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Abstract—The ubiquity of smartphones makes the mobile
crowdsourcing possible, where the requester (task owner) can
crowdsource data from the workers (smartphone users) by using
their sensor-rich mobile devices. However, data collection, data
aggregation, and data analysis have become challenging prob-
lems for a resource constrained requester when data volume is
extremely large, i.e., big data. In particular to data analysis, set
operations, including intersection, union, and complementation,
exist in most big data analysis for filtering redundant data and
preprocessing raw data. Facing challenges in terms of limited
computation and storage resources, cloud-assisted approaches
may serve as a promising way to tackle the big data analysis
issue. However, workers may not be willing to participate if the
privacy of their sensing data and identity are not well preserved
in the untrusted cloud. In this paper, we propose to the use cloud
to compute a set operation for the requester, at the same time
workers’ data privacy and identities privacy are well preserved.
Besides, the requester can verify the correctness of set operation
results. We also extend our scheme to support data preprocess-
ing, with which invalid data can be excluded before data analysis.
By using batch verification and data update methods, the pro-
posed scheme greatly reduces the computational cost. Extensive
performance analysis and experiment based on real cloud system
have shown both the feasibility and efficiency of our proposed
scheme.

Index Terms—Big data, mobile crowdsourcing, privacy, verifi-
able computation.

I. INTRODUCTION

MOBILE crowdsourcing enables a task owner to obtain
data from a large number of smartphone users, and fur-

ther perform data analysis on the aggregated data [1]. The task
owner is also known as the requester, while the participating
smartphone users are mobile workers who will collect and/or
sense the data for the requester. With the development of the
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low cost sensing devices, many sensors have been embedded
on mobile devices, such as GPS, accelerator, gyroscope, digi-
tal compass, temperature sensors, etc. More sensors measuring
humidity, air quality, chemical, barometer, and biomedical
information can be equipped into smartphones or connected
via wireless technologies. These affordable sensor-rich smart-
phones make them capable of sensing the environment around
people and people’s physiological data as well. In mobile
crowdsourcing, a requester can make use of the data crowd-
sourced from mobile workers to achieve certain tasks [2]–[7].
For example, a transportation management bureau can utilize
the speed data reported from the commuters to analyze the
traffic condition [8], [9]. Obviously, mobile crowdsourcing has
many advantages: first, the ubiquitous smartphone users cover
a large geographic area, which makes the data and information
diverse and rich; second, the requester does not need to deploy
specific sensor networks or employees to collect the targeted
data; third, workers can receive rewards, such as reputation
and revenue from the crowdsourcing participation.

In particular to the collected data, it might not be just a sin-
gle value reported in a period of time [2]–[4], [6]. Instead, we
consider a more general data type requested from the requester,
which could be a range of data including multiple values or
even a large set of elements without order. Set operations are
often used in data processing. For example, a travel agency
wants to know the most popular places that the tourists have
visited during holidays. Here, the data from a worker (tourist)
will be a set, and thus the requester (travel agency) needs to
find the intersection of all sets. Set union may be used to merge
different databases collected from different database owners.
Set difference is useful when a requester wants to find the
unique feature of one database compared to another. When
the number of workers is very large, the requester requires a
huge amount of storage space for storing the crowdsourced
big data even if each worker’s data is relatively small. As a
result, a storage limited requester is not able to handle the
above task. Taking a step further, even if the requester can
store all collected “big data,” the data processing and analysis
may be another stumbling block when he/she lacks computa-
tion capability. Therefore, the set operation problem over the
collected data might be overwhelming.

To tackle the above issue, we introduce the cloud into the
architecture as in [10]–[14]. The cloud serves as the inter-
mediate entity between the requester and the workers. When
the requester wants to perform tasks over reported data sets,
she delegates the task to the cloud and waits for the result.
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Then, the cloud helps the requester to collect all data sets
from the workers and computes the set operation. However,
this solution may not work well because the public cloud is
untrusted, and it may suffer severe attacks, e.g., hacked by an
adversary [4], [15]–[19]. On the one hand, in mobile crowd-
sourcing, data privacy is a big concern for the workers, for
which sensitive data should not be revealed directly to the
cloud. In the above example, a worker is unwilling to expose
her travel destinations to the cloud because this might breach
her location privacy and cause physical attacks [12], [20], [21].
On the other hand, security issues also exist in cloud-assisted
set operation for mobile crowdsourcing. Crowdsourced data
might be modified by an untrusted cloud if it knows a data
comes from a specific worker. An untrusted cloud may return
a wrong set operation result to the requester. When computing
set operations, the cloud may discard some data sets to reduce
expense. Facing these challenges, we propose a verifiable set
operation in big data for cloud-assisted mobile crowdsourcing.
Our solution leverages the cloud to release computation bur-
den of the requester while preventing all the above security and
privacy issues. With our scheme, workers’ data and identity
privacy are well preserved. Meanwhile, the requester can ver-
ify the correctness of the result retrieved from the cloud. We
also extend our scheme to support data preprocessing, batch
verification, and efficient data update.

A. Related Works

1) Private Set Intersection: Many works have been done
to achieve private set intersection (PSI) [22]–[28]. PSI enables
two parties to compute the intersection with private input and
only the intersection is known to each party. The first proto-
col for PSI is proposed in [22]. Kissner and Song [23] used
polynomial representations to solve set operations between
two parties, and utilize Paillier crypto system to protect the
privacy of polynomials when trusted third party is not avail-
able. In [24]–[26], PSI with linear complexity is proposed.
Dong et al. [27] made use of a new variant of bloom filter to
achieve efficient PSI. In [28], bloom filter and homomorphic
encryption are used to achieved outsourced PSI. All of these
works can achieve PSI, however, none of them offers verifia-
bility of the result. Thus, none of them can be applied in this
paper directly.

