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Abstract—With the rapid growth of the smart device market,
associated security issues become more threatening and diverse
than ever before. Due to the limitations of the traditional explicit
authentication mechanisms (e.g., password-based, biometrics),
researchers and the industry have been promoting implicit
authentication (IA) that does not require explicit user action and
potentially enhances user experience to further protect devices
from misuse. IA typically leverages various types of behavioral
data to deduce a user behavior model for authentication purpose.
However, IA systems are still at their infancy and exhibit
many limitations, one of which is how to determine the best
retraining frequency when updating the user behavior model.
Another limitation is how to gracefully degrade user privilege,
when authentication fails to identify legitimate users (i.e., false
negatives) for a practical IA system. To address the first problem,
we propose an algorithm that utilizes Jensen-Shannon (JS)-
dis(tance) to determine the optimal retraining frequency. For the
second problem, we introduce a dynamic privilege mechanism,
again based on JS-dis(tance), to achieve multi-level fine-grained
access control. Our simulation results show that the proposed
techniques can successfully detect the degradation of accuracy of
the user behavior model, as well as automatically determine and
adjust to the best retraining frequency. It is also shown that the
dynamic privilege-based access control reduces the impact of false
negatives on legitimate users and enhances system reliability and
user experience compared with the traditional lock-only method
in case of authentication failure.

I. INTRODUCTION

As smart devices become the primary means of commu-

nication, more and more people rely heavily on them as the

main way of Internet access [1]. On the other hand, smart de-

vices store sensitive and private data including bank accounts,

passwords, contacts, emails, and photos, while their security

has not gained enough attention [2]. To protect smart devices

from misuse, many authentication methods such as password,

draw-a-secret and fingerprint recognition are employed in

various smart device products from different companies [3].

These methods all require explicit user actions (e.g. entering

a password, swiping finger), which can be inconvenient and

cause users to bypass authentication. Recently, researchers

and the industry (e.g., Samsung) became interested in implicit

methods for authentication to enhance security and usability.

In fact, security and usability are often conflicting goals in that

users tend to disable or bypass the security system if it is not

user-friendly.

Generally speaking, Implicit Authentication (IA) is a tech-

nique that allows the smart device to recognize its owner

by being acquainted with his/her behaviors. It is a technique

that uses machine learning algorithms to learn user behavior

through various sensors on the smart devices and achieve user

identification [4]. User behavioral data, such as walking style,

swipe speed and location, are used to train user behavior

models which are then used as reference to match with users’

current behavior. There are several advantages of IA compared

with the traditional explicit authentication. First, behaviors

are intrinsic to each person and are accumulated activities

over a period of time, and thus cannot be forgotten or easily

forged. One may often forget his/her passwords but rarely

forgets his/her own behaviors [5]. Even though biometrics are

much harder to be stolen than passwords, there have been

research works showing the feasibility of biometrics forgery

[6]. Second, IA is much more user-friendly and requires

no explicit user action, which leads to enhanced security

against vulnerabilities caused by human factors (e.g., user

disabling security features, using weak passwords that are

easier to memorize). A recent survey shows that only 44%

of smartphone owners configure PINs or passcode on their

devices [7]. People find password entering more annoying

than lack of cellular coverage, small screen size, and poor

voice quality. A recent bypass flaw of Samsung smartphones

reveals that vulnerabilities introduced by human factors are

potentially more dangerous and easier to be overlooked, even if

biometrics-based authentication systems such as fingerprinting

and facial recognition are used in place of password [8] .

On the other hand, IA has its own limitations, one of which

being that it is difficult to find behaviors that uniquely identify

a user, unlike biometrics. Machine learning is most widely

used to tackle this difficulty [9], [10], and there are quite some

research works dealing with how to select suitable machine

learning algorithms for various activity types such as those

obtained from touch [11], [12], accelerometer [13], location

[14], etc., as well as how to provide a general framework for

IA [1], [4], [15]. In this paper, on the other hand, we focus

on two critical and difficult problems that affect the practical

deployment of IA systems: model retraining and handling
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authentication failure that have not been treated sufficiently in

