Effects of Notch Radius, Test Temperature and Mixed Mode Loading on the Toughness of a Nano-Structured Al Composite Hala A. Hassan¹, Adel. M. El-Shabasy¹, John J. Lewandowski²

Case Western Reserve University School of Engineering

ABSTRACT

A nano-structured Al₈₉Gd₇Ni₃Fe₁ composite was processed by extruding atomized amorphous powders at different extrusion ratios (ER). The extruded composite contained fcc α -Al, intermetallic particles, and a small amount of τ_1 particles. The effects of changing the notch radius from fatigue pre-crack to 100 µm on mode I fracture toughness were studied at different test temperatures (*e.g.* 298K and 498K). The effects of mixed mode (I/II) loading using different offset ratios were also studied at these temperatures. Increasing the test temperature showed a significant effect on the fracture toughness for both mode I and mixed mode I/II conditions. Fracture surfaces were examined to reveal the nature of failure of such nano-structured Al composite materials at these loading conditions.

Objectives:

- > Determine the effects of notch radius and test temperature on the fracture toughness of the present materials.
- > Determine the effects of mixed mode loading on the fracture toughness of nanostructured Al composite at room temperature (RT) and 498K.

INTRODUCTION

- > Nano-crystalline metallic materials and metal–matrix composites (MMCs) both provide unique, but different combinations of properties.
- > Nano-crystalline metallic materials typically possess high yield strength, as predicted by the Hall–Petch relationship [1, 2]. Many techniques have recently been developed to produce tubes, wires, and disks with nano-scale features.
- > MMCs possess attractive properties such as high specific stiffness, modulus, and strength, although their damage tolerance (i.e. toughness) is typically not high enough to permit their more widespread use.
- > Combining the two concepts of MMCs and nano-crystalline materials in the form of nano-structured MMCs have the potential to provide combinations of properties not possible with conventional structural materials.
- > Nano-structured MMC's (NMMC's) can be produced by ball milling, spray deposition, and laser deposition. The present work uses the consolidation and subsequent extrusion of amorphous metal powders to produce NMMC's.

EXPERIMENTAL

Materials:

Atomized amorphous Al₈₉Ni₃Gd₇Fe₁ powders were placed inside an aluminum can and were extruded into rods of 15.9 mm diameter. The rods contained the extruded powder and a 2 mm thick Al ring. Hot extrusion of the amorphous powders produces an ultra-fine structure consisting of high volume fraction of nano-structured intermetallic particles (e.g. 100 nm thick), embedded in the aluminum matrix.

Testing conditions:

> 3PB specimen: 100 μ m and 450 μ m notch root radius.

- > Notched toughness, fatigue pre-cracked toughness.
- > Test temperatures: 298K and 498K.
- \rightarrow ATS Inc. temperature controlled cabinet ± 1 K.
- > MTS 20 Kip servohydraulic rig, MTS 458.20 controller, FTA control software.
- \triangleright Specimens fatigue pre-cracked at 20 Hz, sinusoidal wave, load ratio (R) =0.1.
- > Fatigue crack length measured with metallic foil KRAK© (KG-A05)-gages monitored by a Fractomat model 1288 crack measurement system.
- → Mixed Mode: different offset ratio (2C/S) were studied 0.2, 0.5, and 0.67.

¹ Dept. of Design and Production Eng., Faculty of Eng., Ain Shams University, Cairo, Egypt ² Dept. of Materials Sci. and Eng., Case Western Reserve University, Cleveland, OH, USA

notch root radius).

□ HAH acknowledges The Fulbright Association for AY 2006/2007 grant at CWRU.

Mode I/II : T=498K, offset ratio=3/6

Mode I/II : T=498K, offset ratio=4/6

15.0kV X15.0K 2.00µm

★ Different mixed mode fracture appearance for 3/6 vs. 4/6 offset ratios

Mode I/II

	Offset	θ	KI	KII	K _C , K _{eq}	J_{I}	JII	J _{Total}
	ratio		(MPam ^{1/2})	(MPam ^{1/2})	(MPam ^{1/2})	kJ/m ²	kJ/m ²	kJ/m ²
posite	0	0	16	0	16	2.56	0	2.56
	0.2	25	19.9	3.06	20	3.96	0.09	4.05
	0.5	40	23	4.8	23.6-26	5.29	0.23	5.52
	0.67	60	14.7	4.22	14.7-15.2	2.16	0.18	2.34
posite	0	0	13	0	13	1.69	0.00	1.69
	0.2	25	9.7	1.7	10	0.94	0.03	0.97
	0.5	40	18.2	2.4	18.6	3.31	0.06	3.37
	0.67	60	10	3.6	10.6	1.0	0.13	1.13
y [3]		0	37	0	37	17.8	0	17.8
		13	35.2	5.1	35.57	16.1	0.34	16.44
		26	33.7	9	34.88	14.76	1.06	15.52
		53	28.9	18.4	34.26	10.86	4.4	15.26

RESULTS SUMMARY

CONCLUSIONS

> Significant effects of notch radius on the facture toughness.

> Increasing test temperature increases the toughness.

> Increasing Mode mixity increases the fracture energy of nano-structured Al-composite, while decreasing the fracture energy of 2034 Al-alloy.

> Fractography shows locally ductile/ dimpled fracture surface. Dimple size increases with increasing test temperature (Mode I).

> Different fracture surface appearance for Mode I vs. Mode I/II.

> Changing the offset ratios changed the fracture surface appearance.

REFERENCES

1. E.O. Hall, Proc. Phys. Soc. London, 1951, Sect. B 64, pp.747-753.

2. N.J. Petch, J. Iron Steel Inst., 1953, 174, pp. 25-28.

3. Kamat, S.V. and Hirth, J.P., Acta Materialia, 1996, 44(1), pp. 201–208. 4. Toughness of Nano-structured Metal Matrix Composites via Processinginduced Devitrification of Amorphous Aluminum Alloys", Hala A. Hassan, John. J. Lewandowski, Mater. Sci. and Eng. A, 2008.

5. "High Cycle Fatigue Behavior of a Nano-Structured Composite Produced via Extrusion of Amorphous Al₈₉Gd₇Ni₃Fe₁ Alloy Powders", Adel El-Shabasy, Hala Hassan, J. J. Lewandowski, Mater. Sci and Eng. A, 2008.