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Abstract— Connectivity of large-scale wireless networks has
received considerable attention in the past several years. Differ-
ent from traditional wireless networks, in Cognitive Radio Ad-
hoc Networks (CRAHNs), primary users have spectrum access
priority of the licensed bands over secondary users. Therefore,
the connectivity of the secondary network is affected by not only
the density and transmission power of secondary users, but also
the activities of primary users. In addition, the number of licensed
bands also has impact on the connectivity of CRAHNs. To capture
the dynamic characteristics of opportunistic spectrum access,
we introduce the Cognitive Radio Graph Model (CRGM) which
takes into account the impact of the number of channels and the
activities of primary users. Furthermore, we combine the CRGM
with continuum percolation model to study the connectivity in the
secondary network. We prove that secondary users can form the
percolated network when the density of primary users is below
the critical density. Then, the upper bound of the critical density
of the primary users in the percolated CRAHNs is derived.
Simulation results show that both the number of channels and
the activities of primary users greatly impact the connectivity of
CRAHNs.

I. INTRODUCTION

Connectivity is a challenging issue in large-scale wireless

networks. There have been extensive studies on the connec-

tivity of wireless ad hoc networks and sensor networks [1]–

[4]. Conventionally, the performance of wireless networks

has been examined under the assumption of maintaining full

connectivity (or k-connectivity) [2]. However, in CRAHNs

[5]–[7], the problem is fundamentally different since the full

connectivity criterion is difficult to achieve because of the

varying spectrum availability. The Secondary Users (SUs)

opportunistically utilize the spectrum holes unoccupied by

the Primary Users (PUs) so that the efficiency of the lim-

ited spectrum resource is significantly improved. Therefore,

the reachability between two SUs depends not only on the

distance between them but also on the availability of the

communication channel. As a result, in a secondary network,

communication links are time-varying due to the temporal

dynamics of spectrum opportunities. When PUs appear, the

SUs have to evacuate the borrowed licensed band and move

to some other available ones. Some SUs may fail to detect

any available channel and have to stop their transmissions

until available channels emerge. To investigate the impact of

this dynamic behavior on the connectivity of CRAHNs, we

present the cognitive radio graph to model the connectivity of

different network layers according to the frequency bands. Our

model further considers the activities of PUs and the number

of channels which significantly affect the connectivity as well.

To address the connectivity problem in CRAHNs, we need

to look into the differences between CRAHN and the conven-

tional network. First, the node density impacts the connectivity

of the CRAHN in a different way due to the counter effect

of the primary network on the secondary network. In the

conventional network, a network is connected if the node

density is large [8] and vice versa. However, the connectivity

of the secondary network depends on the density of PUs in

the CRAHN. The secondary network cannot be percolated

when there are many active PUs. Second, the connectivity

in CRAHNs is subject to temporal variations since PUs

could appear at any time without precaution. FCC [9] ruling

requires that SU should not incur intolerable interference to

the transmission of PUs. In [10], experiments show that even a

single packet transmission causes audible interference during

the transmission of the wireless microphone. Thus, the activity

of PUs affects the connectivity of the secondary network

significantly. Third, since SUs can operate in any portion of

the licensed spectrum [11], the number of licensed bands also

plays an important role in the connectivity of CRAHNs. The

wider spectrum the SUs could exploit, the better connectivity

the SUs can achieve. Due to these characteristics, it is essential

to conduct research on the connectivity in CRAHNs.

Recently, the percolation model, especially the continuum

percolation model has been widely used for the analysis of

large scale wireless networks [8] [12]. When the nodes are

distributed with low density, the network would be partitioned

into small fragments. As the density increases, some compo-

nents emerge where nodes can communicate with one another

through single hop or multiple hops. As the density continues

to increase, an extremely large connected component forms

such that each node in this component can connect to an

extremely large number of nodes. A network is considered

to be percolated if it contains an extremely large connected

component almost surely (a.s.). This phenomenon of a sudden

and drastic change from a subcritical phase to a supercritical

phase is called a phase transition. However, in CRAHNs, the

activities of PUs and the number of channels also lead to phase

transition besides the density of PUs and SUs. In this paper,

we combine the cognitive radio graph model with continuum
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percolation model to study the connectivity in the secondary

network.

