
Capacity Scaling of Multihop Cellular Networks

Pan Li∗, Xiaoxia Huang†, and Yuguang Fang‡

∗Department of Electrical and Computer Engineering, Mississippi State University, MS 39762
†Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

‡Department of Electrical and Computer Engineering, University of Florida, FL 32611

Email: li@ece.msstate.edu, xx.huang@sub.siat.ac.cn, fang@ece.ufl.edu

Abstract—Wireless cellular networks are large-scale networks
in which asymptotic capacity investigation is no longer a cliché.
A substantial body of work has been carried out to improve the
capacity of cellular networks by introducing ad hoc communica-
tions, resulting in the so-called multihop cellular networks. Most
of the previous research allows ad hoc transmissions between
certain source and destination pairs to alleviate base stations’
relay burden. However, since reports show that Internet data
traffic is becoming more and more dominant in cellular networks,
we explore in this paper the capacity of multihop cellular
networks with all traffic going through base stations and ad
hoc transmissions only acting as relay. We first investigate the
capacity of regular multihop cellular networks where both nodes
and base stations are regularly placed. By fully exploiting the link
rate variability, we find that multihop cellular networks can have
higher per-node throughput than traditional cellular networks by
a scaling factor of log

2
n. Then, for the first time we extend

our study to the capacity of heterogeneous multihop cellular
networks where nodes are distributed according to a general
Inhomogeneous Poisson Process and base stations are randomly
placed. We show that under certain conditions multihop cellular
networks can also outperform traditional cellular networks by a
scaling factor of log

2
n. Moreover, both throughput-fairness and

bandwidth-fairness are considered as fairness constraints for both
kinds of networks.

I. INTRODUCTION

Wireless cellular networks have been widely deployed since

1980s. In a cellular network, every node transmits (or receive)

all its traffic to (or from) a base station in one hop, and the

throughput for each node is very low. Realizing that ad hoc

networks can accommodate more concurrent transmissions and

have higher network spatial reuse ratio, Lin et al. [10] and

Luo et al. [12] introduce ad hoc communications into cellular

networks, resulting in the so-called multihop cellular networks

or hybrid wireless networks1, where some transmissions are

carried out between a node and a base station directly in

one hop and the others are performed between two nodes via

multiple hops. They show that multihop cellular networks can

have higher throughput than traditional cellular networks by

presenting some numerical results. However, nowadays cellu-

lar networks are getting larger and larger, and the numerical
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1In the sequel, we use these two terms interchangeably.

results obtained in limited-size networks are insufficient to

describe the behavior of such large systems. In particular, ac-

cording to the CTIA The Wireless Association [3], the number

of wireless subscribers in the U.S. is 97M in 2000, 194.4M

in 2005, and 276.6M in 2009, respectively, and the number of

cell sites is 95.7K in 2000, 178K in 2005, and 245.9K in 2009,

respectively, which are both keeping increasing dramatically.

So obviously we are having large-scale wireless networks

today. The asymptotic capacity investigation is thus no longer

a cliché, which can better unveil the network performance.

The capacity of hybrid wireless networks has been exten-

sively studied in the literature such as [8], [9], [11], [15],

[17]. All these efforts improve the capacity of traditional

cellular networks by allowing ad hoc communications between

certain sources and destinations without the help of base

stations so as to relieve their relay burden. However, due

to the emerging various data services, Internet data traffic is

becoming more and more dominant, and according to Nokia

Siemens Networks [1], Internet data traffic will overtake voice

traffic by 2011, and grow exponentially until 2013. As a

result, in this paper, we attempt to explore the capacity of

multihop cellular networks considering that all traffic goes

through base stations and ad hoc transmissions only act as

relay. Specifically, we carry out one-hop direct transmissions

to or from base stations only for a fraction of nodes close

to them. The other nodes farther away need communicate

via multiple hops with some of the above nodes in order

to communicate with base stations. In so doing, although we

still consider randomly chosen source-destination pairs in the

network, the obtained capacity results can also account for the

case when Internet traffic takes a majority.

The main contribution of this paper is threefold. First, we

investigate the capacity of regular multihop cellular networks

where both nodes and base stations are regularly placed.

By fully exploiting the link rate variability, we try to find

whether and how much ad hoc relay can help improve the

network capacity. The most related work in the literature is

by Law et al. [7], which formulates the throughput of regular

multihop cellular networks as an optimization problem and

gives some numerical results. The derived throughput in [7]

is an upper bound which is not necessarily achievable. While

in this work, we obtain for the first time theoretical results on

scaling capacity, and what we present is feasible throughput.

Second, we extend our study to the capacity of general hetero-

geneous multihop cellular networks. All the aforementioned
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work is carried out in homogeneous networks where nodes

are either regularly or uniformly distributed. Alfano et al. [2]

study the capacity of inhomogeneous ad hoc networks with

nodes distributed according to a shot-noise Cox process, a

special heterogeneous point distribution process, which is quite

different from the problem in this study. To the best of our

knowledge, this is the first attempt to explore the capacity

of heterogeneous multihop cellular networks in which nodes

are distributed according to a general inhomogeneous point

process. We also explore under what conditions can ad hoc

relay improve the network capacity. Third, both throughput-

fairness and bandwidth-fairness are considered as fairness

constraints for both kinds of networks.