the literature. Retraining is needed since the machine learning

accuracy1is affected by the quality of the training data (i.e.,

user behavioral data) as time evolves. As more users join and

remain in the system, we are more likely to obtain better train-

ing data and capture long-term changing behaviors of users,

and hence need to retrain the learned user behavior model by

refreshing its parameters at appropriate times to reflect such

changes. Authentication failure in this paper is referred to as

the failure to authenticate legitimate users and block access

to the smart device and apps. This can occur when the user’s

behavior changes, e.g., traveling to a strange place. Existing

solutions feature a binary decision-making [4], [16] or similar

[17], [18] mechanism that either allows access to or locks the

device and some apps at once, which can result in annoyance

and the subsequent bypass or removal of the IA system. To the

best of our knowledge, we are the first to provide satisfactory

solutions to the retraining and authentication failure problems

in IA. Our solutions are generally applicable regardless of

the machine learning algorithms being used and will lay the

foundation for realistic IA systems.

Devising suitable solutions for retraining and authentication

failure is challenging due to the following reasons. Finding

the optimal frequency of retraining is important but difficult.

If the retraining frequency is too high, we could waste a lot

of energy and computational resources in order to obtain high

accuracy. If it is too low, the accuracy would be affected which

could cause high false positive and false negative rate in the

authentication. In addition, it is difficult to achieve intelligent

retraining, where the retraining frequency is different for dif-

ferent users at different times and spaces. To balance between

the performance of the machine learning models and energy

consumption, we propose an entropy-based measurement to

determine the best frequency for model retraining. The state

of the art research uses timeline-based retraining [19], [20].

This method takes advantage of empirical data to determine

the best retraining frequency, and uses this time as predefined

measurement for future retrainings. The time cycles between

retrainings remain the same. However, the change in each

user’s behavior in IA systems is different and unpredictable.

Even the same person could change behavior at any time in

an unforeseeable manner. For this reason, the timeline-based

retraining may not be effective for IA. For the authentication

failure problem, it is highly difficult to balance between false

positives (allowing illegitimate users’ access to the device)

and false negatives (denying legitimate users’ access) or offer

great user experience when we only have binary options (lock

or unlock the device and apps). We therefore propose a new

access control mechanism based on dynamic privilege that

works by dividing the privilege system into several levels,

where each level corresponds to some category of function

units or apps with similar sensitivity or security requirement.

For example: the highest level includes mobile banking apps

1Accuracy here is defined as the proportion of correct authentication results
(i.e., true positives and true negatives).

and contact book; the next level includes social apps and

device ID, and so on. Instead of locking the device directly

when authentication fails, the dynamic privilege mechanism

can temporarily assign a reasonable privilege level to the

current user based on the JS-dis in between the testing data

and the training data. Thus, legitimate users will be able to

continue using apps such as Facebook and Maps, but will

be temporarily locked out of highly sensitive apps. Access

to highly sensitive apps will be automatically regained as

more data about the user is collected, without explicit user

action. The user can also rely on a backup plan, e.g. entering

password, to regain the access. Our simulation results suggest

that the dynamic privilege mechanism can largely reduce

unpleasant user experience.
In this paper, we strive to conquer the above technical

challenges to obtain improved and more realistic IA systems.

Our main contributions in this paper include:
• We compare the different machine learning methods and

provide a novel technique to achieve optimal retraining fre-

quency. The results show that our technique can successfully

detect the accuracy change and automatically determine the

best retraining frequency.
• We propose a dynamic privilege mechanism for fine-

grained access control to achieve secure and usable IA. Our

method can not only reduce the negative effect of authen-

tication failure on legitimate user but also achieve a better

accuracy than the traditional lock-only method.
• We evaluate our proposed technique and mechanism using

real user data. The dataset contains data from 130 persons

with 31 features and 132960052 records. Our simulation

results show the effectiveness and efficiency of our proposed

solutions.

II. PRELIMINARY

In this section we provide some background information

on entropy, Kullback-Leibler (KL) divergence and Jensen-

Shannon (JS) distance, which we use to develop the retraining

and dynamic privilege mechanisms.

A. Entropy or Timeline
Entropy, as it relates to dynamical systems, is the rate of

information production [21]. In machine learning, the differ-

ences in between entropies are used to measure the similarity

in between the testing data and the training data [22].
In this paper, we leverage entropy to measure the behavior

change of a user for IA, since it is more suitable than

the timeline-based method. The behavioral change pattern

of each person varies from each other. One may change

behavior frequently but others may not. It is also possible

that the change varies from time to time for the same person.

For example, a person’s behaviors can change more rapidly

and differently when he/she is traveling in a strange place.