B. Verifiable Computation

Verifiable computation was introduced and formalized by
Gennaro et al. [29], which enables a resource-limited client
to outsource the computation of a function to one or more
workers. The workers return the result of function evaluation.
The client should be able to efficiently verify the correct-
ness of the results. After that, many works has been done to
achieve verifiable computation [30]–[33]. Benabbas et al. [30]
proposed the first practical verifiable computation scheme for
high degree polynomial functions. Fiore and Gennaro [31] pro-
posed a solution for publicly verifiable computation of large
polynomials and matrix computations, where anyone can ver-
ify the correctness of the results. Papamanthou et al. [32]

and Canetti et al. [33] studied the problem of cryptograph-
ically checking the correctness of outsourced set operations
performed by an untrusted server, and the sets are dynamic.
However, all of them [30]–[33] are designed for verifiable
computation over plaintexts where data privacy is not con-
sidered. Verifiable computation for encrypted data is provided
in [34]–[36]. Fiore et al. [34] used homomorphic encryption
and homomorphic hashing to enable a client to query out-
sourced encrypted datasets, get encrypted result, and verify
its correctness. Abadi et al. [35] designed a delegated PSI
on outsourced datasets based on a novel point-value poly-
nomial representation. This protocol allows multiple clients
to upload their datasets and obtain the intersection from the
cloud. Guo et al. [36] proposed a verifiable computation over
encrypted data for mHealh systems, where a patient can ask
the cloud to evaluate a polynomial over his encrypted per-
sonal health record, and verify the correctness of the evaluation
result. Although [34]–[36] can achieve verifiable computation
over encrypted data, they are all two party architecture, which
is not suitable for our scenario.

C. Our Contributions

Generally speaking, we have made the following major
contributions.

1) We propose an efficient solution for the set operation
in big data analysis based on the data collected from
mobile crowdsourcing.

2) We introduce the cloud as an intermediate entity to the
traditional mobile crowdsourcing, where worker’s data
privacy and identity privacy are well protected.

3) For requesters, they can verify the correctness of com-
putation results retrieved from the cloud.

4) We further extend the basic scheme to useful applica-
tions in big data analysis, such as data preprocessing,
batch verification, and efficient data update.

The remainder of this paper is organized as follows.
Section II introduces preliminaries, assumptions, and problem
formulation. Section III presents the system model, secu-
rity model, and design objectives. The proposed scheme is
described in detail in Section IV, followed by extensions in
Section V. Performance analysis is given in Section VI and
Section VII concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

1) Bilinear Pairing: A bilinear pairing is a map e : G×G →
GT , where G and GT are two multiplicative cyclic groups of
the same prime order p and G is generated by g. The pairing
e has the following properties [37], [38].

1) Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G and
random numbers a, b ∈ Z∗

p .
2) Computability: For all u, v ∈ G, e(u, v) can be computed

efficiently.
3) Nondegeneracy: For g ∈ G, e(g, g) �= 1.
2) Bilinear-Map Accumulator: The bilinear-map accumu-

lator is an efficient way to provide short proofs of membership
for elements that belong to a set. Let s ∈ Z∗

p be a randomly



574 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 2, APRIL 2017

chosen value that constitutes the trapdoor in the scheme. The
accumulator accumulates elements in Zp − {s}, outputting a
value that is an element in G. For a set X of elements in
Zp −{s}, the accumulation value acc(X) of set X is defined as

acc(X) = g
∏

x∈X(x+s).

With the help of acc(X), each element in X has a unique
membership proof. Specifically, the proof of subset contain-
ment of a set S ⊆ X is the witness WS,X as

WS,X = g
∏

x∈X−S(x+s).

The subset containment of S in X can be checked through

e(WS,X, g
∏

x∈S(x+s))
?= e(acc(X), g)

by any verifier with access to public information.
3) Polynomial Interpolation With FFT: Let

∏n
i=1(xi +

s) = ∑n
i=0 bisi be a degree-n polynomial. The coefficients

b0, b1, . . . , bn−1, where bi �= 0 of the polynomial can be com-
puted with O(n log n) complexity, given x1, x2, . . . , xn [32].

B. Cryptograohic Assumptions

1) Discrete Logarithmic Problem: Let u, v be two elements
in G. It is computationally intractable to find an integer a, such
that u = va.

2) Computational Diffie–Hellman Problem: Given (u, ua,
ub) for u ∈ G and unknown a, b ∈ Z∗

p , it is intractable to
compute uab in polynomial time.

3) Decisional Diffie–Hellman Problem: Given
(u, ua, ub, uc) for u ∈ G and unknown a, b, c ∈ Z∗

p , it
is easy to tell whether c = ab mod p by checking if
e(ua, ub) = e(uc, g).

4) Bilinear q-Strong Diffie–Hellman Assumption: Let
k be the security parameter and ( p, G, GT , e, g) be a
tuple of bilinear paring parameters. Given the elements
g, gs, . . . , gsq ∈ G for some s chosen at random from Z∗

p ,
no probabilistic polynomial-time algorithm can output a pair
(a, e(g, g)1/(a+s)) ∈ Zp ×G, except with negligible probability.