The main results of this paper are briefly summarized as

follows. We find that by fully taking advantage of link rate

variability, regular multihop cellular networks can have higher

per-node throughput than traditional cellular networks by a

scaling factor of log2 n, under either throughput-fairness or

bandwidth-fairness constraint. We also show that under certain

conditions heterogeneous multihop cellular networks can also

outperform traditional cellular networks by a scaling factor of

log2 n.

The rest of this paper is organized as follows. In Section

II we introduce the network model and the channel capacity

model we use in this work. Section III and Section IV present

the capacity of regular multihop cellular networks and of

heterogeneous multihop cellular networks, respectively. We

finally conclude this paper in Section V.

II. ASSUMPTIONS AND MODELS

In this section, we introduce the network model and the

channel capacity model we will use throughout this paper.

A. Network Model

We consider a network with n nodes and m base stations

distributed on a two-dimensional torus with edge L, where

m = n� (0 < � < 1), L = n� (0 ≤ � ≤ 1/2), and the

network area ∣A∣ = L2. Thus, we can model all kinds of

networks including dense networks (� = 0) [11], extended

networks (� = 1/2) [8], and semi-extended networks (0 <
� < 1/2) [4]. The m base stations are interconnected via a

wired network, in which the link bandwidth is large enough

and there is no bandwidth constraint.

Regular Multihop Cellular Networks: We first assume

that the n nodes and the m base stations are regularly placed

in the network, respectively. The m base stations divide the

network into sets of hexagons, i.e., cells. At the center of each

cell there is a base station.

Heterogeneous Multihop Cellular Networks: We then

extend our study to the case when the n nodes are distributed

according to a general Inhomogeneous Poisson Process (IPP),

with the local intensity at point � in the network denoted by

Ψ(�), and
∫
A Ψ(�)d� = n. The minimum and the maximum

of Ψ(�) are denoted by Ψ and Ψ, respectively, which both

scale with n. Assume Ψn2� = !(lnn). We also assume that

the m base stations are uniformly and randomly distributed in

the network.

We follow the process in [5] to choose random sender-

receiver pairs so that each node is a source node for one flow

and a destination node for at most O(1) flows. The nodes in

a cell transmit or receive all packets through the base station

in the cell, either in a single hop or across multiple hops.

Base stations do not serve as data sources or data destinations.

Instead, they only help relay packets for the nodes.

Besides, we consider two kinds of fairness constraints

throughout this paper: throughput-fairness and bandwidth-

fairness. Under throughput-fairness constraint, nodes are guar-

anteed the same throughput, whereas under bandwidth-fairness

constraint, nodes are allocated the same amount of channel

bandwidth. We attempt to find out which strategy can give us

higher average per-node throughput in the network. Note that

these two fairness constraints are intended for infrastructure

mode transmissions only. In ad hoc mode transmissions, nodes

share the same bandwidth.

B. Channel Capacity Model

Let dij denote the distance between a node i and another

node j. The reception power at node j of the signal from

node i, denoted by Pij , follows the power propagation model

described in [13], i.e., Pij = CPi/d

ij , where Pi is the trans-

mission power of node i,  is the path loss exponent, and C is

a constant related to the antenna profiles of the transmitter and

the receiver, wavelength, and so on. As a common assumption,

we assume  > 2 in outdoor environments [13].

We consider the Shannon Capacity as the channel capacity

between two nodes. Specifically, a transmission from node i
to node j can have channel capacity, Rij , which is calculated

as follows:

Rij = B log2(1 + SINRij), (1)

where B is the channel bandwidth, and SINRij is the SINR

(Signal-to-Interference plus Noise Ratio) of the signal from

node i to node j. In this study, we consider the channel

bandwidth B to be a constant. Note that according to (1),

the channel capacity can be very large if the SINR goes

large. Alfano et al. [2] propose another model which upper

bounds the channel capacity by a constant considering physical

limitations of current transceivers. However, we do not follow

their approach because we want to explore the performance

of the network from information theoretic point of view,

regardless of the limitations we currently have.

III. CAPACITY OF REGULAR MULTIHOP CELLULAR

NETWORKS

In this section, we investigate the capacity of regular

multihop cellular networks. We will first find an achievable

per-node throughput under two different fairness constraints,

i.e., throughput-fairness and bandwidth-fairness, respectively,

when all transmissions between base stations and normal

nodes are one-hop, or in infrastructure mode. Then, we attempt

to find out whether carrying out one-hop transmissions only

for a fraction of nodes close to base stations can improve
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Fig. 1. An arbitrary cell in a regular multihop cellular network.

the per-node throughput. The other nodes farther away need

communicate via multiple hops, i.e., in ad hoc mode, with

some of the above nodes in order to communicate with base

stations. We call the communications in this paradigm “hybrid

mode” communications.

Recall that all packets from or to the n nodes are relayed

through base stations. Thus, transmissions from a source node

to its destination can be carried out in three steps: Step I:

from the source node to the base station in its cell; Step II:

from this base station to the one in the destination node’s

cell; Step III: from that base station to the destination node.