Hence, the timeline-based method is not a good choice for

retraining. In contrast, each time the behavior changes, it is

also accompanied by an entropy fluctuation, as indicated in

our evaluation results. By observing these fluctuations, we can

determine the best retraining frequency.
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Fig. 1: IA Frameworks

B. KL Divergence and JS-Distance

The common way to measure the entropy difference in

between two states is by calculating the KL divergence [23]

between them. The KL divergence in between two discrete

random variables X and Y is defined as:

DKL(X||Y ) =

N∑

n=1

p(X = n) log
p(X = n)

p(Y = n)
. (1)

If the distributions X and Y are equal, the KL divergence

is equal to zero.

However, the KL divergence is not a proper distance mea-

sure because it is not symmetric [22]. Thus, we use a smoothed

and symmetric extension, JS-dis for measuring the similarity.

Using (1), we can further define the JS-dis as:

DJS(X||Y ) =
1

2
[DKL(X||M) +DKL(Y ||M)], (2)

with the averaged variable M = 1
2 (X + Y ).

III. THE PROPOSED IMPLICIT AUTHENTICATION

FRAMEWORK AND ADVERSARY MODEL

The basic IA framework is shown in Fig. 1 (a), which was

first proposed in [15]. We augment it with two key function-

alities, retraining and dynamic privilege, to build practical IA

systems.

As shown in Fig. 1 (a), the basic IA has two phases - training

and testing. In the training phase, past behavioral data is input

as parameters to the training algorithm. The training result

- i.e., a model with tuned parameters - is then returned for

testing purpose. In the testing phase, which usually happens

in real time, recent behavioral data is input into the model and

a score is returned to either reject or allow user access.

To cope with retraining and authentication failure, we

propose a dynamic IA framework - as shown in Fig. 1 (b) -

obtaining best retraining frequency and fine-grained privilege

control. Compared with the basic IA framework, we introduce

a retraining unit (RU) to monitor the behavior changes in

real time and automatically decide when to retrain the model.

To achieve fine-grained privilege control, we further divide

the testing score into different levels, which correspond to

different apps (clustered by their sensitivities). Instead of

locking the device, our mechanism tends to only lock some

sensitive apps based on the testing result.

Adversary Model
We are mainly concerned with adversary who steals the

smartphone from a legitimate user, and uses it for accessing

sensitive apps and user data. Due to the properties of basic IA,

the accuracy of identifying the adversary is proportional to the

data collected by the device [1]. Collecting data consumes time

which will give the adversary higher chance to gain longer

access to the device.
Furthermore, we consider more powerful adversary with

the following capabilities.

• The adversary can imitate the legitimate user by observing

the user whenever possible, but cannot follow the user all the

time.

• The adversary has knowledge of the user’s past behavioral

data, e.g., by copying the behavioral data stored in the device

learning database.

IV. INTELLIGENT RETRAINING

To achieve long-term high accuracy, user behavior data

must be continually sent to the server to retrain the behavior

model and flush the expired parameters. In addition, to achieve

low energy consumption we need to find the best retraining

frequency. In this section, we will discuss how to design such

intelligent retraining.
The idea behind our intelligent retraining is to measure

the similarity in between the testing sample and the training

samples by using JS-dis. If the distance is larger than the

legitimate threshold, it indicates changes in user behavior and

the behavior model needs to be retrained.

A. How to Retrain
To measure the difference in between two individual sam-

ples in the training and testing dataset, using JS-dis in Eq. (2)

we have:

DJS(E||R) =
1

2
[DKL(E||M) +DKL(R||M)]. (3)

E in Eq. (3) indicates a sample in the t(e)sting dataset, and

R indicates a different sample in the t(r)aining dataset. M is

defined as M = 1
2 (E +R).
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Since there may be noise or error message in the testing

data, we need to further measure the average JS-dis in between

the training samples and the testing sample in each testing by:

D
(n)
JS =

K∑
k=1

DJS(E
(n)||Rk)

K
,

(4)

where K is the number of training samples (we call it stride),

and (n) denotes the nth testing sample. Since we only need

to consider the most recent training data, it is not necessary

to include all the training samples. In this paper, we use

K to indicate these recent data. For consistency reason, we

also cluster K testing samples into one set, which indicates a

behavioral pattern of the current user.

