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Abstract—Widely deployed mHealth systems enable patients
to efficiently collect, aggregate, and report their Personal Health
Records (PHRs), and then lower the costs and shorten their
response time. The increasing needs of PHR monitoring require
the involvement of healthcare companies that provide monitoring
programs for analyzing PHRs. Unfortunately, healthcare compa-
nies are lack of the computation, storage, and communication
capability on supporting millions of patients. To tackle this
problem, they seek for the help from the cloud. However,
delegating monitoring programs to the cloud may incur serious
security and privacy breaches because people have to provide
their identity information and PHRs to the public domain.
Even worse, the cloud may mistakenly return the incorrect
computation results, which will put patients’ life in jeopardy. In
this paper, we propose a verifiable privacy-preserving monitoring
scheme for cloud-assisted mHealth systems. Our scheme allows
patients to verify the correctness of computation results from
the cloud without revealing their PHRs and identity information.
In addition, our advanced schemes offer efficient PHR updates
and PHR computations on complex monitoring programs. By
detailed performance evaluation, we have shown the security and
efficiency of our proposed scheme.

Index Terms—PHR, Privacy, Verifiable Computation, mHealth

I. INTRODUCTION

It has been witnessed that the explosive growth of mobile
devices, such as smartphones, tablets, and mobile sensors, has
changed the ways of people’s living. Particularly, mHealth
(mobile health), which leverages widely deployed remote
medical devices to offer accurate, timely, and low-cost medical
services, has already shown the great potential on improving
the quality of healthcare services as well as the quality of life
(QoL). As an evidence of its long-term impacts, both Apple
and Google have announced their initiatives on healthcare
recently. The launched services, Apple HealthKit and Google
Fit, use remote sensor-associated mobile devices to provide
a hub for users to keep track of health related information
in the following decade [1]. Patients can periodically collect,
aggregate, and deliver the readings on medical sensors to a
service provider, and then retrieve back the analyzed results.
For example, Microsoft has launched project “MediNet” in
Caribbean countries [2], which tries to keep monitoring the
health status of patients with diabetes and cardiovascular
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diseases. Patients use wireless body sensor networks (WBSNs)
to collect and report various types of physiological data,
such as blood pressure, breathing rate, blood glucose level,
electrocardiogram, and peripheral oxygen saturation. Then,
patients could get various medical consultation like physical
activity assistants, insulin intake, and cardiac analysis, from
service providers that focus on developing the corresponding
healthcare monitoring programs.

Unfortunately, the above promising features and thriving
economical initiatives may not succeed unless the following
issues have been well addressed. On the one hand, for the
business confidentiality concerns, healthcare companies may
not reveal their monitoring program details as embedded apps
to every user. On the other hand, some small startup companies
may be able to help store and compute for a small number
of patients. However, they may face the limitation on their
computation, storage, and communication capabilities when
the number of users increases. Inspired by [3], the proposed
architecture enables the outsourcing of the computational
intensive part to the cloud service provider, which helps
patients greatly reduce the computation loads on decrypting
the encrypted PHRs. Hence, a viable solution would be
seeking the help from cloud service providers, by which com-
panies can delegate monitoring programs and outsource the
computation load. However, this promising approach incurs
obvious security and privacy breaches. First, patients’ identity
information should be bound with the PHRs for accurate
diagnosis, but existing approaches fail to preserve the identity
privacy when the patient provides her PHRs to the cloud.
Second, required by HIPPA (Health Insurance Portability and
Accountability Act), all patients’ PHR should be stored in
a ciphertext form. Patients may not want to disclose their
PHRs to the cloud due to privacy concern, in the sense
that computation outsourcing may potentially expose patients’
PHRs under current situation. Third, as reported in [4], the
cloud service provider may experience hardware/software fail-
ures, human errors and external malicious attacks, which may
bring life-threatened issue to patients if the retrieved results
are not correctly computed. To address the above issues, we
propose the verifiable privacy-preserving monitoring for cloud-
assisted mHealth systems. Our scheme preserves the privacy
of patients’ identity information during the verification, and
also allows patients to verify the correctness of outsourced
computation results, while maintaining the privacy of patients’
PHRs to the cloud for computation.



Related Works:
Privacy-preserving Identity Verification: To deal with the

potential risks of privacy exposure, several eHealth systems
[5]–[9] enable patients to encrypt their PHRs before storing it
on the central storage. Although the encrypted PHRs prohibit
the centralized facility from obtaining private information,
it still faces identity leakage when patients retrieve their
PHRs. Another privacy leakage is regarding the verifiability
on patients’ real identities. For the system with a central-
ized infrastructure, the verification cloud be easily managed.
However, for a cloud-assisted architecture, patients have to
show their real identities and the corresponding PHRs to
the could service provider in order to get verified, which
bring the possibility of identity leakage and impersonation
attacks to patients. To tackle this problem, we apply the
non-interactive zero-knowledge proof system [10]–[12] and
techniques in [13], [14], which simultaneously achieve the
privacy preservation and the verifiability of the private identity
information.

Verifiable Computation: The verifiable computation is first
introduced in [15], which tries to build up the framework
for offloading the computation of some functions to other
untrusted clients, while maintaining verifiable results. Parno
et al. [16] discuss the delegation of verification in public
domain, which shares the similar idea with our proposed
scheme. In [17]–[19], they formally define the definition of
publicly verifiable computation (PVC). However, the above
schemes only support the plaintext computation, which means
for users, they have to upload plaintext to the untrusted cloud
and expect the computational results. As an extension of PVC,
Papamanthou et al. in [20] introduce the signature of correct
computation, which uses multi-polynomials for verification.
Inspired by this work and its previous work [21], we add the
privacy-preserving feature in PVC to fulfill the requirements
in mHealth monitoring scenarios.

Privacy-preserving Mobile Sensing: Another line for this
research is the privacy-preserving mobile sensing [22]–[24],
which exploits data contributed by mobile users to monitor
and evaluate an environment. However, their works mainly
concern the privacy leakage on the aggregated data as well as
the incentives without considering the impact of the integrity
of the aggregation results.

Our Contributions:
\bullet We propose a privacy-preserving identity verification

scheme to verify patients’ private identity information to
the semi-trusted cloud service provider.