Base stations perform transmissions in Frequency Division

Multiplexed (FDM) mode, which means that in each cell

the total bandwidth B is divided into many non-overlapping

subchannels each of which is further divided into two equal

parts for uplink and downlink transmissions, respectively. We

first analyze the downlink transmissions in Step III as follows.

Consider an arbitrary cell in a regular multihop cellular

network. As shown in Fig. 1, a base station C0 is at the

center of a cell, and the nodes in the cell are placed in tiers.

Denote the distance between adjacent nodes by d, and the

number of tiers in a cell by ℎ, respectively. For a node at

tier q, the reception power of a signal from the base station,

denoted by P q
r , satisfies P q

r ≥ CPB/(dq)
 , where PB is

the signal transmission power which is the same for all base

stations. The cumulative interference suffered by this node

under observation, denoted by Iq , comes from all the other

base stations which form outer tiers of concentric hexagons

centered at C0. We call the tiers formed by nodes in a cell

inner tiers hereafter. At the jth outer tier, there are at most

6j interfering base stations that are at least
√
3
2 ⋅ j

√
3dℎ− dℎ,

i.e., (32j − 1)dℎ away from the receiver node of C0. So we

can obtain

Iq ≤
+∞∑

j=1

6j × CPB[
(32j − 1)dℎ

]

≤ 6 ⋅ 2CPB

(dℎ)

[
1 +

∫ +∞

0

1

(3j + 1)−1
dj

]

=
6 ⋅ 2CPB

(dℎ)
⋅ 3 − 5

3 − 6
.

As a result, the SINR of the transmission from a base station

to a node at inner tier q, denoted by SINRq, is as follows:

SINRq ≥  − 2

(3 − 5)2+1
⋅
(ℎ
q

)
, (2)

where noise is ignored since we consider an interference

dominated environment like in [7] [14].

Note that we can easily find that uplink transmissions in

Step I can have the same lower bound on SINR as shown

above, which implies that uplink and downlink transmissions

can have the same transmission rate, too. Since the backbone

wired network has large enough bandwidth, the per-node

throughput in the network is simply decided by the uplink or

downlink transmissions only. In what follows, we only focus

on the downlink throughput.

A. Capacity in Infrastructure Mode

We first study the capacity when all transmissions are

carried out in infrastructure mode. As mentioned before, under

throughput-fairness constraint, all nodes need to have the same

throughput, which we denote by �T (n). We further denote

the bandwidth allocated to the downlink transmissions of each

node at inner tier q by Bq. Then, we have

ℎ∑

q=1

6qBq = B/2.

Since �T (n) = Bq log2(1 + SINRq), we can get

ℎ∑

q=1

6q
�T (n)

log2(1 + SINRq)
= B/2,

and hence

�T (n) =
B/12

∑ℎ
q=1

q
log2(1+SINRq)

.

Thus, from (2), a lower bound on the per-node throughput

can be found as follows:

�T (n) ≥ B/12
∑ℎ

q=1
q

log2

(
1+ −2

(3−5)2+1 (ℎ
q
)
)

≥ B/12
∑ℎ

q=1
q

log2

(
1+ −2

(3−5)2+1

)

=
m

n

B

2
log2

(
1 +

 − 2

(3 − 5)2+1

)
. (3)

The last step is because of
∑ℎ

q=1 6q = n/m. We can thus

observe that when all transmissions are carried out in in-

frastructure mode, the per-node throughput under throughput-

fairness constraint is lower bounded by m/n, i.e., inversely

proportional to the number of nodes in a cell.

We also denote the per-node throughput under bandwidth-

fairness constraint by �B(n), the transmission rate of nodes at

inner tier q by �B
q (n), and the bandwidth allocated to downlink
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transmissions of each node by Bi, respectively. Then, we can

obtain

�B(n) =

∑ℎ
q=1 6q�

B
q (n)

n/m

=
m

n

ℎ∑

q=1

6qBi log2
(
1 + SINRq

)
.

From (2), a lower bound on �B(n) can be obtained by

�B(n) ≥ m

n

ℎ∑

q=1

6qBi log2

(
1 +

 − 2

(3 − 5)2+1

(ℎ
q

)
)

≥ m

n

ℎ∑

q=1

6qBi log2

(
1 +

 − 2

(3 − 5)2+1

)

=
m

n

B

2
log2

(
1 +

 − 2

(3 − 5)2+1

)
. (4)

The last step is due to
∑ℎ

q=1 6qBi = B/2. We can find that

when all transmissions are carried out in infrastructure mode,

the per-node throughput under bandwidth-fairness constraint

is also lower bounded by m/n, which means that sacrificing

the throughput of nodes far away from base stations may not

help improve the network throughput in the order sense.

B. Capacity in Hybrid Mode

Section III-A investigates the capacity when all transmis-

sions between base stations and normal nodes are carried out in

one-hop. Here, we explore whether performing transmissions

in hybrid mode, i.e., some in infrastructure mode and the

others in ad hoc mode, can improve network capacity.

Assume that in each cell the nodes located at tiers 1 to g
(1 < g < ℎ) transmit packets to and receive packets from the

base station directly in one hop, i.e., in infrastructure mode.