C. Problem Formulation

When a requester wants to crowdsource data sets from the
mobile workers and performs set operations based on the col-
lected sets, the direct solution is to store all data sets locally
and computes the result by himself. However, this solution
does not work when the requester has limited storage and com-
putation resources. Therefore, we introduce the cloud between
the requester and the workers. The cloud can store the data
sets and compute the result on behalf of the requester. In this
paper, we require that workers’ data privacy and identity pri-
vacy should be protected. Specifically, the cloud should not
know the plaintext of the data sets or the exact source of a
data set. We formulate this problem as a privacy-preserving
set operation. The data privacy is preserved through ElGamal
encryption [39] and a keyed hash function [40]. While the
identity privacy is achieved through ring signature [41]. The
requester will get the computation result from the cloud
together with a proof information. Therefore, we formulate
this problem as a verifiable computation outsourcing problem.

(a) (b)

(c) (d)

Fig. 1. Relationships between SR and Si.

The correctness of the intersection set I = S1 ∩ S2 ∩ ... ∩ St is
based on the following two conditions [32]:

Subset condition: I ⊆ S1 ∧ I ⊆ S2 ∧ . . . ∧ I ⊆ St

Completeness condition: (S1 − I) ∩ (S2 − I) ∩ . . . ∩ (St − I) = ∅.

The subset condition is achieved by using bilinear map accu-
mulator. The completeness condition is achieved by using
the following property [32]: if polynomials p1, p2, . . . , pt

are co-prime to each other, then there exist polynomials
q1, q2, . . . , qt such that q1p1 + q2p2 + · · · + qtpt = 1.

We use set properties to remove invalid data sets at the
cloud. Supposing the range limit set defined by the requester is
SR, which means all valid data should be within SR. Worker Wi

has data set Si. There are four possible relationships between
SR and Si, as shown in Fig. 1. When the requester delegates
the set intersection computation to the cloud, the cloud needs
to exclude set Si if the relationship between Si and SR is one
shown in Fig. 1(a)–(c), which means Si contains at least an
element that is not in SR. The set representation for this event
is SR ∩ Si �= Si.

III. SYSTEM MODEL

A. System Model

As shown in Fig. 2, our system model mainly consists of
four entities, the mobile workers (W), the requester (R), the
cloud (C), and the trusted authority (TA).

1) Trust Authority: TA is responsible for initializing
the whole system which includes registering workers,
requesters and the cloud, generating public parameters,
and distributing keys, and maintaining the system. TA
may be offline unless a dispute arises.

2) Requester: The requester wants to obtain the intersec-
tion set of the workers’ data sets. However, due to
his/her limitation on the storage and computation capa-
bility, the requester will delegate storage and most of
the computation tasks to the cloud.

3) Cloud: The cloud receives the delegation requests from
the requester and the encrypted data sets from mobile
workers, then it computes the intersection set for the
requester. The cloud also needs to provide some proof
information to prove the correctness of the result.

4) Mobile Workers: Mobile workers refer to those who have
smartphones and are willing to contribute data to the
requester’s tasks. Each worker generates her own data
set, and encrypts it before sending it to the cloud.
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Fig. 2. System architecture.

B. Security Model

In our security model, the TA is fully trusted and will not
be breached by any adversary. The security requirements for
other entities are given below.

1) Mobile Workers: In our scheme, a worker’s data set
should be kept confidential from other workers and the
cloud.

2) Requester: The security requirement for the requester is
that he should be able to verify the correctness of the
computation result received from the cloud.

3) Cloud: In our model, the cloud is curious but honest.
It should not be able to know workers’ data sets or the
intersection set.

We exclude several types of attacks that are beyond the dis-
cussion of this paper. Our scheme may fail to fight against the
denial-of-service attacks when numbers of malicious workers
send requests to the cloud with dummy crowdsourcing data.
Collusion attacks may not be thwarted when malicious users
use brute force to compromise encrypted data. The insider
attack and global observer attack are also not considered in
this paper.

C. Design Objectives

We have three main objectives for our privacy-preserving
verifiable computation of set intersection for mobile crowd-
sourcing. First, the cloud can compute the intersection set of
the workers’ data sets without knowing the content and source
of the data sets, thus workers’ data privacy and identity privacy
are well preserved. Second, the requester can verify the cor-
rectness of the intersection set retrieved from the cloud. Third,
to better adapt the privacy requirements for the collected big
data, the proposed scheme should be scalable and efficient for
processing huge volume of reported data.

IV. OUR PROPOSED SCHEME

A. Overview

The TA registers the requester, the cloud, and the workers by
assigning a public/private key pair to each of them during the
system initialization. Whenever the requester needs to compute
the intersection set, he sends his request and public key pk
to the cloud. Then, he waits for the results from the cloud.

TABLE I
NOTATION USED IN OUR SCHEME

The cloud broadcasts the requester’s task and public key pk to
all the workers. Every worker Wi generates his data set Si, and
encrypts it with pk. The data will be signed with ring signature
before sending to the cloud. After receiving encrypted data sets
from all workers, the cloud verifies the authenticity of each of
them, and computes the intersection set based on the encrypted
data sets. Then the cloud sends the result together with its
corresponding proof information to the requester. Finally, the
requester decrypts the result and checks its correctness.

B. System Initialization

In this phase, TA first generates necessary parameters and
keys for the system. Then, TA registers all workers, requesters
and cloud into the system. We present the two steps as follows.
Main notations are listed in Table I.