\bullet Different from current PVC schemes, we provide the
privacy of reported PHRs while still maintaining the
capability of computation on PHRs.

\bullet Our scheme enable patients to check the correctness of
outsourced computation results.

\bullet The healthcare monitoring company does not need to
reveal its programs to every individual user.

\bullet We extend our basic scheme with two advanced schemes
for efficient update and supporting multi-variable moni-
toring programs.

The remainder of this paper is organized as follows. Section
II introduces preliminaries and assumptions. We describe the
system model in Section III, along with the design objectives.

The proposed scheme is presented in detail in Section IV,
followed by the protocol evaluation in Section V. Finally,
Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Pairing

A pairing function (simply pairing) is a map e : G\times G\rightarrow 
G1, where G and G1 are two multiplicative cyclic groups of
the same prime order n with the following properties [25],
[26].

\bullet Bilinearity: For all g, h \in G and random numbers a, b \in 
Z\ast 
n, it has e(ga, hb) = e(g, h)ab.

\bullet Computability: There exists a computable algorithm that
can compute e efficiently.

\bullet Non-degeneracy: For g \in G, e(g, g) \not = 1.

B. Cryptographic Assumptions

Definition 1. Discrete Logarithmic Problem (DLP) [27]

Let g, h be two elements in G. It is computationally in-
tractable to find an integer a, such that h = ga.

Definition 2. Subgroup Decision Problem (SDP) [28]

Let n = pq be the order of G. Given (n,G,G1, e) and
x \in R G, it is computationally intractable to decide whether
x is the element in Gp or Gq when the factorization of n is
unknown.

Definition 3. Computational Diffie-Hellman (CDH) Problem
[29]

Given (g, ga, gb) for given random numbers a, b, it is
computationally intractable to compute the value of gab, where
G is a cyclic group of order n and g is a generator of G.

C. Problem Formulation

As an illustration, we first present our problem formula-
tion. The basic idea of our verifiable privacy-preserving PHR
computation is to allow patients to verify the correctness of re-
turned computation results, while maintaining patients’ privacy
on their input data. Many healthcare monitoring programs are
developed via the regression analysis based on experimental
results [30], and then apply some curve fitting approaches,
e.g., Least Square Fitting (LSF), to mathematically find the
best fitting curve. Particularly to mHealth monitoring, many
curves in the regression analysis turns out to be polynomials
[31], including single-variable polynomial and multi-variable
polynomial. As an example, in pharmaceutical, the responses
for daily dietary supplements based on days treated [32] could
be fitted to the following single-variable polynomial,

y = \alpha + \beta 1x+ \beta 2x
2 + \beta 3x

3 + e

where x is the monitored intake and y is the response level.
The multi-variable polynomial case can be found in [33],
which contains more than 50 terms on 3 variables.

Our scheme relies on the following algebraic results.
Lemma 1 (Polynomial Decomposition): Let f(x) be a

polynomial. For all m \in Zn, there exists polynomial w(x)
(which can be found in polynomial-time) such that polynomial
f(x) - f(m) can be expressed as f(x) - f(m) \equiv (x - m)w(x).



Lemma 2 (n-Independent Polynomials Decomposition):
Let fi(xi) be a polynomial, and F (\vec{}x) =

\sum z
i=1 fi(xi), where

\vec{}x := \{ xi\} zi=1. For all \vec{}m \in Zn, there exists polynomials
wi(xi) (which can be found in polynomial-time) such that
each polynomial fi(xi) - fi(mi) can be expressed as fi(xi) - 
fi(mi) \equiv (xi  - mi)wi(xi), which gives F (\vec{}x)  - F (\vec{}m) \equiv \sum z

i=1(xi  - mi)wi(xi).
Our scheme leverages the above properties to take \vec{}m as

the input of PHR raw data, and sends the encrypted form
of \vec{}m to the cloud service provider to expect the results
F (\vec{}m). While performing the computation on \vec{}m, the cloud
outputs a provable signature, which shows it indeed computes
F (\vec{}m). Since the patient is the only one who knows \vec{}m, she
can validate the correctness of the results by checking the
equality of identity functions in Lemma 1 and Lemma 2 after
decrypting the ciphertext form of F (\vec{}m).

III. SYSTEM MODEL

A. Network Model

We first give a brief introduction to our proposed cloud-
assisted mHealth system. As shown in Fig. 1, the system
mainly consists of four entities, trust authority (TA), health-
care company, cloud service provider, and users with mobile
devices and the corresponding sensing devices. We list our
assumptions and functionalities for these entities below,

\bullet Trust Authority (TA): The fully-trusted TA is responsible
for the system security setup. The security setup includes
distributing public parameters, issuing secret information,
and system maintenance. TA may go offline after the
system starts unless new users come in.

\bullet Cloud Service Provider: The cloud service provider
(cloud for short) is considered to be a semi-trusted
infrastructure, which is curious but not malicious.

\bullet Healthcare Company: We refer to a healthcare company
as “company” in the description of our design. The
company has limited computational resources to provide
PHR computation for millions of patients, but it is
able to delegate the corresponding health programs, like
polynomial/multi-polynomial functions, to the cloud.

\bullet Users: Patients use their mobile devices to collect and
report PHRs to the cloud, then retrieve computation
results. They are able to verify the correctness of the
results.

Cloud Service Provider

Patient

Trust Authority

Setup

Certificate Issuance

Monitoring Program Delegation

Signature Issuance, Result Verification

PHR Report and Result Retrieval

Company

Fig. 1. System Model

B. Design Objectives
We have two main design objectives for the verifiable

privacy-preserving monitoring scenario. First, patients should
be able to verify the correctness of returned computation
results. Then, patients’ PHRs should be encrypted before
sending to the cloud, and the patients private identity informa-
tion should be kept undisclosed during the authorization and
verification process. With this being said, the cloud cannot
learn either the raw data reported by patients or the relationship
between identity information and the computation results. We
also consider the confidentiality of the monitoring program,
which should be kept undisclosed to patients. Otherwise,
malicious users may obtain the program detail and anyone
would be able to use it for free.