For uplink transmissions, the nodes residing at tiers g+1 to ℎ
first transmit their packets to the nodes at tier g via multiple

hops, i.e., in ad hoc mode, and then to the base station in

infrastructure mode. Similarly, the downlink transmissions of

the nodes at tiers g + 1 to ℎ go from the base station to

the nodes at tier g in infrastructure mode first and then to

the destination nodes in ad hoc mode. �B (0 < � < 1) out

of the total bandwidth B is allocated to infrastructure mode

transmissions, and the rest of the bandwidth, i.e., (1− �)B, is

left for ad hoc mode transmissions. Each part is further split

into two equal parts for uplink and downlink transmissions,

respectively.

We first study the capacity under throughput-fairness con-

straint. Denote the per-node throughput in hybrid mode in the

network by �T
H(n), the per-node throughput in infrastructure

mode by �T
HS(n), and the per-node throughput in ad hoc mode

by �T
HM (n), respectively. Then, we get

�T
H(n) = min

{
�T
HS(n), �

T
HM (n)

}
. (5)

Denote the bandwidth allocated to downlink transmissions

of nodes at tier q (1 ≤ q ≤ g) by B′
q . Thus, for 1 ≤ q ≤ g−1,

we have

�T
HS(n) = B′

q log2(1 + SINRq),

and for q = g, we get

�T
HS(n) =

B′
g log2(1 + SINRg)(∑ℎ

j=g 6j
)
/6g

=
B′

g log2(1 + SINRg)

(ℎ+ g)(ℎ− g + 1)/2g
.

Then, it follows that

g−1∑

q=1

6q�T
HS(n)

log2(1 + SINRq)

+
6g�T

HS(n) ⋅ (ℎ+ g)(ℎ− g + 1)/2g

log2(1 + SINRg)
= �B/2.

As a result, from (2), a lower bound on �T
HS(n) is as follows:

�T
HS(n) ≥

�B/12
∑g−1

q=1
q

log2

(
1+ −2

(3−5)2+1 (ℎ
q
)
) + (ℎ+g)(ℎ−g+1)/2

log2

(
1+ −2

(3−5)2+1 (ℎ
g
)
)
.

Let K = −2
(3−5)2+1 , and g = �ℎ where 1/ℎ < � < 1. We

can have

�T
HS(n) ≥ �B/12

∑g−1
q=1

q

log2(1+K(ℎ
q
))

+ (ℎ+g)(ℎ−g+1)/2

log2(1+K(ℎ
g
))

≥ �B/12
�2ℎ2/2

log2(1+K/�) +
(1−�2)ℎ2/2

log2(1+K/� )

∼ m

n

�B

2
log2(1 +K/�).

Let � = ℎ� where −1 < � < 0. We can get

�T
HS(n) ≥ m

n

�B

2
log2(1 +Kℎ−�)

≥ m

n

�B

2
log2

(
K
( n

3m

)− �
2

)

∼ m

n

(−�)(1− �)�B

4
log2 n. (6)

For the ad hoc mode transmissions from nodes at tier g
to nodes further away from the base station, assume that

all transmitters employ the same transmission power P̄ so

that the transmission range is d, the distance between two

adjacent nodes. Consider a receiver j engaged in ad hoc mode

transmissions. We denote the reception power at j of the signal

from the corresponding transmitter and of the cumulative

interference to j by P j
r and Ij , respectively. Then, we have

P j
r =

CP̄

d
,

and

Ij ≤
+∞∑

k=1

6k
CP̄

(√
3
2 kd

) ≤ 6CP̄
(√

3
2 d

) �( − 1).

So, the SINR of the transmission, denoted by SINRj , satisfies

SINRj ≥
1

6�( − 1)

(√3

2

)
.
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Note that the transmission range is d. We also set the carrier

sensing range to d so that there are at most 7 nodes in the

sensing area which share the same channel. Since nodes at

tier g have to relay packets for all nodes at tiers g+1 to ℎ, a

per-node throughput �T
HM (n) is feasible if

�T
HM (n) ⋅ H̄ ≤

(1− �)(B/2) log2(1 + SINRj)

7
(7)

where SINRj is the lower bound on SINRj , H̄ is the

average ad hoc mode relay burden for each node at tier g,

and

H̄ =

∑ℎ
q=g+1 6q

6g
=

(g + ℎ+ 1)(ℎ− g)

2g
∼ 1− �2

2�
ℎ. (8)

From (7) and (8), a lower bound on �T
HM (n) can thus be

calculated as:

�T
HM (n) =

�(1 − �)B

7(1− �2)ℎ
log2(1 + SINRj)

=
(1− �)B

7(1− ℎ2�)ℎ1−�
log2(1 + SINRj)

∼
(3m
n

) 1−�
2 ⋅ (1 − �)B

7

⋅ log2
(
1 +

1

6�( − 1)

(√3

2

)
)
. (9)

Since −1 < � < 0, we have 1
2 < 1−�

2 < 1. Substituting

(6) and (9) into (5), we can find that the maximum feasible

throughput �T
H(n) is achieved when � → −1+ and � = 1 −

f → 1− where f is a function that decays exponentially slower

than (mn )
1+�
2 , and

�T
H(n) ≥ m

n

(1 − �)B

4
log2 n. (10)

We then explore the per-node throughput in hybrid mode un-

der bandwidth-fairness constraint, denoted by �B
H(n). Specifi-

cally, the nodes at tiers 1 to g equally share the total bandwidth

of �B allocated to infrastructure mode transmissions, and the

other nodes at tiers g to ℎ share the (1− �)B bandwidth left

for ad hoc mode transmissions. Recall that nodes at tier g act

as relay nodes to/from base stations for the nodes at tiers g+1
to ℎ. We also assume that nodes at tiers g to ℎ have the same

throughput. We can have B′
i ⋅

∑g
q=1 6q = �B/2, where B′

i

is the downlink bandwidth for each node at tiers 1 to g, i.e.,

B′
i =

�B
6g(g+1) .