The rest of this paper is organized as follows. Section II

provides a brief overview of previous works on connectivity.

Section III gives the system model. In Section IV, we present

our cognitive radio graph model under the dynamic spec-

trum activities. In Section V, we investigate the connectivity

criterion using the percolation theory. Section VI shows the

simulation results of the the impact of PU activities and

the number of channels on connectivity, followed by the

conclusions in Section VII.

II. RELATED WORK

Connectivity is one of the key problems that have been

extensively investigated in ad hoc networks in the past

decades [13]–[19]. In [13], the authors investigate the impact

of interference on the connectivity of ad hoc networks using

the random graphs associated with the Poisson Boolean model

and percolation properties of these graphs. Dousse et al. study

the message delivery latency of wireless sensor networks with

uncoordinated power saving mechanisms. They prove that the

latency depends only on the network parameters (node density,

connectivity range, duration of active and sleeping periods)

instead of the random location of the nodes [14]. In [15], Kong

and Yeh consider the impact of mobility on the connectivity of

the wireless network where the link between two nodes might

break when the distance between them increases beyond the

transmission range. Zhao et al. give a more precise description

of the fundamental relationship between node density and

transmission delay in large-scale wireless ad hoc networks

with unreliable links [16]. In [17], the authors study the

critical phase transition time of large-scale wireless multi-hop

networks when the network topology experiences a partition

due to increasing random node failures. In [18], the authors

utilize the base stations in the large-scale hybrid network to

improve the connectivity of ad hoc network in the subcritical

phase. Li, Zhang and Fang investigate the critical transmission

power to achieve asymptotic connectivity in the network with

directional antennas [19].

In CRAHNs, spectrum sharing and resource allocation [20]–

[24] have been extensively studied to improve spectrum uti-

lization, while the connectivity remains to be studied. Ren,

Zhao and Swami conduct the pioneer study on the con-

nectivity of CR networks [25] [26]. Similar to the works

mentioned above, the authors use techniques and theories in

continuum percolation to characterize the connected region

of the secondary network, then discuss the tradeoff between

the proximity (the number of neighbors) and the occurrence

of spectrum opportunities. Besides, the analysis of the im-

pact of the transmission power is provided as well. These

works, however, only consider the network with a single

channel. Furthermore, they do not take into account the time-

varying spectrum availability induced by PUs, which is the

key characteristic that distinguishes cognitive radio networks

from the traditional networks. To investigate the connectivity

of CRAHNs, Abbagnale et.al [27] propose a mathematical

Fig. 1. Impact of frequency diversity on network connectivity

framework based on the Laplacian spectrum of graphs. The

model uses a unique metric, the algebraic connectivity, to

capture the network connectivity, the average distance of

nodes, and the network diameter. Different to the prior works,

we propose a cognitive radio graph model to portray the

dynamic features, including the spatial and temporal variation

of spectrum, and the number of licensed bands. Then we

combine the model with percolation processes to study the

dynamic connectivity in large-scale CRAHNs.

III. SYSTEM MODEL

A. Network Model

In this paper, we consider the coexistence of the secondary

network with the primary network on plane R2. Both networks

are modeled by the geometric random graph [28]. In the

primary network, the PUs are distributed according to a two-

dimensional Poisson point process with density λp. Here, we

assume that all PUs have the same transmission range rp. Each

PU is randomly assigned an available channel for transmission

by the primary system controller. We model the PU network

with a random disk graph G(λp, rp). Let λs and rs be the

density and the transmission radius of each SU respectively.

Similarly, the secondary network is modeled by a random disk

graph G(λs, rs).

B. Communication Model

In traditional wireless ad hoc networks, the distance between

nodes and the transmission power are the critical factors that

determine the network connectivity. Two nodes can establish a

bi-directional link between them if they are in the transmission

range of each other.

However, the connectivity problem in CRAHNs is different

from traditional ad hoc networks. SUs experience spectrum

heterogeneity because the set of available channels might be

quite different from node to node. Moreover, the spectrum

availability might change dynamically due to PUs’ activities.