1) General Setup: Given the security parameter k, TA gen-
erates the bilinear parameters ( p, G, GT , e, g). Also, a hash
function H0() : [0, 1]∗ → Zp is defined. TA chooses a ran-
dom value s ∈ Zp, and computes gs, gs2

, . . . , gsq
. Then TA

publishes {p, G, GT , e, g, gs, gs2
, . . . , gsq

, H0()}.
2) Entities Registration: Assume there are t mobile work-

ers in the system: {W1, W2, . . . , Wt}. For each worker Wi,
TA assigns him a public/private key pair ( pki, ski), where
ski = xi ∈R Zp and pki = gxi . TA registers the cloud and the
requester by sending the private/public key pairs (skc, pkc) =
(xc, gxc) and (sk, pk) = (x, gx) to the cloud and the requester,
respectively, where xc and x are random number from Zp.
Besides, both requester and workers obtain the encryption key
kh for a private hash function H(kh, ·) : G → Zp.

C. Mobile Crowdsourcing

In our scheme, the plaintext space is group G, while the data
space could be of any type. Therefore, the requester needs to
build a mapping table between the data space and the plaintext
space for every task τ . The mapping table can be built as fol-
lows. The requester first defines a data space for the collected
data. Then for every element in data space, a new random ele-
ment in plaintext space G is chosen. The mapping table for
the task is public to all. Then he sends τ and pk as a task
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to the cloud. After receiving τ and pk from the requester, the
cloud broadcast the task to all the workers.

When a worker Wi receives the task from the cloud, she
generates a data set based on task tag τ , and maps every ele-
ment in data set to element in plaintext space according to the
mapping table provided by the requester to get her plaintext
set Si = {mi,1, mi,2, . . . , mi,ni}, where ni is the cardinality of
Si, and mi,j ∈ G, j = 1, 2, . . . , ni. In the following, we assume
every worker will map her collected data set to plaintext
set automatically, and use data set and plaintext set inter-
changeably. Then, a worker needs to perform the following
steps.

1) Data Encryption: Given data set Si =
{mi,1, mi,2, . . . , mi,ni} and the requester’s public key
pk = gx, the worker Wi chooses ni random values
ri,j ∈R Zp, j = 1, 2, . . . , ni, and computes ciphertext set
Ci = {ci,1, ci,2, . . . , ci,ni}, where ci,j is computed as follows:

ci,j = (gri,j , mi,j · pkri,j).

2) Data Hashing: Given data set Si =
{mi,1, mi,2, . . . , mi,ni} and the shared secret hash key skh, the
worker Wi computes the hashing set Hi = {hi,1, hi,2, . . . , hi,ni},
where hi,j is computed as follows:

hi,j = H(skh, mi,j). (1)

3) Data Accumulation: After obtaining the hashing set
Hi = {hi,1, hi,2, . . . , hi,ni}, worker Wi needs to compute the
accumulation value of Hi

acc(Hi) = g
∏ni

j=1(hi,j+s)
.

Because s is a secret parameter known only to the requester,
worker Wi cannot directly computes

∏ni
j=1(hi,j + s), she first

finds out the coefficients {b0, b1, . . . , bni}, where
ni∑

j=0

bj · sj =
ni∏

j=1

(hi,j + s).

This can be achieved by using polynomial interpolation
with fast Fourier transform (FFT). Then, worker Wi uses
{b0, b1, . . . , bni} and public parameters {gs, gs2

, . . . , gsq} to
compute acc(Hi) as follows:

gb0 · (gs)b1 · · · (gsni
)bni = g

∑ni
j=0 bj·sj

= g
∏ni

j=1(hi,j+s)

= acc(Hi).

4) Signature Generation: When finishing the above three
steps, worker Wi will compute her signature on acc(Hi). The
original ring signature scheme is described as follows [41].
Given all workers’ public keys ( pk1, pk2, . . . , pkt), acc(Hi),
and her private key ski, worker Wi randomly chooses bij ∈ Zp

for all the other workers Wj, where j = 1, 2, . . . , t, j �= i, and
computes

Sigij = gbij .

Then, Wi computes τi = gH0(acc(Hi)), and

Sigii =
⎛

⎝ τi
∏

j �=i pk
bij
j

⎞

⎠

1/ski

.

The ring signature for acc(Hi) is SigWi =
{Sigi1,Sigi2, . . . ,Sigit}. However, in real life, when
the number of workers t is large and workers are distributed
over a wide area, it is very time-consuming or impossible
for a worker to communicate with all the other workers to
get their public keys. Therefore, we cannot directly apply
the above ring signature. Instead, we assume every worker
belongs to a ring signature group, and all workers in the
same group are in proximity with each other. We use Li

to denote the index set of workers who are in the same
signature group as Wi, and Kmin ≤ |Li| ≤ Kmax, where
Kmin and Kmax are the minimum and maximum number of
workers in any signature group. Then, Wi’s ring signature is
SigWi = {Sigij}, j ∈ Li, where Sigii = (τi/

∏
j �=i pk

bij
j )1/ski ,

and Sigij = gbij , j ∈ Li − {i}. Finally, worker Wi sends
{Ci, Hi,acc(Hi),SigWi} to the cloud.

D. Intersection Computation

After receiving {Ci, Hi,acc(Hi),SigWi , Li}, i = 1,
2, . . . , t, from all workers {W1, W2, . . . , Wt}, the cloud will
compute the intersection set for the requester. Before perform-
ing the computation, the cloud first verifies if the received
data really comes from valid workers by computing τi =
gH0(acc(Hi)), and checking

e(τi, g)
?=
∏

j∈Li

e(Sigij, pkj)

where i = 1, 2, . . . , t. If the above equation holds, the cloud
knows that the data comes from one of the valid workers.
Otherwise, the cloud refuses the data.