Denote the transmission rate of a node at tier q (1 ≤ q ≤ g)

by �q
HS(n), and the transmission rate of a node at tier j (g <

j ≤ ℎ) by �j
HM (n), respectively. Then, according to the lower

bound on SINR obtained in (2), we can have for 1 ≤ q ≤ g,

�q
HS(n) ≥

�B

6g(g + 1)
log2

(
1 +K

(ℎ
q

)
)
.

Note that 6g�g
HS(n)/

∑ℎ
q=g 6q is the average per-node

throughput for the nodes located at tiers g to ℎ that can

be supported by infrastructure mode transmissions at tier g.

Since from (9) we get �j
HM (n) = Ω

(
(mn )

1−�
2

)
= !(mn )

while the maximum of the achievable average throughput

6g�g
HS(n)/

∑ℎ
q=g 6q is on the exponential order of m/n,

i.e., o
(
�j
HM (n)

)
, the infrastructure mode transmissions are the

bottleneck when � = 1− f where f is a function that decays

exponentially slower than (mn )
1+�
2 .

As a result, the maximum feasible per-node throughput

�B
H(n) can be calculated as follows:

�B
H(n) ≥ m

n

g∑

q=1

6q ⋅ �B

6g(g + 1)
log2

(
1 +K

(ℎ
q

)
)

≥ m

n

�B

6g(g + 1)
log2

(
1 +K

(ℎ
g

)
)
⋅ 3g(g + 1)

=
m

n

�B

2
log2

(
1 +Kℎ−�

)
.

By letting � → 1− and � → −1+, we can get

�B
H(n) ≥ m

n

�B

2
log2

(
1 +Kℎ−�

)

∼ m

n

(1− �)B

4
log2 n. (11)

According to (10) and (11), we can see that by carrying

out hybrid mode transmissions in each cell, the per-node

throughput can be improved by a scaling factor of log2 n
compared to that with infrastructure mode transmissions only.

We also notice that throughput-fairness and bandwidth-fairness

constraints can lead to the same hybrid mode feasible through-

put in regular networks.

IV. CAPACITY OF HETEROGENEOUS MULTIHOP

CELLULAR NETWORKS

Next, we continue to investigate the capacity of heteroge-

neous multihop cellular networks, where the distribution of

the n nodes follows a general IPP, and the m base stations are

uniformly and randomly placed.

Recall the definition of Voronoi Tessellation: given a set of

m points in a plane, Voronoi tessellation divides the domain

into a set of polygonal regions, the boundaries of which are

the perpendicular bisectors of the lines joining the points.

From [6], we know that for every " > 0, there is a Voronoi

tessellation with the property that every Voronoi cell contains

a disk of radius " and is contained in a disk of radius 2".

Then, for the m base stations in a network with area L2, we

can construct a Voronoi tessellation Vm for which

∙ (V1) Every Voronoi cell contains a disk of area

100L2 lnm/m.

∙ (V2) Every Voronoi cell is contained in a disk of radius

2�(m), where �(m) := the radius of a disk of area

100L2 lnm/m.

In this case, we consider each Voronoi cell as a cell in the

network.

Consider a cell Aj in which a base station is located at bj .

Denote the area of the cell by ∣Aj ∣, and the minimum and the

maximum of the area by ∣Aj ∣ and ∣Aj ∣, respectively. Then,

we have

∣Aj ∣ = ��2(m), ∣Aj ∣ = 4��2(m), ∀j,



6

Fig. 2. Disjoint disks in a Voronoi tessellation.

and the distance from any base station to its cell boundary is

at most 4�(m). For an arbitrary point �0 ∈ Aj , the reception

power of the signal from the base station, denoted by Pr(�0),
is

Pr(�0) =
CP

∣∣�0 − bj∣∣
,

where P is the signal transmission power that is the same for

all base stations.

As shown in Fig. 2, consider the disk with area ∣Ak∣
contained by a Voronoi cell. It is easy to show that a concentric

disk with area ∣Ak∣/16 contains at least one base station. We

choose one of them as the base station of this cell. So, the

inside disks A′
k with area ∣Ak∣/16 and such base stations

on the disk boundaries are disjoint. For � ∈ A′
k, we have

∣∣�−�0∣∣ > �(m)/4. Thus, the cumulative interference suffered

by an infrastructure mode downlink reception at �0, denoted

by I(�0), satisfies

I(�0) =
∑

k ∕=j

CP

∣∣�0 − bk∣∣

= CP
∑

k ∕=j

1

∣Ak∣/16
⋅ 1

∣∣�0 − bk∣∣
⋅
(
∣Ak∣/16

)

≤ 16CP

∣Ak∣

∫

A∖(Aj/16)