In CRAHNs, two SUs can connect only if they are in radio

visibility and have at least one available common channel. As

described in Fig. 1, there is a path from the source node S to

the destination node D. If a PU appears on the channel being

used by an SU, the SU should abdicate the channel imme-

diately and the suspend the transmission. As a consequence,

not only the distance and transmission power, but also the

availability of the channel decides the network connectivity
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in CRAHNs. We introduce some definitions which capture

the unique features of the connectivity in CRAHNs in the

following.
Definition 1: Geographic Link. A geographic link exists

between SUi and SUj only if the Euclidean distance between

them is less than rs, i.e., ‖Xi − Xj‖ < rs.
G(λs, rs) models a secondary network without considering

the impact of the primary network. It only contains geographic

links.
Definition 2: Communication Protection Radius Rp. All the

PUs have the same communication protection radius Rp =
(1+α)rp, where α is the communication protection coefficient

(α > 0).
In order to access a frequency band which is used by a PU,

the SUs must be located outside the communication protection

area of the PU. The protection area is a circle centered at the

PU with radius Rp.
Definition 3: Spectrum OPportunities SOP (SUi).

SOP (SUi) is defined as a set of frequency bands temporarily

unoccupied by PUs and available for SUi.
SUi can opportunistically access a frequency band in

SOP (SUi), but it has to immediately vacate this band when

an PU becomes active on the frequency band.
Definition 4: Radio Link. A radio link exists between SUi

and SUj if they have common available channels, i.e.,

SOP (SUi)
⋂

SOP (SUj) �= φ.
Definition 5: Communication Link. We say SUi and SUj

have a communication link if there exist both geographic link

and radio link between them.
The existence of a communication link between two sec-

ondary users is determined by the node distance and the

availability of the spectrum opportunity at both nodes.

C. Preliminary of Percolation
Mathematically, we introduce the following percolation

terminologies to further understand how the continuum per-

colation process on a geometric random graph is related to

the connectivity of a large-scale cognitive radio network.
Definition 6: Giant component Cmax is the largest con-

nected subgraph in graph G(λs, rs).
Definition 7: Percolation probability Prob∞(λs) is the

probability that the giant component of graph G(λs, rs) has

an infinite number of secondary nodes, i.e., Prob∞(λs) =
Prob(|Cmax| = +∞).

Definition 8: Critical density. In CRAHNs, both PUs and

SUs have critical density. The critical density of PUs λc
p is the

maximum node density that can make SUs form a percolated

secondary network. By contrast, the critical density of SUs λc
s

is the minimal node density that can ensure the percolation

probability Prob∞(λs) of graph G(λs, rs) to be larger than

0, i.e., λc
s = inf{λs : Prob∞(λs) > 0}. The λc

p and λc
s

pair which defines the connectivity of the CRAHNs is to be

investigated in this paper.

IV. COGNITIVE RADIO GRAPH MODEL

In order to describe the impact of the number of channels

and the activities of PUs, we introduce a cognitive radio graph

Fig. 2. Cognitive radio graph model

model to extend our network model G(λs, rs) defined above.

Note that more free channels result in higher degree of

link connectivity. Since the existence of a communication

link between two nodes depends on the availability of the

spectrum allocated to the geographic link, the connectivity of

a cognitive radio network depends on the available spectrum

pool. Let Ek denote the set of radio links in the network

corresponding to channel k. Gk is the graph corresponding

to channel k, denoted Gk = (V, Ek). A link l = (vi, vj) ∈
Ek iff vj is within the transmission range of vi when the

radio link is assigned an available channel k. According to

the definition of geographic link and radio link, the graph

G(λs, rs) has both physical topology and logic topology as

shown in Fig. 2. Each layer of the logic topology is a subgraph

Gk showing the connectivity in the network corresponding to

a particular licensed channel k. We now define G = (V, E)
as our cognitive radio graph model, where E denotes the

set of all possible radio links, i.e., E =
⋃N

k=1 Ek. G is

therefore a multi-layer graph. Provided that all nodes have the

same transmission power, the connectivity in each subgraph is

determined by the density and activity of SUs and PUs.

In order to explore the impact of the activity of PUs and the

number of channels in CRGM, we model the process of the

licensed spectrum access as a continuous-time Markov chain.