Proof of Correctness

∏

j∈Li

e(Sigij, pkj) = e(Sigii, pki) ·
∏

j∈Li−{i}
e(Sigij, pkj)

= e

⎛

⎜
⎝

⎛

⎝ τi
∏

j∈Li−{i} pk
bij
j

⎞

⎠

1/ski

, gxi

⎞

⎟
⎠ ·

∏

j∈Li−{i}
e
(

gbij , gxj
)

= e

(
τi

∏
j∈Li−{i} gxjbij

, g

)

·
∏

j∈Li−{i}
e
(

gxjbij, g
)

= e(τi, g).

After successful verification of the ring signatures, the cloud
computes the intersection set for the requester. Define IS as the
intersection set of the original data sets S1, S2, . . . , St, that is

IS = S1 ∩ S2 ∩ · · · ∩ St.

Because all data sets S1, S2, . . . , St are encrypted by workers
before being sent to the cloud, the cloud is unable to find IS

for the requester based on the ciphertexts. Instead, the cloud
needs to find all the ciphertexts whose plaintexts correspond
to the intersection set IS. Assuming mi,j ∈ IS, for some i’s
and j’s, then we define IC as the set of ciphertexts ci,j of all
elements mi,j ∈ IS

IC = {ci,j}mi,j∈IS .
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The cloud derives IC based on hashing sets H1, H2, . . . , Ht,
because mi,j and hi,j are one-to-one mapping, IS is equivalent
to IH , where

IH = H1 ∩ H2 ∩ · · · ∩ Ht.

Take H1 and H2 as an example, where H1 =
{h1,1, h1,2, . . . , h1,n1} and H2 = {h2,1, h2,2, . . . , h2,n2}. If
h1,u = h2,v, 1 ≤ u ≤ n1, 1 ≤ v ≤ n2, then m1,u = m2,v,
m1,u ∈ S1 and m2,v ∈ S2. This means that m1,u (or m2,v)
∈ S1 ∩ S2. If m1,u ∈ S1 ∩ Si for all i = 1, 2, . . . , t, then the
cloud knows that c1,u ∈ IC. After comparing every pair of
elements hi,u ∈ Hi and hj,v ∈ Hj, the cloud finally obtains IH

and IC.

E. Proof Generation

After obtaining IH and IC, the cloud continues to generate
proof information for the correctness of IC. First, the cloud
computes

pi(s) =
∏

h∈Hi−IH

(h + s)

using polynomial interpolation with FFT. After that, the cloud
computes δ as follows:

δ = {δi} = {acc(Hi − IH)} = {gpi(s)}
where i = 1, 2, . . . , t. The accumulation values of the dif-
ference sets Hi − IH will be used by the requester to verify
the subset condition. Then, the cloud finds a coefficient set
{q1(s), q2(s), . . . , qt(s)} [32], such that

q1(s)p1(s) + q2(s)p2(s) + ... + qt(s)pt(s) = 1

and {gq1(s), gq2(s), . . . , gqt(s)} are computed accordingly. The
set of values {gq1(s), gq2(s), . . . , gqt(s)} will be used by the
requester to verify the completeness condition. Finally,
the cloud sends {IC, δ, {gqi(s)},acc(Hi)} to the requester.

F. Result Retrieval and Verification

When the requester receives the result and corresponding
proof information {IC, δ, {gqi(s)},acc(Hi)} from the cloud, she
first decrypts IC with her private key sk = x to get I′

S as
follows:

I′
S = Decsk(IC)

= {Decsk(ci,j)}
=
{

mi,j · pkri,j

(gri,j)sk

}

= {
mi,j

}
.

Then, the requester computes I′
H with the private hash key skh

based on I′
S

I′
H = {H(skh, mi,j)} = {hi,j}.

Next, the requester computes accumulation value of I′
H

acc(I′
H) = g

∏
h∈I′H (h+s)

.

Finally, the requester checks if the following equations hold:

e(acc(I′
H), δi)

?= e(acc(Hi), g) (2)
t∏

i=1

e
(
δi, gqi(s)

)
?= e(g, g). (3)

Equation (2) can verify the subset condition, and (3) can verify
the completeness condition. If all the above two equations
hold, the requester accepts the result. Otherwise, the requester
discards it. If the returned result IC is correct, then I′

S = IS

and I′
H = IH . The two checking equations hold as follows.

Proof of Correctness

e(acc(I′
H), δi) = e

(
g
∏

h∈IH
(h+s)

, g
∏

h∈Hi−IH
(h+s)

)

= e(g, g)
∏

h∈Hi
(h+s)

= e(acc(Hi), g)
t∏

i=1

e
(
δi, gqi(s)

)
=

t∏

i=1

e
(

gpi(s), gqi(s)
)

= e(g, g)
∑t

i=1 pi(s)qi(s)

= e(g, g).

V. EXTENSIONS

Although the basic scheme satisfies all the security and pri-
vacy requirements for the cloud-assisted mobile crowdsourc-
ing, it is still challenging on integrating certain meaningful
designs for the big data analysis. Due to the large volume
crowdsourcing data, the efficiency on deriving the intersec-
tion set, verification on identities, and data update are not as
good as expected. Therefore, we continue to use the same
methodology to extend the above basic scheme to satisfy the
big data analysis for mobile crowdsourcing.