1

∣∣�0 − �∣∣ d�

=
16CP

∣Aj ∣

∫ 2�

0

∫ +∞

�(m)/4

1

l
⋅ ldld�

=
22+1CP

 − 2

[
�(m)

]−
. (12)

Thus, the SINR of the reception at point �0, denoted by

SINR(�0), can be calculated as follows:

SINR(�0) ≥
CP/∣∣�0 − bj ∣∣

22+1CP
−2 /

[
�(m)

] =
 − 2

22+1

�(m)

∣∣�0 − bj ∣∣
. (13)

A. Capacity under Throughput-fairness Constraint

Consider a cell Aj . We denote the per-node throughput

under throughput-fairness constraint when all transmissions

are carried out in infrastructure mode by �̃T (n), and the band-

width allocated to downlink transmissions at point �0 ∈ Aj

by B(�0). Thus, we have

�̃T (n) = B(�0) log2
(
1 + SINR(�0)

)
,

and hence
∫

Aj

Ψ(�0)
�̃T (n)

log2
(
1 + SINR(�0)

) d�0 = B/2.

For � ∈ Aj , we get ∣∣� − bj ∣∣ ≤ 4�(m). So from (13), we

know that

SINR(�) ≥  − 2

22+1

�(m)

∣∣� − bj ∣∣
≥  − 2

24+1
.

As a result, a lower bound on the per-node throughput can be

found as follows:

�̃T (n) =
B/2∫

Aj
Ψ(�0)

1

log2

(
1+SINR(�0)

) d�0

≥ B/2

Ψ ⋅ 1
log2(1+

−2

24+1 )
⋅ ∣Aj ∣

=
B

8�Ψ�2(m)
log2

(
1 +

 − 2

24+1

)
(14)

=
n�−2�

Ψ lnn
⋅ B

800�
log2

(
1 +

 − 2

24+1

)
.

Note that we have n� = o(n) and n ≤ Ψn2�. Thus, we can

get Ψn2�−� = !(1), which leads to �̃T (n) = o(1/ lnn).
We then study the capacity when transmissions are carried

out in hybrid mode. We denote the per-node throughput in hy-

brid mode by �̃T
H(n), the per-node throughput in infrastructure

mode by �̃T
HS(n), and the per-node throughput in ad hoc mode

by �̃T
HM (n), respectively.

As shown in Fig. 3, in a cell Aj , the nodes in areas S1 and

S2 carry out transmissions in infrastructure mode, while the

nodes in area S3 perform transmissions in ad hoc mode, for

which the nodes in S2 act as relay nodes from or to the base

station. Let " be the ratio of the number of nodes in areas S2

and S3 to that in area S2, i.e.,

" =

∫
S2∪S3

Ψ(�)d�∫
S2

Ψ(�)d�
≤ Ψ(∣S2∣+ ∣S3∣)

Ψ∣S2∣
. (15)

Then, we have
∫

S1

Ψ(�0)
�̃T
HS(n)

log2
(
1 + SINR(�0)

) d�0

+

∫

S2

Ψ(�0)
"�̃T

HS(n)

log2
(
1 + SINR(�0)

) d�0 = �B/2,

from which we can obtain

�B/2 ≤ Ψ
�̃T
HS(n)∣S1∣

log2(1 + SINR)
+ Ψ

"�̃T
HS(n)∣S2∣

log2(1 + SINR)
,

where SINR and " are the minimum of SINR and the

maximum of " derived in (13) and (15), respectively. Thus,

we have

�̃T
HS(n) ≥ (�B/2) log2(1 + SINR)

Ψ∣S1∣+ "Ψ∣S2∣

=
(�B/2)Ψ log2(1 + SINR)

ΨΨ∣S1∣+Ψ
2
(∣S2∣+ ∣S3∣)

≥ (�B/2)Ψ log2(1 + SINR)

Ψ
2
(∣S1∣+ ∣S2∣+ ∣S3∣)

≥ �BΨ

8�Ψ
2
�2(m)

log2(1 + SINR). (16)
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Fig. 3. A Voronoi cell Aj in a heterogeneous multihop cellular network
with Aj = S1 ∪ S2 ∪ S3.

For ad hoc mode transmissions, we choose the transmission

power P̃ such that the transmission area ∣St∣ = cg lnn/Ψ
where cg > 6/(4� − 3

√
3). Note that since Ψn2� = !(lnn),

we have ∣St∣ = o(n2�) and hence St ⊂ A. Then, from [16],

we know that under this condition any node can find a local

neighbor closer to the destination than itself, and hence the

multi-hop transmissions from/to the nodes in S2 can always

be successful.

Consider a receiver j located at point �0 ∈ S3 engaged in

ad hoc mode transmissions. We denote the reception power

of the signal from the corresponding transmitter and of the

cumulative interference to the receiver by P̃r(�0) and Ĩ(�0),
respectively. Then, we have

P̃r(�0) ≥ CP̃

(
√
∣St∣/�)

.

We also set the carrier sensing range to be twice the transmis-

sion range. Note that within the same carrier sensing range,

only one node can transmit. Let T denote the set of all nodes

transmitting when receiver j is receiving. Then, disks centered

at transmitters in T with area ∣St∣ are disjoint, and so are the

inside disks with area ∣St∣/16 like in Fig. 2. Similar to (12),

we can get

Ĩ(�0) ≤ 2+3CP̃

 − 2

1

(
√

∣St∣/�)
.