Assume there are a total of N licensed channels. Each PU uses

only one channel to transmit. When a PU comes, it can claim

the channel being used by SUs. In the Markov chain model,

the state in the transition diagram shown in Fig. 3 is described

by the number of available channels for SUs, denoted i. At

time t, the state space S(t) is given by

S(t) = {i|0 ≤ i ≤ N, t ≥ 0}.
The arrival of PUs is modeled as a Poisson process with

arrival rate γp. The service time of PUs follows negative

exponential distribution with expectation 1/μp.

We denote Pi(t) as the steady-state probability distribution

of state i ∈ S(t) at time t. The state i can be translated

into one of the following states depending on the arrival and

departure of PUs. State i − 1 will be reached if a new PU

arrives and operates in a licensed channel with probability γp.

State i + 1 can be reached if the PU finishes the transmission

with probability (N − i)μp .

We can get the steady-state probabilities by solving the

above model. In the solution, the probability that the SU has
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Fig. 3. The continuous-time Markov chain model

communication links plays a significant role in the connec-

tivity of CRAHNs. We define this probability as the survival

function of SU which will be used extensively in the following

parts.

Definition 9: Survival Function s(t). The survival function

s(t) actually serves as the probability that an SU has at least

one communication link at time t. s(t) is determined by the

number of licensed channels as well as the activity of PUs

because communication links are time-varying according to

the temporal dynamics of SOP.

Assume that the number of the available channels is i for

SU1 and j for the adjacent node SU2. Then, the probability

that there exists at least one common channel between SU1

and SU2 is

Pc =

{
1 if i + j > N,

1 − Cj
N−i

Cj
N

if i + j ≤ N.

Then, we can derive the survival function of SU as

s(t) =
N∑

i=0

Pi(t)Qi(t),

where Qi(t) indicates the probability that SU1 has common

channels with other adjacent nodes at state i. Qi(t) can be

calculated with

Qi(t) =
N−i∑
j=0

Pj(t)(1 − Cj
N−i

Cj
N

) +
N∑

j=N−i+1

Pj(t).

V. DYNAMIC CONNECTIVITY OF CRAHNS

In this section, we study the connectivity in a secondary

network G(λs, rs) which coexists with the primary network

G(λp, rp). Since the random distribution and activities of PUs

will affect the set of available channels for SUs, the commu-

nication link between SUs changes over location and time. To

capture this characteristic, we combine CRGM defined in the

above section with the dynamic percolation process to study

the connectivity in the secondary network. In CRGM, each

node is associated with a survival function s(t). According to

the Thinning theorem [29], the point process of surviving users

is also a Poisson process with density function λ(t) = s(t)λs.

Let G(λs, rs, s(t)) denote the sampled secondary network at

time t. Therefore, G(λs, rs, s(t)) only comprises the SUs in

G(λs, rs) that have communication links.

A. Mapping

On the continuous plane R2, we construct a discrete square

lattice L with edge length d. Thus, the percolation process

on R2 can be mapped into a bond percolation on L, or the

existence of an infinite path made of open edges.

As shown in Fig.4, for a horizontal edge AB, define the

associated rectangle SAB = [axd − 1
2d, axd + 3

2d] × [ayd −
1
2d, ayd + 1

2d], where (axd, ayd) and (axd + d, ayd) are the

coordinates of the two end vertices.

Definition 10: Let EAB denote the event that an edge AB
is open. Then EAB occurs if SUs in the rectangle satisfy the

following conditions.

• There is a sequence S1, S2, S3 · · ·Sl across the square

rectangle SAB = [axd− 1
2d, axd+ 3

2d]× [ayd− 1
2d, ayd+

1
2d] from left to right.

• There is a sequence S1, S2, S3 · · ·Sm across the square

rectangle S+
AB = [axd− 1

2d, axd+ 1
2d]× [ayd− 1

2d, ayd+
1
2d] from top to bottom.

• There is a sequence S1, S2, S3, · · ·Sn across the square

rectangle S−
AB = [axd+ 1

2d, axd+ 3
2d]× [ayd− 1

2d, ayd+
1
2d] from top to bottom.

• Two adjacent nodes contained in the sequence have

Euclidean distance ‖ XSi − XSi+1 ‖≤ rs, where XSi

and XSi+1 are the x-coordinates of nodes Si and Si+1

respectively.