After defining the average JS-dis, we can further calculate

the standard deviations for the elements in each stride as:

s(n) = (
1

K

K∑

k=1

(DJS(E
(n)||Rk)−D

(n)
JS )

2)
1
2 . (5)

In the evaluation section, we will show that the average

accuracy can be reflected by the standard deviation of the JS-

dis in Eq. (5).

B. When to Retrain

Algorithm 1: Retraining Algorithm
Input: Current Data, Retraining Parameter, Stride

Output: boolean Retraining Decision

1 initialize CD:=Current Data, RP:=Retraining Parameter;

2 initialize Retraining Decision:=false ;

3 CD JS dis[]=JS Dis(TS[],CD) ;

/* TS[] stores all the previous samples in

training set */

4 CD JS Dis ave=Average(CD JS dis[]) ;

5 Dis[].add(CD JS Dis ave);

/* Add the average distance of the current

sample to the distance array */

6 if (CD.index mod Stride)==0 then
/* Completed a stride */

7 std=StandardDeviation(Dis[]);

8 if (std≥RP) then
9 Retraining Decision=true;

10 else
11 Retraining Decision=false;

12 Dis[].clear;

13 else
14 Retraining Decision=false;

15 return Retraining Decision;

To determine the best retraining frequency, we define a

threshold ε which represents the acceptable distance such that

the accuracy within ε is enough high. If the most recent

distance is larger than ε, we should consider retraining.

The detailed retraining algorithm is described in Algorithm

1. Current Data indicates the current testing sample , which is

a distribution of different features. Retraining Parameter is the

threshold ε. The lower the Retraining Parameter, the higher the

accuracy (if the accuracy has not reached the upper bound.)

CD JS dis[] contains the array of distance in between the

current sample and all the previous samples in the training set.

Dis[] is used to calculate the standard deviations in between

CD JS Dis ave values. Finally, if the Retraining Decision is

true, it will ask for retraining.

C. Retraining Process

Fig. 2 shows the process of selecting the retraining fre-

quency based on the testing sample data. Since we already

known how to calculate the JS-dis in between the training

samples and the current testing sample, we can further take

their average value (D
(n)
JSc) and mark it as one output of the

current stride. In Fig. 2, the average value of these JS-distances

is drawn as a deep blue stripe. There are more than one D
(n)
JSc

in one stride. In this paper, the training data could come from

the original training or the previous retraining.

We further divide these average values into different stride.

Then, we can calculate the standard deviation for each of

these strides’ data. In Fig. 2, the current sample’s standard

deviation value is marked as “s”. The final step is to compare

the standard deviation with the predefined ε. For different

implementations, we could choose different values of ε. If

ε < s, due to the behavioral pattern change, the accuracy of

the user behavior model will drop significantly, and we should

retrain the model after this stride.

Average JS-Dis

s

Current Testing Samples

Previous 
Retraining Data Stride

Fig. 2: Retraining Process

V. DYNAMIC PRIVILEGE-BASED ACCESS CONTROL

The basic idea of dynamic privilege is to divide the testing

score into fine-grained levels, and each level corresponds to

some specific apps. By comparing the current user score with

the predefined levels, our mechanism can assign a suitable

privilege (by allowing some apps while disabling others)

for this user, achieving a more practical access control. To

successfully design the dynamic privilege mechanism, we need

to answer questions such as how to define each privilege level,

what is the entropy distance between each level, how to assign

a reasonable privilege to the user based on the entropy distance

in between the test data and training data, and how to reassign
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the privilege if the user’s behavior is back to normal. We will

discuss these problems in detail and present solutions.

The dynamic privilege mechanism is realized by keeping a

multi-level privilege table. In this table, the apps are divided

into different categories based on their sensitivity and given

different privilege levels. For example, highly sensitive apps

such as mobile banking and contact book will be given the

highest level. Lower levels will be given to email, maps,

games, etc. To categorize each app, one can use the default

setting or configure the setting manually. This process depends

on the specific implementation on different devices.

A. Defining the Privilege Levels

The most important step of dynamic privilege-based access

control is how to define different privilege levels. We leverage

empirical data to find the average JS-dis in between all the

previous TP (True Positive) samples and FN (False Negative)

samples for each person in the dataset. We first sort these

average JS-dis(s) based on their values, and we divide them

equally to form different clusters. For each user defined level,

we define the rule of such level utilizing the average values

in the corresponding cluster. For example, after we filter out

some noise clusters, the rule of the first level is defined as

the average value in the first cluster, and using the same

technique we can define the other levels. These levels can be

assigned to apps based on the sensitivity of these apps. Since

the empirical data come from the training set, we need to keep

the training set “fresh” enough to maintain good performance

of the dynamic privilege mechanism. To keep it fresh, we need

to retrain the model and keep refreshing the training dataset,

which we have discussed in the previous section IV-A.