C. Adversarial Model
For the fully-trusted trust authority, we assume that it is un-

compromisable by any kind of adversaries during the scheme
run. The company is assumed to be semi-trusted, and it may
launch inference attack on on patients’ identities by linking
the queried programs and patients’ identity information. For
the cloud, it is assumed curious but honest, in the sense that it
will follow the proposed scheme operation on computing the
reported PHRs, but may analyze the statistic of encrypted raw
data. Most importantly, the massive operations on the cloud
side may incur incorrect computation results, which leads to
severe security breaches on the integrity of PHRs. Malicious
users may try to observe/intercept heath monitoring programs.

We exclude several types of attacks that are beyond the dis-
cussion of this paper. The delegation of monitoring programs
to the cloud is not considered as attacks on compromising the
confidentiality of the company, because revealing the programs
will not offer benefit to the cloud and can be easily traced for
punishment. Our monitoring scheme may fail to fight against
the denial-of-service attacks when numbers of malicious pa-
tients send requests to the cloud with dummy PHRs. Collusion
attacks may not be thwarted when malicious users use brute
force to compromise encrypted PHRs. The insider attack and
global observer attack are also not considered in this paper.

IV. OUR PROPOSED SCHEME

In this section, we present our cloud-assisted verifiable
privacy-preserving monitoring scheme in detail, which mainly
consists of two main building blocks, privacy-preserving iden-
tity verification and verifiable PHR computation. We will
first discuss the single variable polynomial verifiable PHR
computation, and then give the advanced scheme on efficient
update and multi-variable polynomial case.

A. Overview
In our scheme, a patient, Alice, first obtains a private param-

eter \sigma denoting the unique verifiable identity from TA. Then,
based on her request, the company issues a blind signature
\Psi on \sigma showing that Alice has registered the correspond-
ing monitoring program f(\vec{}x), where f(\vec{}x) is a single/multi-
polynomial function. Then, Alice starts to periodically collects
her medical data via sensing devices and stored as PHR as
\vec{}x = (x1, x2, ..., xn), xi \in Z\ast 

q , where each entry of the vector
denotes unique monitored data, like heart rate, blood pressure,
blood glucose level, etc. Note that \vec{}x could be single entry



vector representing single variable monitoring program. To
request for computation results on \vec{}x, Alice first encrypts the
vector as \vec{}c := E(\vec{}m), where \vec{}m is the monitored raw data (the
input of f(\vec{}x)) and E(\cdot ) is the encryption scheme, then sends it
together with \Psi to the cloud. Meanwhile, Alice generates a set
of zero-knowledge proofs on \vec{}c and \Psi for privacy-preserving
verification. If the cloud could publicly verify the validity of
the blind signature \Psi , it will compute the program function
f(\vec{}x) on the input \vec{}c. Finally, the cloud outputs the computation
results f(E(\vec{}m)) as well as a provable signature \delta . Alice can
decrypted and accept the results if and only if she can verify
the correctness of f(\vec{}m) and \delta based on the plaintext form of
PHR \vec{}m.

B. System Setup
TA first generates a set of parameters for the system,

and publishes corresponding public parameters for patients to
create their proofs and encrypted PHRs, as well as for the
cloud to generate the provable signature. TA may go offline
after the successful setup. For the ease of description, we list
the system setup as follows for different objectives.

1) General Setup: Given a security parameter \xi , TA outputs
a tuple param := (n,G,G1, e) to the public domain, where
n = pq is the order of G and p, q are large primes.

2) Partially Blind Signature Setup: Along with the above
settings, we assume the factorization of n is hard and subgroup
decision problem is hard in both G and G1. In addition to the
above tuple, TA outputs the domain public parameter (g, gs) \in 
G2, where s \in R Z\ast 

n is chosen as master secret key.To generate
the signature, TA defines two hash functions H : \{ 0, 1\} \ast \rightarrow G
and H0 : \{ 0, 1\} \ast \rightarrow Z\ast 

n. Then, TA issues the signing key
pair pk/sk to the company, where pk := H(idc) \in G and
sk := H(idc)

s.
3) Proving and Monitoring System Setup: TA randomly

chooses another random generator g0 \in G and set h =
gp0 \in R Gq , and publishes h together with param as common
reference string crs. For each valid patient, TA issues a private
certificate \sigma = g

1
s+idA using Boneh-Boyen signature scheme

[34] given Alice’s ID idA, which can be used for verification
together with public information gs. Given the monitoring
public key pk := (n,G,G1, e, g, h), TA also issues Alice the
private key sk := q for decrypting the computation results.

C. Privacy-preserving Identity Verification
Our privacy-preserving identity verification scheme is con-

structed and modified based on the partially blind signature
scheme in [35] and zero-knowledge proof system in [36]. To
guarantee both the privacy and verifiability on \sigma , Alice first
sends a request to the company and asks for a blind signature
on \sigma . Then, Alice sends the zero-knowledge proof of \sigma and
the corresponding parameters to the cloud for further verifi-
cation. Our proposed scheme consists of four subprotocols,
Request, BlindSign, ProveGen, and Verify.

1) Signature Request: (\theta , \phi ) \leftarrow Request(g, pk, idA, w):
Alice first requests for some parameters from the company
for partially blind signature on \sigma . Before the request is sent,
the company and Alice have to agree on certain messages,
which will be embedded in the signature. This negotiation
process could be easily achieved by either downloading the
app with certain additional notified information or confirming

agreement (receipt) on both sides. Given the registered ID idA,
both Alice and the company agree on a string l \in \{ 0, 1\} n.
Then, the company randomly chooses t \in Z\ast 

n, computes
\theta = gt, \phi = pkt = H(idc)

t, and sends (\theta , \phi ) back to Alice.
2) Partially Blind Signature Generation Process:

\epsilon \prime \leftarrow BlindSign(\theta , gs, \phi , l, \sigma ): To generate the signature,
Alice first chooses \alpha , \beta , \gamma \in R Z\ast 

n, and then computes
\theta \prime = \theta \alpha \cdot (gs)\gamma = g\alpha t+\gamma s, \phi \prime = H(idc)

\alpha (\beta +t)H(l) - \gamma ,
and u = \alpha  - 1H0(\sigma | | \phi \prime ) + \beta . After receiving (\theta \prime , \phi \prime , u), the
company computes \epsilon = H(idc)

s(t+u)H(l)t. Then, Alice
unblinds the received \epsilon by computing \epsilon \prime = \epsilon \alpha . Different from
the original scheme in [35], we embed the validity check on
\sigma during the verification of \epsilon \prime .