Thus, the SINR of the reception at point �0, denoted by

S̃INR(�0), is as follows:

S̃INR(�0) ≥
CP̃ /(

√
∣St∣/�)

2+3CP̃
−2 /(

√
∣St∣/�)

=
 − 2

2+3
,

which can be lower bounded by a constant.

Referring to Fig. 3, denote the disk that contains Aj by Aj .

Let Ŝ3 = Aj∖(S1 ∪ S2). Then, S3 ⊂ Ŝ3. Besides, we also set

�2 − �1 =
√
∣St∣/�. Thus, the average ad hoc mode relay

burden for each node in S2, denoted by H̃ , can be calculated

as follows:

H̃ ≤
∫
Ŝ3

Ψ(�)d�∫
S2

Ψ(�)d�
≤ Ψ∣Ŝ3∣

Ψ∣S2∣
. (17)

Note that in the carrier sensing area, there are at most

4Ψ∣St∣ nodes which share the same channel. Thus, a per-node

throughput �̃T
HM (n) is feasible if

�̃T
HM (n) ⋅ H̃ ≤ (1 − �)(B/2) log2

(
1 + ( − 2)/2+3

)

4Ψ∣St∣
.

So, from (17), a lower bound on �̃T
HM (n) can be found by

�̃T
HM (n)=

(1− �)(B/2)

4ΨH̃ ∣St∣
log2

(
1 +

 − 2

2+3

)

=
Ψ∣S2∣

Ψ
2∣St∣ ⋅ ∣Ŝ3∣

(1− �)B

8
log2

(
1 +

 − 2

2+3

)

≥ Ψ∣S2∣
Ψ

2
�2(m)∣St∣

(1− �)B

32�
log2

(
1 +

 − 2

2+3

)
.(18)

Again, note that the per-node throughput in the network can

be obtained by:

�̃T
H(n) = min

{
�̃T
HS(n), �̃

T
HM (n)

}
.

Comparing the results in (16) and (18), we can have the

following results.

Case I: �(m) = !(
√
lnn/Ψ), i.e., Ψ = !(n�−2�). In this

case, �(m) = !(
√
∣St∣), and Ψ = Ω(Ψ) = !(n�−2�).

i) When �(m) = !(1), let �(m) = ��(m)
√

∣St∣/� where

� > 0. We choose ∣S2∣ = �� (m)∣St∣ where 0 < � < �. Then,

since ��22−�
(
�2−

√
∣St∣/�

)2
= ∣S2∣, we can have that �2 ∼

�� (m)
√

∣St∣/�/2. As a result, ��2(m) = �2�∣St∣ = !(��22).
Since ��2(m) < ∣Aj ∣, we have S2 ⊂ Aj , i.e., the chosen S2

is totally contained by the cell area Aj . Besides, it is also easy

to show that in S2 there are always some nodes, i.e., S2 is not

empty. So we can see that (18) changes into

�̃T
HM (n) ≥ Ψ

Ψ
2
�2−� (m)

⋅ (1− �)B

32�
log2

(
1 +

 − 2

2+3

)
.

Recall that in (16), SINR = −2
8

� (m)
∣∣�0−bj ∣∣ where �o ∈ S1 ∪

S2. Therefore we can have

SINR ≥  − 2

2+3

(
�(m)

�� (m)
√
∣St∣/�/2

)

= c0
[
�(m)

](�−�)

where c0 = ( − 2)/8. Thus, the feasible throughput in

infrastructure mode �̃T
HS(n) is as follows:

�̃T
HS(n) ≥ �BΨ

8�Ψ
2
�2(m)

log2

(
1 + c0

[
�(m)

](�−�)
)
.

Since 0 < � < � and �(m) = !(1), we can see that infras-

tructure mode transmissions are the bottleneck as � = 1 − f̃
where f̃ decays exponentially slower than �−� (m), and hence

the feasible throughput in hybrid mode �̃T
H(n) is as follows:

�̃T
H(n)=

BΨ

8�Ψ
2
�2(m)

log2

(
1 + c0

(
100L2 lnm

�m

) (�−�)
2

)

∼ ctBΨ

8�Ψ
2
�2(m)

log2 n (19)

=
Ψn�−2�

Ψ
2 ⋅ ctB

800� ln 2
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where ct = (2�−�)(�−�)/2 > 0. The maximum of �̃T
H(n)

is achieved when � → 1− and � → 0+.

ii) When �(m) = o(1), let �(m) = �−�(m)
√
∣St∣/� where

� > 0. We choose ∣S2∣ = �−� (m)∣St∣ where 0 < � < �.

Then, similar to i), we can find that the feasible throughput in

hybrid mode �̃T
H(n) is as follows:

�̃T
H(n) ∼ c′tBΨ

8�Ψ
2
�2(m)

log2 n (20)

=
Ψn�−2�

Ψ
2 ⋅ c′tB

800� ln 2

where c′t = (2�−�)(�−�)/2 > 0. The maximum of �̃T
H(n)

is achieved when � → 1− and � → 0+.

iii) When �(m) = Θ(1), since �(m) = !(
√
∣St∣), we have

∣St∣ = o(1). We choose ∣S2∣ = ∣St∣� where 1/2 < � < 1.