B. Mapping to the Privilege Levels

After defining the value for each level, we can calculate

the average JS-dis D
(n)
JS in between the current testing sample

and each training samples, and further decide the appropriate

privilege for the user at this time.

The mapping procedure is shown in Algorithm 2. We first

find the average JS-dis between the current testing sample

(CD) and all the previous samples (TS[]), and then calculate

the average value of these average JS-distances (JS ave).

Using the defined distance rule for each level in privilege

table (Privilege Table[]), we compare JS ave with the rule

associated with the level. If JS ave is larger, it indicates that

the current testing sample is beyond the tolerance distance to

the previous i samples, and we will reduce the user privilege

to the lower level. However, if JS ave is smaller, the current

testing sample is still very closed to the previous i samples,

and thus we will keep the user privilege level unchanged.

Fig. 3 shows how the dynamic privilege access control

works. The blue stripe in the average JS-dis array indicates the

average distance (D
(n)
JSc) in between the current testing sample

and the previous retraining data (same as Fig. 2). The privilege

table, which stores the predefined privilege rules based on

the training data, is a component that should reside in the

authentication module. The lower the number, the higher the

Algorithm 2: Mapping Algorithm
Input: Current Data, Current Level, Privilege Table[]

Output: New Level

initialize CD:=Current Data, CL:=Current Level, PT[]:=

Privilege Table[];

initialize New Level:=null ;

1 for (each training sample i in TS[]) do
/* calculate the JS-dis in between each

previous sample and current testing sample

*/

2 JS dis[i]=JSdis(TS[i],CD);

3 i++;

4 JS ave=Average(JS dis[]);

5 if JS ave>PT[].Level(CL) then
6 New Level=CL++;

7 else
8 New Level=CL;

/* Retrain if necessary */

9 TS[].add(CD);

10 return New Level;

Authentication
L 1
L 2
L 3

L n
...Privilege Table

Average JS-Dis

Fig. 3: Dynamic Privilege Overview

privilege level, e.g., L2 is a higher level than L3. To update

user privilege, the dynamic privilege mechanism first compares

D
(n)
JSc with the predefined rule in the current privilege level of

the user. For example, if the current level is L2, the mechanism

will compare D
(n)
JSc with the L2 rule, and will lower the current

privilege if D
(n)
JSc is larger and keep the current privilege

unchanged otherwise.

It is possible that D
(n)
JSc is much smaller than the value

stored for the current level in the privilege table. It means that

the difference in between the current user and the legitimate

user is smaller than the given level and indicates that the user

privilege should be raised. In this case, the dynamic privilege

mechanism will begin to retrain the model and elevate the

current user privilege to a higher level if it is not already the

highest. For example, if the current privilege is L3, but D
(n)
JSc

is much smaller than the L3 rule for a while (e.g. 1 hour), the

mechanism will send a retraining signal to the sampling app

which will upload more recent samples to the remote server

for retraining. At the same time, the mechanism will elevate
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the current user to L2.

VI. PERFORMANCE EVALUATION

In this section, we will verify our methods using the real

dataset. There are two methods we want to test. The first one

is using JS-dis to decide the retraining frequency. The second

one is dynamic privilege mechanism and the privilege level

selection.

A. Dataset

In order to evaluate the first method, we want to find a

dataset that records the long-term behavioral data for different

users, and we require the dataset containing as many people

as possible to test our second method. In addition, we also

hope the dataset contains enough sensors. For these reasons,

we select MIT friends and family [24] dataset as our testing

database.

This dataset contains 130 participants with total number of

9 types of data (GPS, accelerometer, SMS, app installation,

battery usage, call logs, app running, blue-tooth devices log).

The dataset contains more than 5 months data.

B. Accuracy in Long-Term Testing

Since the data set is very large (more than 17GB) with

various of different data, we further divide and sort the data

based on the type of features, and the final dataset contains

31 features plus 1 index with total 132960052 records.

