer coefficient 
2Ok  in the medium that will  

     meet requirement 1).            

(b)  Determine the range of u values that can achieve this minimum 
2Ok when the O2   

       concentration profile is not fully developed.  Use entry 1a of table 12.2-1 for this  

       computation and also the requirement that the flow be laminar. 

(c)  Repeat part (b) for an O2 concentration profile that is fully developed (Entry 1b of table 12.2- 

      1) 

(d) Which of the results for u found in parts (b) and (c) are more likely to fufill requirement 3)?     

     Restate this restriction in terms of the flow rate Q of the medium expressed in ml/min. 

 

 

Problem 12-4  Artificial Liver: Part I. Mass Transfer Coefficient 

 

An extracorporeal artificial liver device is designed to treat patients with acute liver failure. It 

consists of a parallel array of nf=3,000 thin-walled hollow fibers of radius af=100µm surrounded 

by a cylindrical shell packed with porcine liver parenchymal cells (hepatocytes).   

 

To minimize immunological reactions with hepatocytes, a patient’s blood is continuously 

separated into a cell-free plasma stream and a suspension stream enriched in erythrocytes, 

leukocytes and platelets.  The cell-free plasma flowing at Q=400ml/min is uniformly distributed 

among the insides of the fibers.  Urea and creatinine transported across the fiber walls from the 

cell-free plasma are detoxified by the hepatocytes.  Oxygen also transported across the fiber 

walls is necessary to maintain viability of the hepatocytes (The transport parameters have values 

of υ=8×10
-7

m
2
/s, αO2=0.021ml/(dL-kPa) and  

2

9 2

O
3.0 10 m /s−= ×D ).  

 

(a) Confirm that the plasma inside of the fibers is in laminar flow. 

(b) Determine the minimum fiber length to establish a fully-developed O2 concentration profile 

within each fiber (table 12.1-1; entry 1).  

(c) Compute the value of the individual mass transfer coefficient kO2 for O2 on the inside of the 

fibers when the fiber lengths are greater than this minimum. 

 

12-5  Artificial Liver: Part II. Required Fiber Surface 

 

Consider the artificial liver device described in part I of this problem.  Additional geometric 

parameters are: the cross-sectional area of the cylindrical shell containing the fibers (A), the fiber 



length (L), and the fraction of the shell occupied by hepatocytes (ε). The hepatocytes are 

metabolizing O2 at a constant (maximum) rate Vm[moles/time/volume hepatocytes], which is so 

fast that the O2 concentration in the hepatocyte region is close to zero. 

 

(a) Formulate A in terms of nf, af and ε. 

(b) Beginning with Eq. 2.4-25, perform a steady state oxygen balance in the device to obtain an 

ordinary differential equation for the oxygen partial pressure in a hollow fiber pO2 as a 

function of distance z from the plasma inlet at z=0.  Assume that O2 transport across the fiber 

wall is limited by the individual mass transfer coefficient kO2 through the flowing plasma. 

(c) If po is the O2 partial pressure at a fiber inlet, integrate this ODE to obtain an algebraic 

expression for the O2 distribution. 

(d) Using this result, formulate the maximum length of the device such that all cells will be 

supplied with O2 at a rate that satisfies its metabolic demand. 

(e) For a particular bioartificial liver device, Vm=10
-7

 mol/m
3
/hr, ε=0.5 and the entering plasma 

has been pre-oxgenated to reach a po=70kPa. The values of Q, af, nf and kO2 are the same as 

in part I of this problem.  Compute the maximum length of this device. Does this result seem 

reasonable? 

 

 

Problem 12-6: Continuous Ambulatory Peritoneal Dialysis (CAPD)  

 

During a session of CAPD, typically carried out at home, a dialysate consisting of a physiologic 

electrolyte solution with an osmotic agent such as dextrose is gravity fed through an indwelling 

catheter into the peritoneal cavity that surrounds the lungs. After several hours the dialysate is 

drained by gravity into an empty container. While it remains in the body, the dialysate 

accumulates toxins and some protein by passive diffusion from blood that perfuses the peritoneal 

surfaces. This results in an osmotic filtration of water from the blood.  After a few hours, the 

dialysate is drained into an empty container. 

 

A frequently used model of this process consists of two well-mixed compartments: a body 

compartment of volume V
B
(t) and a dialysate compartment of volume V

D
(t), separated by a 

semi-permeable peritoneal membrane.  For simplicity, assume that osmotic filtration across the 

membrane as well as metabolic urea production during the CAPD session can be neglected. 

 

(a) Formulate mole balances for urea concentration in the dialysate D

u
C (t)  and the blood B

u
C (t) . 

(b) Solve the differential equations of part (a) to find an equation for D B

u uo
C C as a function of  

     time when  dialysate is initially free of urea and the initial urea concentration in the body  

     compartment is B

uo
C . 

(c) Obtain a least-squares estimate of the model parameters by fitting the results from part (b) to  

     the following data (Lysaght MJ, Farrell PC. J Membrane Sci. 44:5-33, 1989):   

 
D B

u uo
C C  0.03 0.19 0.33 0.57 0.68 0.74 0.87 0.89 0.91 0.96 0.96 0.98 0.985 0.975 

t(min) 10 25 50 95 150 190 255 280 310 370 400 430 460 490 

 


