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Abstract. Sentiment classification plays a vital role in current online
commercial transactions because it is critical to understand users’ opin-
ions and feedbacks in businesses or products. Cross-domain sentiment
classification can adopt a well-trained classifier from one source domain
to other target domains, which reduces the time and efforts of training
new classifiers in these domains. Existing cross-domain sentiment classi-
fication methods require data or other information in target domains in
order to train their models. However, collecting and processing new cor-
pora require very heavy workload. Besides, the data in target domains
may be private and not always available for training. To address these
issues, motivated by multi-task learning, we design a Bifurcated-LSTM
which takes advantages of attention-based LSTM classifiers along with
augmented dataset and orthogonal constraints. This Bifurcated-LSTM
can extract domain-invariant sentiment features from the source domain
to perform sentiment analysis in different target domains. We conduct
extensive experiments on seven classic types of product reviews, and re-
sults show that our system leads to significant performance improvement.

1 Introduction

Sentiment classification plays a vital role in current online commercial trans-
actions because it is essential to understand users’ opinions and feedbacks in
businesses or products. It identifies the overall sentiment polarity (e.g., positive
or negative) of a text. In 2002, Bo et al. [22] were the first pioneers to utilize
machine learning techniques to tackle the sentiment classification problem. Since
then, many researchers have shown their interests in this field [9, 21]. Noticeably,
most of them try to obtain sentiment classifiers by assuming there are sufficient
training data in a specified domain. In practice, consumers are usually interested
in a number of different types of product, and sentiment is expressed differently
in various domains. When we apply previous sentiment classification techniques,
large amounts of labeled data are required each time when we need to conduct
sentiment analysis for a new product. To alleviate this issue, cross-domain sen-
timent classification [4], which utilizes labeled data from related domains, has
attracted people’s attention. It is to adapt a well-designed sentiment classifier,
which is trained on the data in one domain, to classify the sentiment of data in
other domains.
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Although in the literature, several cross-domain sentiment classification schemes
have been proposed [11, 13], all of them need target domain data, which is not
always available. Specifically, when a new domain emerges, it costs a lot of ef-
forts to collect and process its data, especially for supervised methods where the
labels have to be added manually. Besides, there may be sensitive information in
the new domain data, such as reviews for beta version products, which cannot
be leaked or made public.

To address these problems, we design a novel Bifurcated-LSTM for cross-
domain sentiment classification. Particularly, we notice that there are two cru-
cial points a user’s review tries to convey: topic and sentiment. Topic, which
is different from one domain to another, describes the product or service that
the customer comments on. Sentiment is the opinion of the customer about the
topic, which is common in all the domains, such as “positive” or “negative”. By
eliminating the topic-related features, we can decrease the topic-conglutination
influence from the source domain to the target domain. Motivated by the idea of
multi-task learning, which can detach each task’s private feature space from the
shared space among several tasks [16], the proposed Bifurcated-LSTM divides
the review representation feature space into topic subspace and sentiment sub-
space. After that, the extracted domain-invariant sentiment features from the
source domain can be utilized to perform sentiment analysis in different target
domains. To better capture domain-dependent topic features from the source
domain training dataset, we apply the dataset augmentation method to improve
the performance. Besides, to prevent the topic and sentiment feature spaces in-
terfering with each other, we introduce orthogonal constraints strategies. The
experiment results show that our approach can improve sentiment classification
in each target domain.

The main contributions of this paper are four-folds:

– We design a novel Bifurcated-LSTM that divides a sentence feature space
into domain-dependent topic feature space and domain-independent senti-
ment feature space.

– We use dataset augmentation to better extract domain-dependent topic fea-
tures from the source domain, which can help separate these features from
sentiment features.

– We employ orthogonal constraint technique to avoid interference between
topic and sentiment features.

– Different from other cross-domain sentiment classification models, our sys-
tem no longer needs any target domain data or other related information.

2 Related Works

2.1 Cross-Domain Sentiment Classification

Cross-domain sentiment classification, a subclass of domain adaptation, is to first
learn a sentiment classifier for a source domain by training on this domain’s data
and then apply the learned classifier into other domains (i.e., target domains) for
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sentiment classification. To achieve high accuracy, one main challenge is how to
analyze data from the source domain and identify its feature space that happens
to be related to the feature space of a target domain.