Fig. 4: Accuracy for different machine learning methods

We run several different kinds of machine learning methods

using k fold cross validation method. For each different kinds

of machine learning algorithm, we record its accuracy2and the

corresponding timeline. In this experiment, we only train once
at the beginning and we want to show the accuracy curve from

one day to one month time range. Since the data contains 5

months information, we take the average of these 5 months.

For the fine grain data like days and weeks, we also take the

average value.

2More formally, we can define the accuracy as

TP + TN

TP + FP + TN + FN
(6)

Fig. 4 shows the accuracy curves for PLDA, LDA, SVM

with linear kernel and SVM with RBF kernel in one month

time range. Since LDA uses unsupervised learning method,

the accuracy is much lower than the others. From Fig. 4,

we can clearly see that the accuracy drops significantly in

between 5D(ays) to 6D(ays), 6D to 1W(eek), 1W to 2W,

2W to 1M(onth) due to the behavioral change3. Thus, even

the adversary knows the user’s historical data and uses it to

imitate the legitimate user, the IA mechanism will still lock

the device because of the behavioral change. However, the

behavioral changes may also lead a locking of device for a

legitimate user. To prevent such unfriendly locking, we need

to retrain the model. The following subsection will present

detail of retraining, which can be done automatically.

C. JS-Distance in Long-Term Testing

Fig. 5: JS-dis heat map: red color indicates long JS-dis and

deep blue indicates short JS-dis

In this experiment, we calculate the JS-dis in between each

day and all the days including itself for each person through

the monthly time range . For example, we calculate the first

day with the first day, the first day with the second day and

first day to n day for each person. We take the average value

of all persons. Then we draw the comparison result in the

first row of the heat map. Similarly, the n row represents the

comparison result in between n day’s data and all the other

day’s data including itself. The average comparison time is

trivial - it only takes less than 0.1 second to calculate the

average JS-dis in between 1 day’s samples for each person.

The Fig. 5 shows the heat map for the average value of

1 day through the whole month using PLDA. The distance

has been marked by different colors. Red color indicates long

JS-dis with maximum 0.5. Deep blue indicates short JS-dis

where TP indicates the number of true positive authentications, FP indicates
the number of false positive authentications, TN indicates the number of
true negative authentications and FN indicates the number of false negative
authentications

3There are slightly differences in between PLDA and the other two SVM
methods, but generally speaking, they all follow the same trend.
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with minimum 0. The 0 value is resulted by compared with

themselves.

From the Fig. 5 we can clearly see that there are more

red color slots in between the 5D to 1M than the former

days. Moreover, in each time the accuracy dropped (Fig. 4),

the JS-dis also fluctuates (Fig. 5) - this experiment shows

the relationship in between the accuracy of machine learning

model and the JS-dis for user behavioral dataset. By observing

this fluctuation of JS-dis we can indirectly decide when to

retrain the model.

D. Retraining Frequency

By taking the standard deviation of each stride k in the first

row in Fig. 5, we can clear see the fluctuation of the JS-dis.

All the strides reflect the accuracy change rate except the first

stride (containing 0 distance).

From Fig. 5 we can clearly see that there exists fluctuations

in between day5 to week2. These fluctuations correspond to

the accuracy changes in the Fig. 4. The largest value of the

difference in between any two standard deviations is the value

within the range of 6D to 2W with value of 0.024, and we

can set the legitimate threshold ε = 0.02 for this dataset.

E. Levels for Dynamic Privilege

We utilize empirical data, which is the average JS-dis in

between TPs and FNs in the dataset, to initialize the privilege

levels. In practice, we do not know the correctness (e.g. FN,

FP, TN, TP) of IA unless user send feedback to training server,

but we know its correctness using empirical data. We assume

the empirical data reflect the key attributes of legitimate user.

Actually, the retraining process can reinforce the effectiveness

of empirical data, and we can readjust the privilege level in

each retraining.

Fig. 6: Level in dynamic privilege

In this experiment, we compare the JS-distances using the

data of same person and take the average of these values.

We select three persons from the dataset to demonstrate our

method and the result is presented in Fig. 6. First, we pick up

one person from the dataset, marked as Person1. Second, we

find out first two persons who have been mistakenly marked

- FN (Actually, “they” are same person - Person1). Fig. 6

shows the result of this test. The blue points indicate the TP

for identifying Person1 as legitimate user. From the Fig. 6, we

can see these points are closer to the Person1. The red points

indicate that the FN of mistakenly identifying the Person1 to

be Person2. Similarly, these points are closer to the Person2.