3) Commitment and Proof Generation Process:
(\sansc \sanso \sansm i, \pi ) \leftarrow ProveGen(\theta \prime , \phi \prime , \epsilon \prime , \sigma , l). This process
happens on Alice’s side. First of all, we assume the validity
of H0(\sigma | | \phi \prime ), in the sense that Alice will not use fabricated
\sigma during the process of generating commitment and proofs
used to prove to the cloud. Otherwise, the company can
use log to trace back the malicious use together with the
cloud. Then, we assume the cloud could not identify the
correlation between the string l and the identity of patients
(e.g., using 1 string for all users who register to the same
company). Namely, we want the cloud to test the equality
of the following equation, so that it can successfully verify
the identity of Alice by giving the partially blind signature
\Psi := (\theta \prime , \phi \prime , \epsilon \prime , \sigma , w).

e(\epsilon \prime , g)e(gidAgs, \sigma )
?
= e(g \cdot \phi \prime \cdot H(idc)

H0(\sigma | | \phi \prime ), gs)e(H(l), \theta \prime )
(1)

However, directly revealing the given set and identity infor-
mation idA to the cloud will not only disclose the verification
information, but also reveal the correlation of ID and partially
blind signature \epsilon \prime . Instead, we try to apply the approach in
[36] to achieve the zero-knowledge proof in verifying the
correctness of the signature as well as the certificate. First,
we rewrite Eq.1 as follows,

e(\epsilon \prime , g)e(gidAgs, \sigma )e(\phi \prime \cdot H(idc)
H0(\sigma | | \phi \prime ), g - s)e(H(l) - 1, \theta \prime )

?
= e(g, g).

(2)
Then, Alice first chooses random numbers \mu i, \nu i \in R Zn, i =
1, 2, 3, 4, to generate the corresponding commitments.

\sansc \sanso \sansm 1 := \epsilon \prime h\mu 1 = H(idc)
\alpha s(t+u)H(l)\alpha th\mu 1 , \sansc \sanso \sansm \prime 

1 := gh\nu 1

\sansc \sanso \sansm 2 := gidA+sh\mu 2 , \sansc \sanso \sansm \prime 
2 := \sigma h\nu 2 = g

1
s+idA h\nu 2

\sansc \sanso \sansm 3 := \phi \prime \cdot H(idc)
H0(\sigma | | \phi \prime )h\mu 3 , \sansc \sanso \sansm \prime 

3 := g - sh\nu 3

\sansc \sanso \sansm 4 := H(l) - 1h\mu 4 , \sansc \sanso \sansm \prime 
4 := \theta \prime h\nu 4 = g\alpha t+\gamma sh\nu 4

Based on the commitment set, Alice constructs the
proof \pi :=

\prod 4
1(\sansc \sanso \sansm ih

 - \mu i)\nu i(\sansc \sanso \sansm \prime 
i)

\mu i . Then, Alice sends
(\{ \sansc \sanso \sansm i, \sansc \sanso \sansm 

\prime 
i\} 4i=1, \pi ) to the cloud for verification.

4) Privacy-preserving Identity Verification Process:
(0, 1) \leftarrow Verify(\{ \sansc \sanso \sansm i, \sansc \sanso \sansm 

\prime 
i\} 4i=1, \pi , h, e(g, g)). Given the

above parameters, the cloud will verify the equality of the
following equation, and output 1 for successful verification, 0
as otherwise, respectively.

4\prod 
i=1

e(\sansc \sanso \sansm i, \sansc \sanso \sansm 
\prime 
i) = e(g, g)e(\pi , h) (3)



Proof. Correctness: We prove the correctness of our construc-
tion based on Eq. 3.

4\prod 
i=1

e(\sansc \sanso \sansm i, \sansc \sanso \sansm 
\prime 
i)

= e(\epsilon \prime h\mu 1 , gh\nu 1)e(\phi \prime \cdot H(idc)
H0(\sigma | | \phi \prime )h\mu 3 , g - sh\nu 3)

\cdot e(H(l) - 1h\mu 4 , g\alpha t+\gamma sh\nu 4)e(gidA+sh\mu 2 , g
1

s+idA h\nu 2)

= e(H(idc)
\alpha s(t+u)H(l)\alpha t, g)e(\phi \prime \cdot H(idc)

H0(\sigma | | \phi \prime ), g - s)

\cdot e(H(l) - 1, g\alpha t+\gamma s)e(h\mu 1 , g)e(\epsilon \prime h\mu 1 , h\nu 1)e(h\mu 3 , g - s)

\cdot e(\phi \prime \cdot H(idc)
H0(\sigma | | \phi \prime )h\mu 3 , h\nu 3)e(h\mu 4 , g\alpha t+\gamma s)

\cdot e(H(l) - 1h\mu 4 , h\nu 4)e(gidA+sh\mu 2 , g
1

s+idA h\nu 2)

= e(H(idc)
\alpha s(t+u), g)e(H(idc)

\alpha (\beta +t)+H0(\sigma | | \phi \prime ), g - s)

\cdot e(H(l)\alpha t, g)e(H(l), g)\gamma s - \alpha t - \gamma se(g\mu 1 , h)e((\epsilon \prime h\mu 1)\nu 1 , h)

\cdot e(g - s\mu 3 , h)e((\phi \prime \cdot H(idc)
H0(\sigma | | \phi \prime )h\mu 3)\nu 3 , h)e(g\mu 4(\alpha t+\gamma s), h)

\cdot e((H(l) - 1h\mu 4)\nu 4 , h)e(g, g)e(g
(s+idA)\nu 2+

\mu 2
s+idA , h)e(h\mu 2\nu 2 , h)

= e(g, g)

4\prod 
i=1

e((\sansc \sanso \sansm ih
 - \mu i)\nu i(\sansc \sanso \sansm \prime 

i)
\mu i , h) = e(g, g)e(\pi , h)

The verification outputs 1 if Alice provides the commit-
ments and proofs on correct \sigma and \Psi . It is clear to see that
we hide the partially blind signature as well as Alice’s private
identity information during the verification to the cloud.