Previous works have studied the problem of feature space mapping from a
source domain to target domains [3, 4]. However, those works require the data
from target domains and need a lot of efforts to label data manually.

2.2 Multi-task Learning

Multi-task learning is to learn multiple related tasks in parallel so as to improve
the learning performance. In particular, the representations of all tasks are effec-
tively combined by neural-based models. The architecture of multi-task learning
is shown in Figure 1. Specifically, multiple tasks have several shared layers that
are used to detach common feature space. Then, the output of the shared layers
is split into multiple branches that are utilized to capture private features for
each task [16].

Task 1 Task 2

Shared Layer

Private Layer

.
.
.

.
.
.

.
.
.

Fig. 1. The architecture of
multi-task learning.
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Fig. 2. The structure of RNN with
LSTM units.

3 Recurrent Neural Network Models for Text
Classification

So far, deep learning comes into play in many area, and achieves high perfor-
mance [5, 6, 14, 8]. Many researchers have developed many neural network based
sentence models [21, 18], which can be applied to conduct sentiment classifi-
cation. In this paper, we adopt a recurrent neural network (RNN) with long
short-term memory (LSTM) units [12] due to its great performance in handling
multiple natural language processing (NLP) tasks [15].
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3.1 Long Short-term Memory

LSTM is very effective in learning long-term dependencies. It has been proposed
to address the issue that standard RNN suffers from severe gradients vanishing or
exploding when dealing with long sequential data. The mathematical description
of the LSTM structure is as follows:


c̃t
ot

it
ft

 =


tanh
σ
σ
σ

(Wp

[
xt

ht−1

]
+ bp

)
(1)

ct = c̃t � it + ct−1 � ft (2)

ht = ot � tanh (ct) (3)

where xt ∈ Re is the input at the current time step, d denotes the number of
the LSTM units, Wp ∈ R4d×(d+e) and bp ∈ R4d are parameters of affine trans-
formation, σ denotes the logistic sigmoid function and � denotes elementwise
multiplication.

The update of each LSTM unit can be briefly summarized as follows:

ht = LSTM(ht−1,xt, θ).

Function LSTM is a combination of Equation(1) -(3), and θ represents all the
parameters in the LSTM network. The structure of RNN with LSTM units is
shown in Figure 2.

3.2 Text Classification with LSTM

Basically, for a given text sequence xt = {x1, x2, ..., xT }, the embedding lay-
ers[17][20] are used to find the representation vectors xt for all words. Then, the
representation vectors are input into the LSTM layers to output a representa-
tion vector hT . Finally, hT is input into a fully connected layer to generate a
probability distribution over all classes.

ŷ = softmax (WhT + b)

where ŷ = {ŷ1, ŷ2, ..., ŷC} represents the prediction probabilities for each class
j ∈ [1, C], W is the learned weights, and b is the bias.

For a given classic classification task, the loss function is defined as the cross-
entropy between predicted and ground-truth distribution.

L (ŷ,y) = −
N∑
i=1

C∑
j=1

yji log
(
ŷji

)
(4)

where yji is the ground-truth label for sample i regrading class j, N is the number
of samples in the dataset, and C is the number of classes.
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4 Bifurcated-LSTM for Cross-Domain Sentiment
Classification

Motivated by multi-task learning, we design a Bifurcated-LSTM for cross-domain
sentiment classification, which can divide some domain’s reviews’ feature space
into domain-independent sentiment space and domain-dependent topic space.

Embedding Layer

...

Attention Attention

LSTM Layer

Topic

Classifier

Sentiment

Classifier
Softmax Softmax

Fig. 3. The structure of Bifurcated-LSTM

The structure of a Bifurcated-LSTM is shown in Figure 3. First, a sentence
passes through the embedding layer and LSTM layers to obtain the represen-
tation vector hT , which is the entire feature space of the text. Then, we si-
multaneously input hT into two LSTM classifier branches, which have the same
structure but for different objectives. One is for topic classification and the other
is for sentiment classification. Topic features are needed to help the system dis-
tinguish source domain reviews from texts in other domains. To better achieve
this, we augment the original dataset to obtain a more complete dataset for
the system. Moreover, to accurately capture the features, we integrate the at-
tention mechanism to the standard LSTM-based classifier for improving the
categorization performance. In addition, to further enhance the performance of
our model, we use orthogonal constraints strategy to separate the sentiment and
topic features thoroughly. In the following, we describe dataset augmentation,
Bifurcated-LSTM, and orthogonality constraints, respectively.
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4.1 Dataset Augmentation

Our model aims at extracting topic-related and sentiment-related features from
sentence representations. It is obvious that topic feature space varies in different
domains. As a result, a model needs to be capable of obtaining distinct topic
features from multiple domains.