• Two adjacent nodes contained in the sequence have a

communication link.

Note that the open vertical edges of L can be defined

similarly by rotating the rectangles by 90 degrees. The dual

lattice of L, which is denoted by L′, is obtained by putting

the vertices in the center of each square of L, and then joining

two such neighboring vertices by a line across an edge of L.

Thus, the dual lattice L′ is a square lattice which is shifted by

(d/2, d/2) from lattice L. An edge of L is said to be open if

and only if its corresponding edge of L′ is open.

B. Connectivity under Dynamic Spectrum Activity

Given the mapping and open edge defined above, we

now show the relationship between the open edge and the

secondary network connectivity.

Lemma 1: If lattice L is percolated, then the secondary

network G(λs, rs, s(t)) has an infinite connected component

on the continuous plane R2.

Proof: The presence of bond percolation on L means that

there exists an infinite open path consisting of open edges on

L′. Thus, the basic idea of the proof for Lemma 1 is to translate

the presence of continuum percolation on G(λs, rs, s(t)) into

the existence of an infinite open path on L′.
To prove Lemma 1, we consider an infinite open path on

L′. For an edge over the path, the vertex is located at the

center of a square of L. Therefore, along the edge, there

exist two adjacent squares that satisfy the conditions given

in Definition 10. The last two conditions guarantee that each

SU covered by two adjacent squares along the open edges can

communicate with each other through a single hop or multiple

hops. For any two adjacent edges, their associated rectangles
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A(axd,ayd) B(axd+d,ayd)

d

d

Fig. 4. Open rectangle

intersect in a same square of L. Since both of the two edges

are all open, there exists a connected component crossing the

two rectangles associated with the edges. In addition, the open

path is assumed infinite. The squares of all open edges on L
are also infinite which form an infinite connected component in

G(λs, rs, s(t)). Therefore, an infinite open path on L′ implies

an infinite connected component in G(λs, rs, s(t)).

Theorem 1: If λp > λc
p, with probability one there exists no

infinite connected component in G(λs, rs, s(t)) for all times

t > 0.

Proof: Under a Poisson Boolean model, the whole space

is partitioned into two regions, the occupied region, which is

the region covered by at least one node, and the vacant region,

which is the complement of the occupied region. We define

occupied (vacant) components as those connected components

in the occupied (vacant) region. Therefore, the connectivity

of CRAHNs can be studied through examining the occupied

connected components in the corresponding Poisson Boolean

model G(λs, rs, s(t)). For the Poisson Boolean model, phase

transition appears more remarkably in the sense that the critical

density for the a.s. existence of infinite occupied components

is equal to that for the a.s. inexistence of infinite vacant com-

ponents. Now we prove that when the density of PUs exceeds a

threshold, the vacant component left to the secondary network

is not enough to construct an infinite connected component.

We randomly select a vacant component V in the following

way. First, randomly choose a point υ on the plane R2. Denote

the vacant component belongs to υ as V {υ}. If υ is not

covered by any node, then let V = V {υ}. Otherwise, it goes

back to the first step. Therefore, a large vacant component is

more likely to be chosen. According to Lemma 4.1 in [29], if

λp > λc
p, then

P (σ(V {υ}) ≥ a) ≤ αe−βa,

where σ is the diameter of V , and α, β are constants with

α < ∞ and β > 0.

Recall how V is selected, we have

P (σ(V ) ≥ a) =
P (σ(V {υ}) ≥ a)

Ps
≤ α′e−β′a,

where Ps is the proportion of space not covered by nodes,

which is a constant when the node density is given. α′,β′ are

constants with α′ < ∞ and β′ > 0. Let Vs be the selected

A(axd,ayd) B(axd+d,ayd)

d

d

rs

Sr

Fig. 5. Vacant band

connected component consisted of SUs which is less than the

vacant component. Then, we can get

lima→∞ P (σ(Vs) ≥ a) ≤ lima→∞ P (σ(V ) ≥ a)
≤ lima→∞ α′e−β′a

= 0.

Therefore, when λp > λc
p, an unbounded occupied compo-

nent of PUs exists with probability one. Thus, there exists no

infinite connected component in G(λs, rs, s(t)) for all times

t > 0.