D. Verifiable PHR Computation
As long as Alice passes the verification on her identity,

the cloud can further process Alice’s uploaded PHRs. We will
first discuss the situation where the single-variable polynomial
program with update, and then go through the multi-variable
polynomial monitoring program.

1) Monitoring Program Delegation: This process enables
the company to delegate program to the cloud, and allows the
cloud to compute on Alice’s input PHR. Taking Alice’s blood
pressure testing program as an example, the coefficients of the
single-variable k-degree polynomial can be represented as a
vector \vec{}a := (a0, a1, ..., ak), ai \in Zn denoting the following
monitoring function,

f(x) =

k\sum 
i=0

aix
i = akx

k + ak - 1x
k - 1 + \cdot \cdot \cdot + a1x+ a0.

To delegate the above function to the cloud, the company sends
the coefficient vector \vec{}a to the cloud along with the agreement
string l for identifying the corresponding program. Note that
the delegation of the program is not considered as loosing the
confidentiality of monitoring programs, because it does not
offer the cloud business benefit to disclose the confidential
information of a company in this design.

2) PHR Encryption: As we point out in the introduction
part, the PHR should be encrypted before sent to the cloud
for computation. We extend the PVC scheme in [20] and the
BGN encryption scheme in [28] as our basic cryptographic
tools. Note that the reported PHR m could be one entry among
a time-serie based data vector \vec{}m := (m1,m2, ...mn),mi \in 
Zn. Depending on the degree of the delegated polynomial

function, Alice first randomly chooses a set of numbers
\vec{}r := (r0, r1, ...rk), where ri \in Zn, and sends \vec{}r to the
company. Upon receiving \vec{}r, the company computes \vec{}r\prime :=
\vec{}r \cdot \vec{}a = (a0r0, a1r1, ..., akrk), and sends h\=r = h

\sum k
i=0 r\prime i and g\=r

to Alice. Here, the company will also send \=r to the cloud for
the computation need. Note that the cloud would not be able
to identify each ri from \=r even if the cloud knows \vec{}a due to
the linear independence. Then, Alice generates the ciphertext
of PHR c by selecting another random number d \in Zn as
follows,

c := \{ ghd\cdot r0 , gmhd\cdot r1 , gm
2

hd\cdot r2 , ..., gm
k

hd\cdot rk\} ,

where each entry in c is computed as ci := gm
i \cdot (hri)d.

To obtain the proof on the computation results on m,
Alice sends \{ c, \lambda ,H(l)\} to the cloud, where \lambda = 1

(x - m)\cdot d
\mathrm{m}\mathrm{o}\mathrm{d} n, and then requests the cloud to compute the monitoring
program based on her input. We denote x \in R Zn as a random
point used in the polynomial function in the subsequent devel-
opment. Meanwhile, Alice requests the company to generate
a public parameter gf(x), which will be sent to the cloud for
the PHR computation.

3) Verifiable PHR Computation: When the cloud receives
the computation set, it recalls the corresponding monitoring
program \vec{}a and \=r based on H(l). Then, the cloud computes
the PHR as follows,

v =

k\prod 
i=0

\Bigl( 
gm

i

\cdot (hri)d
\Bigr)  - ai

=

k\prod 
i=0

g - ai\cdot mi

\cdot h - airid = g
\sum k

i=0  - ai\cdot mi

\cdot h
\sum k

i=0  - airid

= g - f(m) \cdot h - d
\sum k

i=0 r\prime i .

To obtain the correct computation results as well as the
provable signature \delta , the cloud first computes \lambda \prime := \lambda 

\=r =
1

(x - m)\cdot d\cdot \=r , and it further computes the provable signature \delta by
using the public parameter gf(x),

\delta = (gf(x) \cdot v)\lambda 
\prime 
= (gf(x) - f(m) \cdot h - d

\sum k
i=0 r\prime i)

1
(x - m)\cdot d\cdot \=r

= g
f(x) - f(m)

(x - m)
\cdot 1
d\=r \cdot h - 1

(x - m) =
\Bigl( 
gw(x) \cdot h - d\=r

(x - m)

\Bigr) 1
d\=r

,

where w(x) is a (k - 1)-degree polynomial function satisfying
w(x) \equiv f(x) - f(m)

(x - m) if and only if f(m) is the value based on
the input of m.

Finally, the cloud sends \{ v, \delta \} back to Alice and waits for
Alice’s verification results on f(m).

4) PHR Result Decryption and Verification: Upon receiving
\{ v, \delta \} , Alice can decrypt the ciphertext of v and obtain f(m)
by using the private key sk := q,\biggl( 

1

v

\biggr) q

= (gf(m)hd\=r)q = (gq)f(m)hd\=rq = (gq)f(m) \in Gp

To recover f(m), it suffices to compute discrete log of
1
v with base gq . Since we assume the limited integer space
as 0 < m, f(m) < M , we could obtain the final results
using Pollard’s lambda method [37] within O(

\surd 
M). Note that

this approach will not compromise the security level of the
encryption algorithm on c, as the adversary fails to decrypt c



using the discrete log due to the much larger message space
by using random numbers d and ri.

Then, Alice also wants the proof on the decryption re-
sults f(m), so she uses pseudonyms and SSL to send
encrypted form of (x, f(m))-tuple to the company which
helps her construct the coefficient vector on w(x) as \vec{}w :=
(w0, w1, ...wk - 1), as well as the proving vector W :=

g
\sum k - 1

i=0 wix
i

based on the point x. Alice also computes (g\=r)d =
gd\=r and \eta = (h\=r) - d/(x - m). Then, she checks the equality of
following equation to see whether the cloud correctly helps
her compute the corresponding monitoring program,

e(W \cdot \eta , g) ?
= e(\delta , gd\=r) (4)

Proof. Correctness: It is easy to prove the correctness of the
above equation.