A. Verifiable Data Preprocessing

First of all, to reduce the cost on processing the opera-
tion on collected data, we need to carefully exam the reported
data. Normally, the requester has a specific range requirements
on the data set. In the previous example, the requester may
determine that only sets of a specific range of tourist sites
are eligible for the computation of intersection. This is espe-
cially useful for improving efficiency and accuracy in big data
analysis, because it will greatly reduce the unnecessary raw
data for data processing. Suppose the range limit set defined
by the requester is SR, and worker Wi has data set Si. As we
mentioned in the problem formulation, there are four possible
relationships between SR and Si, as shown in Fig. 1.

Three steps are needed to achieve verifiable data prepro-
cessing. First, the requester needs to compute a hashing set
HR = {hR,1, hR,2, . . . , hR,z} for SR = {mR,1, . . . , mR,z}, z is the
size of SR, and hR,i is computed in the same way as in (1).
Second, based on relationships in Fig. 1(a)–(c) the cloud finds
out all sets Si which satisfies

SR ∩ Si �= Si

and removes Si, because Si is not within the range limit defined
by the requester. At this step, the cloud also needs to prove
that Si is not an eligible set while other sets are by comput-
ing acc(HR − Hi), and sends {acc(HR − Hi),acc(Hi)} to
the requester. Here, acc(Hi) comes from worker Wi who can
use sign-and-encrypt before sending it to the cloud, where the
encryption key is shared between workers and the requester.
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Finally, the requester checks if the following equation holds:

e(acc(HR), g)
?= e(acc(HR − Hi),acc(Hi)).

The equation holds if and only if Si is a subset of SR.
Proof of Correctness

RHS = e(acc(HR − Hi),acc(Hi))

= e
(

g
∏

h∈HR−Hi
(h+s)

, g
∏

h∈Hi
(h+s)

)

= e(g, g)
∏

h∈HR
(h+s)

= LHS.

B. Batch Verification

To reduce the computational costs at both the cloud and
the requester, we use batch verification for ring signature ver-
ification at the cloud, and for correctness verification at the
requester.

1) Ring Signature Verification: When the cloud receives
{Ci, Hi,acc(Hi),SigWi}, i = 1, 2, . . . , t, from all workers, it
computes τi = gH0(acc(Hi)), i = 1, 2, . . . , t. Then, instead of
checking each worker’s ring signature one by one, cloud only
checks if the following equation holds:

e

(
t∏

i=1

τi, g

)
?=

t∏

i=1

t∏

j∈Li

e
(
Sigi,j, pkj

)
.

If the above equation holds, the cloud knows that the data
comes from valid workers. Otherwise, the cloud refuses
the data.

Proof of Correctness
t∏

i=1

∏

j∈Li

e(Sigij, pkj)

=
t∏

i=1

⎛

⎝e(Sigii, pki) ·
∏

j∈Li−{i}
e(Sigij, pkj)

⎞

⎠

=
t∏

i=1

⎛

⎜
⎝e

⎛

⎜
⎝

⎛

⎝ τi
∏

j∈Li−{i} pk
bij
j

⎞

⎠

1/ski

, gxi

⎞

⎟
⎠ ·

∏

j∈Li−{i}
e(gbij , gxj)

⎞

⎟
⎠

=
t∏

i=1

⎛

⎝e

(
τi

∏
j∈Li−{i} gxjbij

, g

)

·
∏

j∈Li−{i}
e(gxjbij , g)

⎞

⎠

=
t∏

i=1

e(τi, g)

= e

⎛

⎝
t∏

i=1

τi, g

⎞

⎠.

2) Result Correctness Verification: When the requester
receives set intersection result from the cloud, she needs to ver-
ify the correctness of result. The verification involves checking
if both subset containment condition and completeness condi-
tion are satisfied. Checking the subset containment condition is
computation intensive, because its complexity depends on the
number of workers. With batch verification, the requester only
needs to check one equation for subset condition, by changing
(2) to the following:

e

(

acc(I′
H),

t∏

i=1

δi

)
?= e

(
t∏

i=1

acc(Hi), g

)

.

If all the above equation and (3) hold, the requester accepts
the result. Otherwise, the requester discards it. If the returned
result IC is correct, then I′

S = IS and I′
H = IH . The proof of

correctness is given below.
Proof of Correctness

e

(

acc(I′
H),

t∏

i=1

δi

)

= e

(

g
∏

h∈IH
(h+s)

,

t∏

i=1

(
g
∏

h∈Hi−IH
(h+s)

)
)

= e(g, g)
∑t

i=1
∏

h∈Hi
(h+s)

= e
(

g
∑t

i=1
∏

h∈Hi
(h+s)

, g
)

= e

(
t∏

i=1

acc(Hi), g

)

.

C. Data Update

When a worker Wi wants to update U = {mi,j} ⊂ Si to
U′ = {m′

i,j} ⊂ S′
i, where S′

i is the new data set, she does not
need to compute Ci and Hi from scratch. The computation can
be delegated to the cloud. To update the ciphertext set from Ci

to C′
i, worker Wi computes a set {m′

i,j/mi,j} mod p and sends
({m′

i,j/mi,j}, I) to the cloud, where I is the index set telling the
cloud which data to update. After receiving ({m′

i,j/mi,j}, I), the
cloud updates ci,j, where mi,j ∈ U to c′

i,j as follows:

c′
i,j =

(

gri,j ,
m′

i,j

mi,j
· mi,j · pkri,j

)

=
(

gri,j , m′
i,j · pkri,j

)
.