Therefore, we reconstruct our training dataset by applying the dataset aug-
mentation technique [8]. Specifically, we add some “noisy” data into the training
dataset during the step of data collecting and preprocessing. These “noisy” data
are text sequences picked from other domains, which have different topics from
the ones in original dataset. After dataset augmentation, each data instance has
two labels, and is denoted by (x, ySe, yTo), where x is the text sequence, and ySe

is the sentiment label. yTo ∈ {0, 1} is a binary label, where 1 indicates that the
instance is from the current domain, and 0 means that the instance is a “noisy”
sample.

4.2 Bifurcated-LSTM

As shown in Figure 3, the Bifurcated-LSTM is composed of the sentiment classi-
fier, the topic classifier and the feature bifurcation. We describe them respectively
in the following.

Attention-based LSTM Sentiment Classifier We integrate word embed-
dings and attention mechanism into the standard LSTM model to improve the
performance of capturing the representative features from text sentences. Partic-
ularly, for a word xt, we employ word embedding, like GloVe [20] and Word2Vec
[17], to transform it into a representation vector xt. In addition, we adopt a word-
level attention mechanism[1], which can identify the crucial part of a sentence,
to improve the performance of our sentiment classifier.

Embedding

Layer

...

LSTM Layers

Attention

Softmax

Fig. 4. Attention-based LSTM sentiment classifier.

As shown in Figure 4, in upper branch of the sentiment classifier, we apply
attention mechanism at the common LSTM layers that are shared with the
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topic classifier, so that the information from the original training data can be
further extracted and still exploited at the sentiment classifier. Let Ha ∈ Rd×T

denote a matrix consisting of hidden vectors [h1, ...,hT ] produced by the LSTM,
where d is the number of hidden layers and T is the length of a given sentence.
The attention mechanism produces an attention weight vector a and a hidden
representation s which is a weighted representation of a sentence with the given
word. Both of them can be calculated as follows:

a = softmax
(
wT tanh(WhHa)

)
s = HaT

where we have a ∈ RT , s ∈ Rd. Wh ∈ Rd×d, and w ∈ Rd are projection
parameters.

In the lower branch of the sentiment classifier, particularly following common
LSTM layers, we add several LSTM layers to extract sentiment features from
the whole sentence feature space. The output of these LSTM layers is as follows:

houtput = LSTM(hT ,xt, θ)

The final sentiment representation vector of the sentence, denotes by is given
by:

h∗ = tanh (WAttentions + Woutputhoutput)

where WAttention and Woutput are projection parameters on the two branches
of the sentiment classifier to be learned during the training process. Then, a
softmax layer is followed to transform h∗ to the conditional probability distri-
bution, i.e.,

ŷ = softmax (Wsoftmaxh∗ + bsoftmax)

where Wsoftmax and bsoftmax are the parameters for softmax layer.
Based on Equation (4), the loss of sentiment classification can be computed

as follows:

LSe

(
ŷSe,ySe

)
= −

N∑
i=1

C∑
j=1

yjSe
i log

(
ŷjSe
i

)
(5)

where ŷSe = [ŷ1Se, ŷ2Se, ..., ŷjSe] represents the predicted probabilities for each
sentiment classification class j ∈ [1, C], and ySe = [y1Se,y2Se, ...,yjSe] repre-
sents the ground-truth labels, and N is the number of samples.

Attention-based LSTM Topic Classifier Note that both classifiers for topic
and sentiment analysis share the same structure, and slightly difference lies in
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the objective function. Therefore, we simply show the loss function of the topic
classifier as follows:

LTo

(
ŷTo,yTo

)
= −

N ′∑
i=1

C′∑
j=1

yjTo
i log

(
ŷjTo
i

)
(6)

where, similarly, ŷTo = [ŷ1To, ŷ2To, ..., ŷjTo] represents the predicted probabili-
ties for each topic classification class j ∈ [1, C ′], and yTo = [y1To,y2To, ...,yjTo]
represents the ground-truth labels, and N ′ is the number of samples.