LHS = e(gw(x), g)e(h - d\=r
x - m , g)

RHS = e(g
f(x) - f(m)

x - m , g)e(h - d\=r
x - m , g)

We have shown the equality of both sides based on the
assumption that f(x) - f(m) = (x - m)w(x).

E. Advanced Scheme for Verifiable PHR Computation
In this subsection, we discuss two extensions for our pro-

posed verifiable PHR computation scheme, which better adapt
different scenarios in mHealth monitoring.

1) Verifiable PHR Computation with Efficient Updates:
Our basic scheme mainly discusses on the monitoring scenario
that requires static single variable. However, for most health-
care monitoring programs, e.g., continuing glucose monitoring
(CGM) systems with fingersticks 3-4 times per day for optimal
glucose sensor accuracy, require multiple updates on one
single variable. Hence, it is desirable to extend our basic
scheme with efficient PHR updates in order to reduce the
computational cost on the patient side.

To enable the cloud to compute a new result f(m\prime ) on
updated PHR m\prime using the basic scheme, the patient may need
to compute a new set of c costing 2k exponentiation operations
on G and Gq and k multiplication operations on G. Moreover,
other required intermediate results also have to be completely
updated, which brings massive computational loads to both
the cloud and patients.

In our advanced scheme for efficient updates, we consider
a set of PHR \vec{}m := (m1,m2, ...mn),mi \in Zn, and the
previous input data item mi and ciphertext form ci have been
correctly computed as f(mi) given \{ vi, \delta i\} . Then, with the
updated PHR mi+1, Alice firsts updates the random numbers
by choosing \vec{}ri+1 := \{ ri+1,j\} kj=0 on Zn, and obtains g\=ri+1

and h\=ri+1 from the company, as \=ri+1 =
\sum k

j=0 aj \cdot ri+1,j .
Instead of generating a new set of ci+1, Alice sends the
update set c\prime i+1 := \{ g, gmi+1 - mi , gm

2
i+1 - m2

i , ..., gm
k
i+1 - mk

i \} 
and \vec{}\varrho i+1 := \{ di+1ri+1,j  - diri,j\} kj=0, where di+1 \in R Z\ast 

n is
a random number selected by Alice for computing f(mi+1).
Upon receiving the above updated parameters, the cloud would
be able to update the original ci to ci+1 as follows,

ci+1,j = ci,j \cdot c\prime i+1,j \cdot h\varrho i+1,j = gm
j
i+1hdi+1ri+1,j

which directly reduces the cost from (2k-exp+k-mul) to
(k-exp) on Alice’s side. Accordingly, Alice can update

\lambda i+1 = 1
(x - mi+1)\cdot di+1

and h\=ri+1di+1 to the cloud. Then, the
cloud could continue with the original scheme and output
\{ vi+1, \delta i+1\} for Alice to decrypt and verify.

2) Multi-variable Polynomial Monitoring: For some cases,
multiple factors would lead to a single output of some mHealth
monitoring programs, in which we have to consider the verifi-
able PHR computation on multi-variable polynomial functions.
Due to page limit, we will only focus on the scenario where
the cross terms (like x1x2 and x2

3x
3
4) does not appear in the

multi-variable monitoring program.
To better address the above problem, we continue to use

Alice’s mHealth monitoring as an example, in which the
monitoring program takes multiple factors, like blood pressure,
heart rate, glucose level, etc, as inputs, and expects the output
on evaluating her current health condition and drug usage. The
z-variable mHealth monitoring program is denoted as follows,

F (\vec{}x) = f1(x1) + f2(x2) + \cdot \cdot \cdot + fz(xz)

where f1(x1) = ak1
xk1
1 + ak1 - 1x

k1 - 1
1 + \cdot \cdot \cdot + a1x1 + a0

f2(x2) = bk2
xk2
2 + bk2 - 1x

k2 - 1
2 + \cdot \cdot \cdot + b1x2 + b0

...

fz(xz) = zkz
xkz
z + zkz - 1x

kz - 1
z + \cdot \cdot \cdot + z1xz + z0

where ki is the highest degree of each polynomial fi(xi),
and each entry xi \in \vec{}x represents different input PHRs from
different monitoring devices used in the program. As we can
see from our basic scheme, the trivial solution would be
expecting each output of fi(xi), and get verified one by one.
Obviously, it takes lots of computation load, which would be
O(z \cdot \mathrm{m}\mathrm{a}\mathrm{x}\{ ki\} ) on the cloud side and O(z) on the verification
on the patient side. As our advanced scheme, we allow the
cloud to aggregate the computation values on each fi(xi), then
it can generate one provable signature based on the aggregated
result for verification.

The input PHR is considered to be a vector \vec{}\bfm :
\{ \bfm 1,\bfm 2, ...,\bfm z\} ,\bfm i \in Zn. Similar to our basic scheme, Al-
ice can generate \bfc i of each \bfm i and \bfd , where \bfc i,j = g\bfm 

j
ih\bfd \bfr i,j .

Given \bfc i and each coefficient vectors, the cloud can compute
and aggregate the result as,

\bfv =

k1\prod 
j=0

\Bigl( 
g\bfm 

j
1 \cdot (h\bfd \bfr 1,j )

\Bigr)  - akj \cdot \cdot \cdot 
kz\prod 
j=0

\Bigl( 
g\bfm 

j
z \cdot (h\bfd \bfr z,j )

\Bigr)  - zkj

=

k1\prod 
j=0

g - akj
\cdot \bfm j

1 \cdot \cdot \cdot 
kz\prod 
j=0

g - zkj
\cdot \bfm j

z \cdot h - \=\bfr 1\bfd  - \cdot \cdot \cdot  - \=\bfr z\bfd 

= g - f(\bfm \bfone ) - \cdot \cdot \cdot  - f(\bfm \bfz ) \cdot h - \bfd 
\sum z

i=1 \=\bfr i = g - F (\bfm )h - \bfd \=\bfr 

where \=\bfr i =
\sum ki

j=0 \bfr 
\prime 
i,j is the summation of inner product

on \bfr i,j and the coefficients of each fi(xi). Then, Alice
constructs the computation factor \lambda i = 1

(xi - \bfm i)\cdot \bfd . Different
from the basic scheme, the cloud will compute \lambda \prime based on the
aggregated random number \=\bfr =