Theorem 2: Given secondary network G(λs, rs, s(t)) coex-

isting with primary network G(λp, rp), there exists a critical

density s(t)λs > λc
s and λp < λc

p. Then with probability one,

there exists an infinite connected component in the secondary

network G(λs, rs, s(t)) for all times t > 0.

Proof: As shown in Fig.5, suppose that there is a

band with width rs crossing vertically through SAB , then the

intersection of the band and SAB forms a rectangular with

length d and width rs, denoted by Sr. Let

Sc
r = {No surviving secondary nodes located in Sr}.

Let E∼
AB , E+

AB and E−
AB be the events that rectangles SAB ,

S+
AB and S−

AB are open, respectively. Then, E∼
AB occurs when

Sc
r occurs. We can also get the bands crossing horizontally

through S+
AB and S−

AB . Assume the positions of the secondary

nodes are independently and identically distributed (i.i.d.).

Then there exists

Pr(E∼
AB) = Pr(E+

AB) = Pr(E−
AB) = 1 − Pr(Sc

r).

As aforementioned, the point process of surviving secondary

nodes is a Poisson process with density function λ(t) =
s(t)λs, then we have

Pr(Sc
r) = exp(−λsrsds(t)),

where d is the edge width with tight bound Θ(
√

log n) [17].

Note that EAB occurs if the conditions given in Defini-

tion 10 are satisfied. Since only the surviving SUs are included

in G(λs, rs, s(t)), EAB occurs if the first three conditions

are satisfied in G(λs, rs, s(t)). Utilizing Fortuin-Kasteleyn-

Ginibre (FKG) inequality in [29] [30], the probability that

EAB occurs is lower bounded by

Pr(EAB) = Pr(E∼
AB

⋂
E+

AB

⋂
E−

AB)
≥ Pr(E∼

AB)Pr(E+
AB)Pr(E−

AB)
= (1 − Pr(Sc

r))
3.
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Fig. 6. A link between Si and Si+1

Now, consider a path Pm = {ei}m
i=1 of length m in L. Let

Eei
denote the event that ei is open. Assume all the events in

{Eei
}m

i=1 are independent. Then, the probability that the path

Pm is open can be

Pr(Pm open) = Pr(
⋂m

i=1 Eei
)

≥ ∏m
i=1 Pr(Eei)

= (1 − Pr(Sc
r))

3m.

As a consequence, the probability that there exists an

infinite open path starting from the origin on L′ is arbitrarily

close to 1 by choosing large enough edge width d when the

continuum model is in the supercritical phase. From Lemma 1,

the existence of an infinite path on L′ further implies the

existence of an infinite connected component in G(λs, rs, s(t))
when s(t)λs > λc

s. However, Theorem 1 implies that if

G(λs, rs, s(t)) percolates, λp is less than λc
p. Therefore, if

s(t)λs > λc
s and λp < λc

p, there exists an infinite connected

component with probability one in the secondary network

G(λs, rs, s(t)) for all times t > 0.

As we can see, for any given network size, Pr(EAB)
increases exponentially as the survival function s(t) increases.

Specifically, Pr(EAB) goes to 0 when s(t) → 0. This is in

accordance with the fact that the more failed nodes, the more

difficult to have a connected component in the graph.

Theorem 3: The upper bound on the critical density λp of

PUs is given by

λc
p =

N log(1 − N

√
1 − λc

s

λs
)

2R2
p(π − arccos rs

2Rp
) + rs

√
2R2

p − r2
s

4

.

Proof: For every pair of SUs in an infinite connected

component, there exist available channels between the trans-

mitter and the receiver. Fig. 6 shows a link between two

adjacent SUs Si and Si+1. 
 is the distance between Si and

Si+1. The two SUs cover circle areas D(Si) and D(Si+1) with

radius Rp respectively. Let A(Si, Si+1) = D(Si)
⋃

D(Si+1),
so

A(Si, Si+1) = 2R2
p(π − arccos




2Rp
) + 


√
2R2

p − 
2

4
.