Feature Bifurcation The feature representation bifurcation is constructed by
merging the sentiment classifier and the topic classifier. The shared attention-
based LSTM layers condense an input sentence into a representation vector,
which includes all features of the sentence. Each classifier only extracts the fea-
tures that it is interested in according to the considered loss function.

4.3 Orthogonality Constraints

We notice that it is possible that the domain-dependent topic features and
domain-independent sentiment features may interfere with each other. Inspired
by recent work on multi-task learning [16] and shared-private latent space analy-
sis [5], we employ the orthogonality constraint technique in our proposed feature
divider. Specifically, it enables the divider to penalize commonly shared features
in sentiment feature space and topic feature space and encourage to extract the
independent sentiment topic features as purely as possible. To achieve this goal,
we define the optimal loss function as follows:

Lorth =

N∑
i=1

∥∥∥HSe
i

T
HTo

k

∥∥∥2
F

(7)

where ‖·‖2F is the squared Frobenius norm, HSe and HTo are two matrices whose
rows are parameters from the private LSTM layers of sentiment classifier and
topic classifier, respectively.

4.4 Training and Testing

Combining equation (5)-(7), the final loss function of our features divider model
can be summarized as follows:

L = LSe + LTo + γLorth

where γ is a hyperparameter.
In the training process, we feed the augmented dataset to the whole neural-

based model to train the classifier. After training, we can obtain a Bifurcated-
LSTM. For cross-domain sentiment classification task, we only focus on the
sentiment classifier branch of the Bifurcated-LSTM. Therefore, in the testing
process, we mainly transfer the well-trained sentiment classifier to other domains.
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Table 1. Statistical knowledge of the 7 datasets. The columns 2-4 denote the number
of samples in training, development and testing sets. The columns 5 and 6 represent
the average length and vocabulary size of corresponding dataset.

Dataset Train Dev. Test Avg.L Vocab.

Books 1400 200 400 159 62K
Electronics 1400 200 400 103 30K

DVD 1400 200 400 172 69K
Kitchen 1400 200 400 88 28K

Baby 1300 200 400 105 26K
Magazine 1300 200 400 113 30K
Software 1400 200 400 130 26K

5 Experiments Setting

5.1 Dataset

We collect product reviews of 7 different domains from Amazon [2]. First, we
extract the comment sentences and corresponding labels from raw data, and then
use keras [7] to perform the tokenization. After text preprocessing, we randomly
partition all the datasets into a training set, a development set, and a testing set
with the proportion of 70%, 10%, 20%, respectively. Table 1 shows the statistical
information of all considered datasets.

5.2 Dataset Augmentation

In experiments, we randomly choose reviews from domains other than the con-
sidered source and target domains as “noisy” datase to conduct dataset aug-
mentation. Meanwhile, we control the size of “noisy” dataset to be half size of
the original training dataset. After combining the original and “noisy” training
datasets, we have the augmented dataset.

5.3 Hyperparameters

We apply 200d GloVe vectors [20] to initialize the input sentence sequences, and
γ = 0.03 in Eq. (8). Other parameters in the neural networks are initialized by
randomly generated from a uniform distribution in [-0.1, 0.1]. We employ Adam
to optimize our loss function shown in Eq. (8) with mini-batch size 24.

6 Performance Evaluation of Bifurcated-LSTM

6.1 Performance Evaluation

Table 2 shows the average error rate achieved by the proposed model, and com-
pares it with that achieved by the one without domain adaptations. The LSTM
networks in Bifurcated-LSTM are vanilla LSTM networks.
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Table 2. Error rates of Bifurcated-LSTM for cross-domain classification. In
“Bifurcated-LSTM” columns, the numbers in brackets represent the improvements rel-
ative to same domain classification results without domain adaptation.

Source Transferring to Target Domains without Domain Adaptation
Avg.

Domain Book Elec. DVD Kitc. Baby Maga. Soft.