\sum z
i=1 \=\bfr i as \lambda \prime 

i =
1

(xi - \bfm i)\cdot \bfd \cdot \=\bfr ,
where xi \in R Zn is a set of random points on each fi(x).
For each \lambda \prime 

i and \bfv i, the cloud performs the same procedure
as in our basic approach to generate a set of \delta i and sends
to Alice. Then, Alice can use the same way to derive the
value of F (\bfm ) from \bfv . Then, Alice is able to obtain the
proving vector \bfW := g

\sum z
i=1

\sum ki - 1

j=0 wi,jx
j
i from the company



by sending (\vec{}x, F (\bfm )). To verify the computation results, Alice
first computes (g\=\bfr )\bfd and \eta = (h\=\bfr )

 - \bfd 
\sum z

i=1
1

xi - \bfm i . Then, she
aggregates \delta i and check the equality of the following equation,

e(\bfW \cdot \eta , g) ?
= e(

z\prod 
i=1

\delta i, g
\bfd \=\bfr )

Proof. Correctness: We prove the quality of two sides

LHS = e(g
\sum z

i=1

\sum ki - 1

j=0 wi,jx
j

, g)e(\eta , g)

= e(

z\prod 
i=1

gwi(xi), g)e(h
 - \bfd \=\bfr 

\sum z
i=1

1
xi - \bfm i , g)

RHS = e(g
\sum z

i=1
F (\vec{}x) - F (\vec{}\bfm )

xi - \bfm i h
 - \bfd \=\bfr 

\sum z
i=1

1
xi - \bfm i , g)

We have shown the equality of both sides based on the
assumption that F (\vec{}x)  - F ( \vec{}\bfm ) =

\sum z
i=1 wi(xi)(xi  - \bfm i),

where wi(xi) is (ki  - 1)-degree polynomial.

As we can see from the above derivation process, the total
computational cost on the verification reduced from O(z) to
O(1) on pairing operation. Meanwhile, the advanced scheme
reduces the communication overhead on transmitting fewer
intermediate computation results.

V. PROTOCOL EVALUATION

A. Security and Privacy Analysis

1) Correctness of Verification: First, we focus on the
identity verification. The correctness of identity verification
requires that patients have to show their valid certificates \sigma 
to enable the cloud to publicly verify their identities. The
original blind signature verification process can only verify the
provided signature \Psi generated and signed by the company
(registered patients with the company), but it fails to verify
whether the patient’s identity has been verified by TA. Our
scheme embeds the checking equation e(gidAgs, \sigma ) = e(g, g)
into the verification of Eq.1, so that the cloud can check the
registration with the company and patients’ identities at the
same time.

Next, the correctness of the computation results relies on the
computation on the long division of polynomials. The cloud
may mistakenly compute the incorrect results f\ast (m) based
on the input of m. First, the cloud will not be able to know
the value of m from \lambda due to the fact that the result is the
residue after module n. Second, the company computes the
long division which will output gw

\ast (x), where w\ast (x) is the
polynomial with coefficients w\ast 

i , 0 \leqslant i \leqslant k  - 1. However,
when Alice tries to verify the correctness of computation
results, the following equation

f(x) - f\ast (m) = (x - m)w\ast (x) + \varepsilon 

has the residue \varepsilon \not = 0, which indicates the inequality of Eq.4.
2) Identity Privacy: According to our design objective,

the company should not be able to learn the certificate \sigma 
when it generates the partially blind signature. To generate
\Psi , Alice transmits u = \alpha  - 1H0(\sigma | | \phi \prime ) + \beta to the company,
where \sigma is perfectly hidden in u by hashing and adding
two random numbers \alpha , \beta . Meanwhile, the company cannot
link the identity with the agreed string l as either patients
could use frequently changed pseudonyms to communicate

with the company, or they can use same string for obtaining the
same monitoring program. Another possible identity privacy
leakage may happen during the verification process with the
cloud. Instead of directly revealing the private certificate \sigma ,
our scheme first enables Alice to generate a set of commit-
ments and proof, both of which are constructed with random
numbers \mu i, \nu i only known to Alice. The cloud even cannot
distinguish the same patient from different queries on his/her
commitments due to discrete logarithm (DL) is assumed to be
hard in G when message space is defined large. It also fails
to reconstruct the private certificates by comparing different
queries, because the commitment scheme is unconditionally
hiding and computationally binding under DL assumption.

3) Delegated Program Privacy: Attackers will observe and
try to obtain the detail of delegated programs f(\vec{}x) during
the scheme run. Taking our basic scheme as an illustration,
Alice first chooses a random set \vec{}r and obtain g\=r, h\=r from
the company. Attackers would not be able to derive \=r from
g\=r and h\=r due to the DL assumption, which indicates the
infeasibility on deriving the coefficient \vec{}a of the polynomial.
In our advanced scheme with efficient updates, Alice will
generate another set of \vec{}r for the company to use. However, it
is still infeasible for eavesdroppers to compare the difference
between g\=ri and g\=ri+1 and obtain the correlation between the
coefficients and the corresponding random numbers due to the
DL assumption.

4) Reported PHR Privacy: The cloud and eavesdroppers
will eagerly look for the raw PHR data as we clarify in
the adversarial model. When the cloud obtains \=r associated
with \vec{}a, it cannot derive each ri to launch attacks on m,
because there is only one equation

\sum k
i=0 airi = \=r but with k

unknown factors. Without knowing the program details, it is
infeasible for eavesdroppers to obtain raw data even they can
obtain the computation results. The same situation happens
on both our advanced schemes, in which the cloud cannot
derive ri+1 from the summation \=ri+1 due to the increment
of unknown k factors on each update (only one new equation
obtained). The cloud or eavesdroppers would also not be able
to derive m from ci := gm

i

hdri due to the hardness of DL
assumption and large space for random numbers (1024 bits in
the following simulation settings). For the same reason, the
cloud would not be able to obtain f(m) from v. Meanwhile,
since the cloud does not know the factorization of n, it cannot
recover the f(m) due to the subgroup decision problem is
assumed hard. During the efficient update process, Alice sends
gm

i
i+1 - mi

i to the cloud. However, the cloud cannot identify the
updated message. For example, it cannot know mi+1+mi and
mi+1 - mi given gm

2
i+1 - m2

i and gmi+1 - mi due to the hardness
of Computational Diffie-Hellman (CDH) assumption. So, the
cloud cannot obtain either mi+1 or mi via linear computation.