A set Φk is defined as the set which contains the PUs using

channel k. Assume a PU appears on a channel randomly and

independently. Φk can be obtained with a random sampling

process in which a PU is selected with probability 1
N . Ac-

cording to the Thinning theorem [29], Φk is a Poisson process

with parameter
λp

N . Similarly, the sets Φ1, Φ2, · · · , Φk are all

Poisson processes and independent of each other. Then, we

define Φk(A) as the set of PUs in area A(Si, Si+1) using

channel k. Therefore, the number of PUs in Φk(A), denoted

as |Φk(A)|, follows a Poisson distribution with parameter
λpA(Si,Si+1)

N . Now we can get the probability that no PU

occupies the channel k

P (|Φk(A)| = 0) = exp(
−λpA(Si, Si+1)

N
).

So, the probability that there exists at least one available

channel in area A(Si, Si+1) can be written as

PA = 1 − (1 − exp(
−λpA(Si, Si+1)

N
))N .

According to the Thinning theorem [29], PAλs > λc
s should

be satisfied in an infinite connected component. Therefore,

λp <
N log(1 − N

√
1 − λc

s

λs
)

A(Si, Si+1)
.

For an infinite open path, the distance between two adjacent

nodes should be no more than rs. Therefore,

A(Si, Si+1) ≤ 2R2
p(π − arccos

rs

2Rp
) + rs

√
2R2

p − r2
s

4
.

Thus,

λp < λc
p

=
N log(1− N

√
1−λc

s
λs

)

2R2
p(π−arccos rs

2Rp
)+rs

√
2R2

p−
r2

s
4

.

VI. SIMULATION RESULTS

We are interested in the relationship between the connectiv-

ity and the dynamic characteristics of spectrum which include

the activities of PUs and the number of channels. More specif-

ically, the effects of arrival rate and service time of PUs on

the connectivity are investigated through extensive simulation.

We use survival probability to show the connectivity of the

secondary network. The survival probability is the value of

the survival function defined in Section III at time t0. The

higher the survival probability, the better the connectivity can

be achieved. In addition, a drastic change of the survival

probability may lead to the phase transition of connectivity.

In our simulation, we assume the arrival of the primary

nodes follows a Poisson process. The channel service time of

the PUs is exponentially distributed with rate μp.
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Fig. 7. SU survival probability with γp
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Fig. 8. SU survival probability with μp

A. Impact of Arrival Rate of PUs

In this section, we study the impact of the arrival rate of

PUs on the survival function. The number of channels, denoted

by N , varies from 4 to 7. The arrival rate of the PUs on

these channels follows a Poisson process with parameter γp =
(0.2 ∼ 0.6). The service rate of PU is μp = 0.4.

As shown in Fig. 7, the survival probability for a particular

N decreases with the increased PU arrival rate. With more

PU arrivals, more SUs would be blocked since more channels

are occupied by PUs. In addition, frequent PU arrivals prevent

the transmission of SUs from being completed. Observe that

the survival probability when N = 7 outperforms the other

three as the arrival rate rises. This demonstrates that a bigger

channel pool helps improve the survival probability of the SUs.

In addition, there are drastic changes when γp is set to 0.25 and

0.35 for N = 4 and N = 5 respectively. These changes lead

to phase transitions of connectivity which will be illustrated in

subsection VI-C.2. As N increases to 6 and 7, more spectrum

opportunities are exploited, so the impact of the arrival rate

on the survival probability declines. In the case of large N ,

the drastic change does not occur as γp grows.

B. Impact of Service Time of PUs

In this section, we study the impact of the service time of

PUs on the survival function. The channel service rate of the

primary nodes is exponentially distributed with parameter μp

which varies from 0.2 to 0.6 with an interval of 0.05. The

arrival rate of PUs is set to 0.1.

Observed from Fig. 8, as μp grows, the survival probability

increases. By increasing μp, the average channel holding time

of PU is actually decreasing. Therefore, the survival proba-

bility increases since the spectrum is relatively less crowed.

Similarly to Fig. 7, the survival probability increases as the

number of channels N rises given certain μp. Drastic changes

happen at N = 4 and N = 5 when μp is set to 0.25. The

changes trigger phase transitions too. We also give an example

of the connectivity at N = 5 in subsection VI-C.3.

C. Examples of Connectivity in CRAHNs

In this section, we investigate the phase transition in ac-

cordance with the change of survival probability with some

examples. The previous two subsections show that the survival

probability is related with the number of channels, the arrival

rate and the service time of PUs. Therefore, we study the phase

transition phenomenon with respect to these three aspects.