The computation of acc(H′
i) can also be delegated to the

cloud, where H′
i is the new hashing set. First, Wi computes H′

i
based on S′

i, and sends H′
i to the cloud. Then cloud computes

acc(H′
i) using public parameters {gs, . . . , gsq}, and sends

acc(H′
i) back to Wi. However, since the cloud is untrusted,

Wi needs to verify the correctness of acc(H′
i) by checking

e
(

g
∏

h∈Hi
(h+s)

, g
1/
∏

h∈Hi,U
(h+s)

)

?= e

(

g
∏

h∈H′
i
(h+s)

, g
1/
∏

h∈Hi,U′ (h+s)
)

where Hi,U is the hashing set of U, and Hi,U′ is the hashing
set of U′.

Proof of Correctness

LHS = e
(

g
∏

h∈Hi
(h+s)

, g
1/
∏

h∈Hi,U
(h+s)

)

= e(g, g)

∏
h∈Hi−Hi,U

(h+s)
,

RHS = e

(

g
∏

h∈H′
i
(h+s)

, g
1/
∏

h∈Hi,U′ (h+s)
)

= e(g, g)

∏
h∈H′

i−Hi,U′ (h+s)
.

Because Hi − Hi,U = H′
i − Hi,U′ , then LHS = RHS.
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VI. PROTOCOL EVALUATION

In this section, we first analyze how the security and pri-
vacy goals are achieved. Then, we show the feasibility and
efficiency of our proposed scheme with extensive simulation.

A. Security and Privacy Analysis

In our scheme, workers’ data privacy and identity privacy
are protected from the cloud. The security refers to the correct-
ness of the result, and privacy refers to workers’ data privacy
and identity privacy.

1) Data Privacy: When a worker Wi participates in the
data crowdsourcing, she generates the data set Si and then
encrypts every element mi,j ∈ Si with the requester’s public
key pk = gx to get ci,j = (gri,j , mi,j · pkri,j). According to the
discrete logarithmic problem assumption, the cloud will not
find ri,j given gri,j and the modulo p. Furthermore, the private
key x is kept to the requester, so the cloud cannot compute
mi,j in polynomial time based on the ciphertext set. Worker
Wi also sends a hashing set Hi to the cloud. Every element in
Hi is computed through a keyed hash function, and the key
skh is only shared between the requester and workers. Without
skh the cloud is not able to find mi,j due to the one-way and
collision resistance of the underlying hash function.

2) Identity Privacy: In our scheme, ring signature is used
by the workers to protect their exact identities. According
to [41], if there are t0 workers in a signature group, and every
worker signs her data with ring signature, then the probability
of identifying the owner of the signature by the cloud is at
most 1/t0, which is equal to random guessing.

3) Correctness of Result: The requester is able to check the
correctness of the result retrieved from the cloud. If the result
IC is not correct, then the requester will get the wrong intersec-
tion set I′

S and wrong hashing set I′
H , followed by the incorrect

accumulation value acc(I′
H). Based on the computational

Diffie–Hellman problem and bilinear q-strong Diffie–Hellman
assumption, the cloud cannot figure out δi given acc(I′

H) and
acc(Hi) to make e(acc(I′

H), δi) = e(acc(Hi), g) hold. As
a result, the requester verifies if I′

S satisfies subset contain-

ment condition by checking e(acc(I′
H), δi)

?= e(acc(Hi), g).
If the subset condition is satisfied, then δi is the valid wit-
ness of I′

H in Hi. By checking (3), the requester knows if
the completeness condition is satisfied or not. If (3) holds,
then according to decisional Diffie–Hellman (DDH) assump-
tion, q1(s)p1(s) + q2(s)q2(s) + · · · + qt(s)pt(s) = 1 must be
true. This means ∩t

i=1(Hi − IH) = ∅. When both subset and
completeness conditions are satisfied, the requester verifies the
correctness of the result.

B. Simulation-Based Analysis

1) Simulation Setup: We simulate our protocol based on a
cryptographic library: paring-based cryptography (PBC) [40].
In particular, in PBC, we use the type A elliptic curve. The
program is written in C and implemented in CentOS 6.7
with GCC version 4.4.7. The desktop has 4.0 GHz Intel Core
i7-4790K CPU and 32 GB memory. The number of workers
is from 104 to 5 × 104, and size of data set is from 1000 to

TABLE II
SIMULATION SETUP

Fig. 3. Computational costs at worker. (a) Encryption, hashing, and
accumulation. (b) Ring signature.

5000. We assume the size of intersection set ranges from 50
to 250. Simulation parameters are also listed in Table II.

2) Simulation Results: We present the simulation results of
computational costs at worker and at requester in the follow-
ing, together with the performance of the batch verification
and data update method. All computational costs are time
consumption of CPU. We use random values from G as set
elements throughout our simulation.

a) Computational costs at worker: The computational
costs of encryption, hashing, and accumulation at the worker
are given in Fig. 3(a). For worker Wi the cost of encryption
increases with the size of data set Si. When |Si| is 1000, the
computation cost is 7.1 s and when |Si| increases to 5000, the
cost increases to 35.6 s. The cost of computing accumulation
value is also linearly increasing with size of data set. When
size of data set is 1000, the cost is 3.5 s and when the size is
5000 the cost is 17.7 s. The cost of hashing is quite efficient.
When |Si| is 1000 and 5000, the costs are 1.19 and 6.13 ms,
respectively. The computational cost of ring signature at each
worker is given in Fig. 3(b), and it is decided by the total
number of workers. When there are 5×104 workers, the cost of
ring signature is 178 s. There is a tradeoff between protecting
identity privacy and computational cost. We will try to find
more efficient ring signature scheme in the future work.