Book 20.8 21.3 22.7 23.2 23.0 23.3 21.7 22.29
Elec. 24.6 19.8 23.5 22.7 22.0 22.5 25.7 22.97
DVD 24.0 25.1 17.9 23.0 25.7 20.0 24.3 22.86
Kitc. 22.9 25.6 22.5 22.0 25.2 24.1 24.9 23.89
Baby 24.9 25.5 20.7 25.8 15.8 18.9 19.4 21.57
Maga. 24.4 23.0 24.6 21.3 21.6 11.2 18.1 20.60
Soft. 22.6 22.4 23.5 23.1 19.7 19.0 16.3 20.94

Source Transferring to Target Domains with Bifurcated-LSTM
Avg.

Domain Book Elec. DVD Kitc. Baby Maga. Soft.

Book 17.6(-3.2) 18.3 19.1 19.4 19.2 18.1 19.0 18.67(-3.62)
Elec. 19.8 15.4(-4.4) 18.2 19.5 17.4 16.9 16.1 17.61(-5.36)
DVD 21.2 19.7 14.3(-3.6) 18.1 16.4 18.1 17.5 17.90(-4.96)
Kitc. 19.8 18.6 17.3 15.7(-6.3) 17.6 16.5 16.9 17.48(-6.41)
Baby 19.7 17.3 16.7 17.4 11.6(-4.2) 13.9 18.0 16.37(-5.20)
Maga. 20.1 16.2 16.9 18.1 14.3 6.9(-4.3) 17.1 15.65(-4.95)
Soft. 18.9 19.8 17.5 18.5 17.9 17.0 12.1(-4.2) 17.38(-3.56)

From this table, we can find that our proposed model can reduce the average
error rate. Compared with the one without domain adaptation, our proposed
model can reduce the error rate by 6.41%. Moreover, Table 2 also illustrates
that our developed model can improve the performance of the classifier trained
in its own domains, and the value can be up to 6.3%.

6.2 Performance Comparison

The baseline methods in the comparison include:

– SCL: Blitzer et al. proposed Structural Correspondence Learning (SCL) to
learn a low-dimensional feature representation for source and target domains
[2].

– SFA: Pan et al. proposed Spectral Feature Alignment (SFA) to build a bridge
between source and target domains by aligning pivots with non-pivots [19].

– DANN: Ganin et al. applied the shallow version of Domain Adversarial
Neural Networks (DANN) to the cross-domain sentiment classification [10].

We perform twelve domain adaptation tasks, and the results are in Table
3. We can find that our proposed model can achieve best performance on most
tasks. For specific source domain, our proposed Bifurcated-LSTM always achieve
the best average performance.



Cross-Domain Sentiment Classification via Bifurcated-LSTM 11

Table 3. Error rates of SCL, SFA, DANN, and Bifurcated-LSTM for cross-domain
sentiment classification.

Source Target SCL SFA DANN Bifurcated-LSTM

Kitc. Book 33.9 25.2 29.1 19.8
Kitc. Elec 16.3 14.9 15.7 18.6
Kitc. DVD 24.6 23.0 26.0 17.3

Avg. 24.93 21.03 23.60 18.57

Book Kitc. 21.3 21.2 22.1 19.4
Book Elec. 22.5 27.5 26.7 18.3
Book DVD 26.0 18.6 21.6 19.1

Avg. 23.27 22.43 23.47 18.93

Elec. Kitc. 15.6 13.3 14.6 19.5
Elec. Book 24.6 24.3 28.7 19.8
Elec. DVD 25.7 22.8 26.2 18.2

Avg. 21.97 20.13 23.17 19.17

DVD Kitc. 20.6 19.2 21.7 18.1
DVD Book 23.2 22.5 27.7 21.2
DVD Elec. 25.9 23.3 24.6 19.7

Avg. 23.23 21.67 24.67 19.67

7 Conclusion and Future Work

In this paper, we propose a Bifurcated-LSTM for cross-domain sentiment classi-
fication. In particular, this Bifurcated-LSTM can separate reviews’ feature space
into sentiment and topic feature subspaces. To enhance the performance of the
Bifurcated-LSTM, we employ an attention mechanism to extract sentiment and
topic features. Moreover, we also apply data augmentation and orthogonal con-
straints techniques to further improve the performance. We conduct extensive
experiments to evaluate the performance of the proposed system.
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