The green points indicate the FP of mistakenly identifying the

Person1 to be Person3.

The level can be defined as the following: First, we find the

average JS-dis in between each TP sample and the other TP

samples for all person in the whole dataset, called D
(N)
JS . In

Fig. 6, it is the average JS-dis in between each blue point and

other blue points. After that, we find out all the FN samples

for all persons and average the JS-distances in between these

FN samples and all the previous TP samples. In Fig. 6, the

first FN sample for Person1 is the first time that red/green

point occurs, and we average the JS-distances in between this

point and all the other blue points to derive an average JS-

dis. Similarly, we can calculate all the average JS-distances

between m FN samples and all the previous TP samples, and

we sort these m JS-distances based on their value. Then, we

divide these values into different clusters, and further define

the first level to be the average value of first clusters, marked as

D
(N ′)
JS . Utilizing the same method, we can define the second

level D
(N ′′)
JS , where D

(N ′′)
JS is corresponding to the average

JS-dis of the second cluster, in which we average JS-distances

between samples.

1) FN test: Using the same dataset, we will show the

performance of four levels dynamic privilege regarding the FN

rate. First, we find out (for each individual) the average JS-

dis D
(N)
JS for each FN test. Then we use the same technique

discuss previously to define each level rule. The results are

shown in Table I.

Using D
(K)
JS in Table I as the distance rule for our testing

dataset, we rerun the former experiment which uses data from

the same person. The detail of this experiment is described

in the following: in the initialization, after we find all the FN

samples in the historical dataset, we further calculate their JS-

dis and sort them by their value (the detail is described in the

previous subsection). When we finish the sorting procedure,

we cluster these values and average each cluster to derive

level rule as shown in the second row (D
(K)
JS ) in the Table

I. In the testing phase, each stride4has been input into the

user model, in which we also calculates DJS in between the

current stride and previous TP samples. Suppose we are in

L1 and the user model produces a DJS larger than 0.342, the

dynamic privilege control units will lower the current user’s

privilege to L2. In each testing, we record the number of

FN and their corresponding privilege levels to see whether

or not the dynamic privilege mechanism can map the user to

a reasonable level. Because we use the same person’s data,

we expect the most of the testing results will be in the high

level with minimum privilege limitation. Furthermore, we also
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expect the FN will have less impact of the current user.

In Table I row 3, the result shows that: 79.93% of the FNs

make the system run at L1. In this level, there is no privilege

limitation for users. 11.03% of the FNs make the system run

at the L2 with bank and high privacy apps locked. 5.92%

of the FNs make the system run at the L3 with contacts,

social and some low privacy apps locked. In this level, one

can perform a few basic operations on the phone such as

call, SMS, time checking and so on. Only 3.12% of the FNs

can lead a directly locking of the device. From the result, we

can see that the dynamic privilege could largely reduce the

unfriendly user experience by reducing the effect of FN. The

reason is that the legitimate users may have some behavior

changes but these changes are much smoother compared with

the adversaries. The dynamic privilege will take the longer

time to reach to the lowest level than the traditional method.

If we bring in retraining method talked above, such lock will

seldom happen.

TABLE I: Levels and their performances

L1 L2 L3 L4

D
(K)
JS 0.342 0.387 0.467

����
FN 79.93% 11.03% 5.92% 3.12%

Adversary 1.31% 13.09% 11.04% 73.56%

*L1: full privilege. L2: lower privilege with bank,
contacts, email list and high privacy apps locked. L3:
lowest level privilege with all apps locked except some
low privacy apps such as call, SMS, time and so on.
L4: lock.

2) Adversary test: We rerun the experiment using adversary

setting. In this setting, we simulate the “stolen event” by

injecting other users’ data. For example, in Fig. 6, we use

the data from Person2 and Person3 to rerun the test based

on the training data of Person1. In this paper, the testing

JS-dis is the average distance in between all the Person1

training samples and Person2/Person3 testing samples. In this

experiment (as shown in Table I row 4), there are 73.56%

of the adversaries have been directly lowered to level 4,

which means the user will be directly locked. 11.04% of

the adversaries have been lowered to L3 with the minimum

privilege. 13.09% of the adversaries can reach to L2. Only

1.31% of the adversaries can have the full control of the

device with L1 privilege. Compared with the basic IA without

dynamic privilege control, we improve the average precision

rate from 79.75% to 98.69%. From this experiment, we can

see that the dynamic privilege can improve the IA performance

dramatically. The reason is that the behavior of adversary

has larger difference compared with legitimate user’s. From

the other point of view, the average JS-dis D
(N)
JS is large in

between the legitimate user and the adversary. As the result,

the dynamic privilege will directly drop to the lowest level

and lock the device.