b) Computational Costs at Requester: Since most of the
computation is delegated to the cloud, the requester only needs
to deal with the cost related to the intersection set and ver-
ification. First, the requester needs to decrypt the ciphertext
of intersection set. As we can see from Fig. 4(a), the cost
of decryption is linearly increasing with the size of intersec-
tion IS. The cost is 1.61 s when the size of intersection is 250.
Then, the requester computes the hash values for the newly
derived intersection set. The cost of hashing is 2.84 × 10−4s
when |IS| is 250. The cost of accumulation increases with |IS|
as well. When |IS| is 50 the cost of accumulation is 0.18 s, and
increases to 0.89 s when |IS| is 250. The cost of verification
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TABLE III
COST OF ENCRYPTION, HASHING, AND ACCUMULATION AT WORKER

Fig. 4. Computational costs at requester. (a) Decryption, hashing, and
accumulation. (b) Verification.

Fig. 5. Cost reduction with batch verification. At the (a) cloud and
(b) requester.

at the requester is very high, as shown in Fig. 4(b). It is pro-
portional to |Si| × t. When the number of workers is 5 × 104,
the verification cost is 912 s. We will apply batch verification
to reduce verification cost in the next part.

c) Batch Verification: To make verification more effi-
cient, we propose batch verification. When there are 104

workers and each worker has 1000 elements in the data set,
the data volume is at least 108 bytes. The computational cost
is high even for the cloud. We show the cost reduction at the
cloud when batch verification is used in Fig. 5(a). The cost
reduction at cloud is 34.1 s when there are 104 workers, and
155.8 s when there are 5 × 104 workers. The cost reduction
at the requester is also very obvious, as shown in Fig. 5(b).
When there are 5 × 104 workers, the cost reduction for verifi-
cation can be 840 s, which is a great improvement compared
with original cost of 912 s.

d) Data Update: Finally, we show the benefits of our
data updating scheme in Fig. 6(a) and (b). Costs of encryp-
tion with and without data update are given in Fig. 6(a). The
cost reduction is shown in Fig. 6(b). When there are 100 ele-
ments to be updated, a worker can save 0.6 s computational
cost. When there are 500 elements to be updated, a worker
can save 3.2 s computational cost. For mobile workers, less
computational cost means longer battery usage, which is very
crucial for smartphone users.

Fig. 6. Performance of data update. (a) Costs of encryption. (b) Cost
reduction.

TABLE IV
COST OF RING SIGNATURE AT WORKER

TABLE V
COST OF SIGNATURE VERIFICATION AT CLOUD

C. Experiment-Based Analysis

We implement our scheme in real mobile-cloud system.
In specific, we use HTC Nexus 9 as the requester and the
workers. Nexus 9 has Android 5.0 Lollipop operating system,
NVIDIA Tegra K1 2.3 GHz x64 processor, 16 GB flash mem-
ory and 2 GB RAM. We use Amazon EC2 instance of type
m4.10xlarge, 40 vCPU, 160 GB memory, as the cloud. All
codes are written in Java for the experiment-based analysis.
In this experiment, we set Kmin = 10, Kmax = 50, the size of
a data set |S| is from 1 to 10, and the total number of workers t
is still from 10 000 to 50 000. These settings can better reflect
real-life applications.

1) Workers: We first test the cost of encryption, hashing and
accumulation on the mobile end. When the size of a worker’s
data set |S| is from 1 to 10, these costs are given in Table III.
As we can see from Table III, the costs of hashing and accu-
mulation are quite low, while the cost of encryption is not.
There is a tradeoff between the user experience and data pri-
vacy protection. Then, we test the cost of ring signature at a
worker, and the cost of ring signature is given in Table IV.

2) Cloud: When cloud receives data from workers, it ver-
ifies the ring signatures first. We show the costs of signature
verification with and without using batch in Table V. The num-
ber of workers t ranges from 10 000 to 50 000. As we can see
from Table V, the verification cost is reduced a lot after using
batch verification. The sum cost of set operation and proof
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TABLE VI
COST OF SET OPERATION AND PROOF GENERATION AT CLOUD

TABLE VII
COST OF DECRYPTION AT REQUESTER

TABLE VIII
COST OF CORRECTNESS VERIFICATION AT REQUESTER

generation at cloud is given in Table VI, where we set the
size of all data sets as 10.

3) Requester: In our implementation, the resource-limited
requester is also represented by HTC Nexus 9. Since set oper-
ation is delegated to the cloud, requester needs to decrypt
the received ciphertext set and verify its correctness. Since
in the experiment, a worker’s data set size is from 1 to 10, we
assume the cost of decryption is given in Table VII. The cost
of correctness verification is given in Table VIII. The cost of
verification increases with the number of workers. After using
batch verification, more than half of the cost is reduced, which
is very important for battery-limited devices.

VII. CONCLUSION

In this paper, we propose a scheme to enable the requester
to delegate set operations over crowdsourced big data to the
cloud. Meanwhile, worker’s data and identity privacy are pre-
served, and the requester can verify the correctness of the set
operation result. We extend our scheme to achieve data prepro-
cessing, batch verification and data update are also proposed
to reduce computational costs of the system.
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