Without loss of generality, we only consider the situation

that λp < λc
p, which means there could be a giant component

including infinite secondary nodes. In order to measure the

extent of the giant component Cmax, we introduce the ratio

of the giant component to the whole component, given as

ρg =
number of secondary nodes in Cmax

number of secondary nodes in the whole network
.

The simulation results are shown in Fig. 9-11.

1) Examples of phase transition according to N : Fig. 9 (a),

(b), (c) show the examples of graph G(λs, rs, s(t)) with N =
4, 5, 6, respectively. The other parameters are γp = 0.2, μp =
0.4. According to the communication link defined in Definition

5, there is at least one common available channel on the links

in Fig. 9. The links colored red belong to the giant component.

From Fig. 9 (a), we can see that the graph is split into many

components with ρg = 35%. In Fig. 9 (a) and (b), when the

number of channels is increased from 4 to 5, ρg grows slightly.

However, when N reaches 6, a giant component containing a

large portion (ρg = 72%) of nodes emerges. This indicates

that a phase transition happens at the critical point of N = 6.

2) Examples of phase transition according to γp: Fig. 10

(a), (b), (c) show the examples of graph G(λs, rs, s(t)) with

γp = 0, 0.35, 0.4, respectively. The other parameters are

N = 5, μp = 0.4. From Fig. 10 (a), we can see that the graph

contains a giant component with ρg = 94%. Since γp is set to

0, there is no PUs arrival. So the giant component contains all

the geographic links. In Fig. 10 (b), when γp increases to 0.35,

ρg reduces to 73%. Fig. 10 (c) shows that ρg drops to 38%
drastically when γp continues increasing to 0.4. This shows a

phase transition at the critical point of γp = 0.4.
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Fig. 9. An example of phase transition according to the number of channels N (γp = 0.2, μp = 0.4). (When N grows from 4 to 5, ρg increases slightly
(from 35% to 37%, shown in (a) and (b)). When N increases to 6, a giant component ρg = 72%) is formed (shown in (c)).)
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(a) γp = 0, ρg = 94%
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(b) γp = 0.35, ρg = 73%
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(c) γp = 0.4, ρg = 38%

Fig. 10. An example of phase transition according to the arrival rate of PUs γp (N = 5, μp = 0.4). (At first, there is no PU arrival, so a giant component
(ρg = 94%) exists (shown in (a)). When γp grows to 0.35, ρg reduces to 73% (shown in (b)). However, when γp increases to 0.4, ρg drastically decreases
to 38% (shown in (c)).)

3) Examples of phase transition according μp: Fig. 11 (a),

(b), (c) show examples of graph G(λs, rs, s(t)) with μp set

to 0.1, 0.2, 0.25, respectively. The other parameters are N =
5, γp = 0.1. In Fig. 11 (a), the graph is split into many

components with ρg = 42%. When μp increases from 0.1 to

0.2, ρg grows slightly. However, when μp increases to 0.25, ρg

increases to 86% drastically, thus a giant component is formed.

This shows that a phase transition happens at the critical point

of μp = 0.25.

VII. CONCLUSION

The connectivity of large-scale cognitive radio networks has

become an important yet challenging issue. Existing works

on connectivity mainly focus on the conventional connectivity

problem of the wireless network and do not consider the

spectrum dynamics. So they are not suitable for cognitive

radio networks. To exploit the specific characteristics, we

propose a cognitive radio graph model which introduces

survival probability to measure the impact of the number of

channels and the activity of primary users. Using theories

and techniques from continuum percolation, we investigate

the dynamic connectivity and derive the critical conditions to

ensure connectivity in the CRAHN. Finally, we demonstrate

the simulation results.
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(c) μp = 0.25, ρg = 86%

Fig. 11. An example of phase transition according to μp (γp = 0.2, μp = 0.4). (At first, the network is partitioned into small fragments (shown in (a)).
When μp rises from 0.1 to 0.2, ρg changes little (from 42% to 45%, shown in (b)). However, when μp increases to 0.25, ρg increases to 86% suddenly
(shown in (c)).)
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