4Please refer section IV-C (Retraining Process).

Since we can define the rule of first privilege level to be

a small number, this setting can prevent the adversary from

accessing the device even if he can imitate the behavior of

legitimate user with minor difference. Furthermore, in practice,

since it is very hard to imitate the legitimate user in a long

term, the IA mechanism will eventually lock the device once

it finds the behavioral pattern mismatch.

VII. RELATED WORK

This paper is most related to implicit authentication (IA)-

mechanisms based on user behavior [5], especially those im-

plemented on smart devices [11]–[13]. On the contrary, instead

of proposing a new IA mechanism, we address two practical

issues inherent in all IA systems that have been largely ignored

in the literature. Our paper is thus complementary and parallel

to these existing related works.

In general, IA relies on the behavioral biometrics that are

considered as soft biometrics as opposed to hard biometrics

such as facial recognition and iris scan. Specifically, in [12],

Sun et al. propose a multi-touch system to authenticate user

based on the motion of different fingers. De Luca et al.

[11] use touch screen pattern as main attribute to identify

different persons. From another angle, Tamviruzzaman et al.

[13] propose a multiple-behavior authentication technique that

uses both location and gait pattern as soft biometrics to identify

user.

An app-centric approach has been introduced in [4] to

simplify the IA development. Most of these works focus on

one time training without further retraining. In [25], Monrose

et al. present the problem of retraining in the authentication,

where the machine learning model is retrained once a new

user is introduced. Sheng et al. [26] introduce a technique

that can retrain part of the system when a sufficient sample

has been collected. In [19], Thomas et al. use timeline-based

retraining to achieve url spam filtering. In practice, most of the

machine learning methods use timeline-based retraining. For

this reason, the flexibility of these methods is very limited.

The difference between these works and our work is that we

use entropy to indirectly measure the accuracy changes in

the IA mechanism to further decide the retraining frequency.

Our method is dynamically adaptable in that it automatically

selects the best retraining frequency for each person which can

be varying.

In addition, IA systems implemented on smart devices has

been a popular topic recently [4], [16]–[18], [27]. However,

these systems handle authentication failures by simply locking

the device which can be annoying and unacceptable if the

failures are caused by false negatives. To overcome this

problem, we propose a fine-grained access control system

that again leverages entropy to define privilege levels. This

degrades user privilege gracefully when authentication fails

and greatly enhances user experience for IA systems that are

prone to false negatives.
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VIII. CONCLUSION AND FUTURE WORK

Although the accuracy of IA can increase with more ad-

vanced technology used in smart devices, the retraining and

authentication failure problems still hinder realistic deploy-

ment of IA systems. How and when to retrain the user

behavior model and what to do when the legitimate user fails

the authentication remain unsolved. To address the retraining

problem, we proposed a technique using JS-distance to deter-

mine the best retraining frequency. For authentication failure,

we introduced the dynamic privilege mechanism with finer

privilege levels. Compared with the predefined privilege rule,

we can decide which level should be assigned to the user

based on his/her current behavior. Compared with the lock-

only mechanism in the existing related work, the dynamic

privilege-based access control can largely reduce unpleasant

user experience by only locking part of the device.

We tested our methods on a dataset of 130 persons with

more than 5-month worth of records. The simulations showed

that our retraining techniques can successfully detect the

accuracy changes, suitable for use in IA system. The results

also showed that the dynamic privilege mechanism can largely

reduce the effect of false negative authentication failure.

In the future, we will implement the retraining and dy-

namic privilege algorithms on mobile devices to evaluate

their efficacy and efficiency. We will also incorporate user

feedback to enhance the performance of retraining. From the

feedback, system can deduce the false negative and false

positive and choose a suitable retraining rate accordingly.

In addition, we plan to study the impact of false positives

(allowing illegitimate users to access phone contents) that may

be induced by our fine-grained dynamic privilege mechanism.
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