B. Efficiency Analysis
1) Simulation-based Analysis: First, we use Pairing-based

Cryptography (0.5.12) Library to implement our simulation on
computational cost. We take Tate pairing as our basic pairing
operation. The elliptic curve we use for the our scheme is
Type A1. A curve of such type has the form of y2 = x3 + x
supporting the composite group pairing, in which we set | n| =
1024 bits and | p| = | q| = 512 bits. The base field of the
curve is 1024 bits with embedding degree of 2, and the order



of group is 160 bits, which gives the same security level as
1024-bit RSA. For the simulation-based analysis, we use a
laptop with an Intel processor 2.8GHz and 4GB RAM under
the platform Ubuntu 11.10.

\bullet Privacy-preserving Identity Verification
The privacy-preserving identity verification mainly involves

patients, the company, and the cloud. For the evaluation on
the computational cost, we focus on discussing the patient and
the cloud side. To generate the partially blind signature \Psi , the
patient has to compute 5 exponentiation (exp) operations and
2 multiplication (mul) operations on G. The commitment and
proof generation process take 16-exp and 16-mul in total. On
the cloud side, it takes about 5 pairing operations as e(g, g)
is assumed to be a publicly known factor.

As we can see from Table.I, the total cost for privacy-
preserving identity verification is 950.4 ms for patients, and
the verification costs the cloud 369.3 ms. If the cloud could
preprocess (pp) some computation intensive parts in the veri-
fication, the cost will reduce to 93.97ms for the verification.

TABLE I
COMPUTATIONAL COST ON IDENTITY VERIFICATION

Patient Cloud Cloud(pp)

Computational Cost (ms) 950.4 369.3 93.97

\bullet Verifiable PHR Computation
In the verifiable PHR computation part, we mainly consider

the computational cost on raw data encryption, decryption, and
verification on both our basic scheme and advanced schemes.
First of all, we evaluate the impact of the degree of the
polynomial on the computational cost. For the simulation
settings, we set the value of ai as random numbers from a
chosen uniform distribution, and the maximum of k is set
to be 10 which fits for most polynomial regression. As we
can see from Fig.2(a), the difference between the ciphertext
generation and the PHR computation on the cloud side is not
large. Especially, if we consider the cloud has more powerful
computation capability, the cost on the computation could
be negligible. However, for the monitoring program requiring
periodic updates, the patient’s cost become larger as shown in
Fig.2(b). When the number of updated PHRs reach 500, the
computational cost for the patient would be 453.2s. By using
our advanced scheme with efficient update, we shift more than
half computational load to the cloud, which results in the cost
as 221.6s. Meanwhile, on the cloud side, it increases linearly
as the PHRs grows, and it reaches 730.4s if we implement the
efficient update on the patient side.

Then, we evaluate the computational cost on decrypting the
encrypted message v. With the knowledge of the factorization
of n, the patient could to decrypt v by using brute force
or Pollard’s lambda methods. Given specific message space
of M , we have shown the computational cost in Fig.3. For
the message space reaching 1000, it takes 5.66s using brute
force approach and 1.43s for Pollard’s lambda approach,
respectively. Note for most medical programs, the range of
monitored raw data value is usually smaller than 1000. By
this mean, we show the efficiency of our decryption scheme
on the patient’s side.

We also conduct the simulation on the verification of the
computational results from the cloud. First, we give our
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simulation results on our basic scheme in Fig.4(a). It shows
the computational costs on our basic scheme with the number
of simultaneous PHRs, where the cost on the patient’s side
is slightly less than the cloud side due to the verification on
computing the costly pairing operation. The patient consumes
more than 69.1s to verify 100 PHR results for the programs
with k = 10 and 58.1s if we implement preprocessing on the
pairing operation. Then, we compare the basic scheme with
our advanced scheme on multi-variable monitoring program.
For the simulation, we set all fi(xi) to have the same degree,
say, 10, and F (x) contains up to 100 polynomials. The basic
scheme takes 159.8s to verify 100 polynomials with 100 input
raw PHRs mi, while we could apply the preprocessing on
pairing operation to reduce it to 148.7s. Compared with the
basic scheme, our advanced scheme allows patient to aggregate
the \delta i, which shifts z multiplication operations on pairing
to the multiplication operations on G. As we can see from
Fig.4(b), the computational costs reduce to 90.8s and 90.6s for
pairing and preprocessing pairing approaches, respectively.
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2) Storage Cost Analysis: The storage analysis mainly
concentrates on the patient and the cloud side. According
to our simulation setting, the group G has 512 bits, and the



element on Zn is 160 bits long (the same as security parameter
\xi ). The partially blind signature takes 4| G| + \xi bits for each
patient, while each one has to store the verification key gs

and the public parameters (g, g0, h) for total 8| G| + \xi bits.
The patients also has to store the private key sk for 512 bits.
For each monitored PHR raw data, the patient has to store
(k+2)| G| + | \xi | bits for the ciphertexts and \lambda for the first time.
Then, he/she can delete the previous ciphertexts and only keep
k| G| bits in each update. On the cloud side, it stores O(Nk)
bits for N users, and O(zN \mathrm{m}\mathrm{a}\mathrm{x}\{ kz\} ) bits for multi-variable
polynomial monitoring programs.

VI. CONCLUSION

In this paper, we propose a verifiable privacy-preserving
monitoring scheme for cloud-assisted mHealth systems. The
proposed scheme outsources the computation load to the cloud,
and enables the cloud to not only return the computation result
on encrypted monitored PHRs, but also provides the provable
signature on it. Patients would be able to verify the correctness
of the computation results after decrypting the ciphertext.
Based on the security and efficiency analysis, we have shown
the privacy preservation for patients’ PHRs and delegated
programs and demonstrate the feasibility of our scheme. We
expect that our proposed approach can pave the way for wide
deployment of mobile health monitoring technologies.
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