Similarly, we can have �2 ∼ ∣St∣�−
1
2 /(2

√
�), and ��22 =

o
(
��2(m)

)
. Thus, we can make sure that S2 is not empty

since ∣S2∣ = !(∣St∣) and St is not empty, and that S2 ⊂ Aj .

Thus, (18) changes into

�̃T
HM (n) ≥ Ψ

Ψ
2
�2(m)∣St∣1−�

⋅ (1− �)B

32�
log2

(
1 +

 − 2

2+3

)
.

For infrastructure mode transmissions, we can get

SINR =
 − 2

2+3

(
�(m)

∣St∣�−
1
2 /(2

√
�)

)

= c0
(√

��(m)
) ∣St∣(

1
2−�),

and hence the feasible throughput �̃T
HS(n) is as follows:

�̃T
HS(n) ≥

�BΨ

8�Ψ
2
�2(m)

log2

(
1 + c0

(√
��(m)

) ∣St∣(
1
2−�)

)
.

Since 1/2 < � < 1 and ∣St∣ = o(1), we can find that infras-

tructure mode transmissions are the bottleneck as � = 1 − f̃
where f̃ decays exponentially slower than ∣St∣1−� . By letting

∣St∣ = n−� where � > 0, the feasible throughput in hybrid

mode �̃T
H(n) can be found by

�̃T
H(n)=

BΨ

8�Ψ
2
�2(m)

log2

(
1 + c0

(√
��(m)

)
n(�− 1

2 )�

)

∼ c′′t BΨ

8�Ψ
2
�2(m)

log2 n (21)

=
Ψn�−2�

Ψ
2 ⋅ c′′t B

800� ln 2

where c′′t = (� − 1
2 )� > 0. The maximum of �̃T

H(n) is

achieved when � → 1− and � → 1−.

Comparing (14) with (19) to (21), we can see that in Case I,

when Ψ/Ψ = o(log2 n), hybrid mode transmissions can yield

higher throughput than pure infrastructure mode transmissions,

and the throughput gain can be on the order of log2 n when

Ψ = Θ(Ψ).
Case II: �(m) = O(

√
lnn/Ψ), i.e., Ψ = O(n�−2�). In this

case, �(m) = O(
√
∣St∣), and thus ∣S2∣ < 4��2(m) = O(∣St∣).

Comparing (16) with (18), we can see that ad hoc mode trans-

missions are the bottleneck as � decays slower than ∣S2∣/∣St∣.
The maximum feasible per-node throughput in hybrid mode is

then achieved when ∣S1∣ = 0, ∣S2∣ = ��2(m), and � decays

exponentially slower than Ψn2�−� , i.e.,

�̃T
H(n) =

ΨB

32Ψ
2∣St∣

log2

(
1 +

 − 2

22+1

)
. (22)

Comparing (14) with (22), we get

�̃T
H(n)

�̃T (n)
= Θ

(
Ψ

Ψ
⋅ �

2(m)

∣St∣

)
= O(1),

which means that when the minimum node density is smaller

than the density of base stations in the network, hybrid

mode transmissions will not help and we should carry out

all transmissions in infrastructure mode.

B. Capacity under Bandwidth-fairness Constraint

We first consider the case when all transmissions in each

cell are performed in infrastructure mode. Denote the per-node

throughput under bandwidth-fairness constraint by �̃B(n), and

the bandwidth allocated to the downlink transmissions of each

node by B̃i, respectively. Then, for a cell Aj , we can have

�̃B(n) =

∫
Aj

Ψ(�)B̃i log2(1 + SINR(�)) d�
∫
Aj

Ψ(�) d�
,

and hence

�̃B(n) ≥
∫
Aj

Ψ(�)B̃i d�
∫
Aj

Ψ(�) d�
log2

(
1 +

 − 2

24+1

)

≥ B/2

Ψ ⋅ ∣Aj ∣
log2

(
1 +

 − 2

24+1

)

=
B

8�Ψ�2(m)
log2

(
1 +

 − 2

24+1

)
(23)

=
n�−2�

Ψ lnn
⋅ B

800�
log2

(
1 +

 − 2

24+1

)
,

which is the same result as that shown in (14).

We then study the per-node throughput when transmissions

in each cell are carried out in hybrid mode, which is denoted

by �̃B
H(n). Consider a cell Aj as shown in Fig. 3. Assume

nodes in areas S1 and S2 equally share the bandwidth �B
allocated to infrastructure mode transmissions, and nodes in

S3 and in S2 as well share the bandwidth (1 − �)B left for

ad hoc mode transmissions.

Denote by B̃i the downlink bandwidth for each node in

areas S1 and S2, and by �̃B
HS(n) the per-node throughput for

nodes in areas S2 and S3 supported by infrastructure mode

transmissions in area S2. Then, we can have
∫

S1∪S2

Ψ(�)B̃i d� = �B/2,

and hence

B̃i ≥
�B

2Ψ(∣S1∣+ ∣S2∣)
.
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Besides, we can obtain that

�̃B
HS(n)=

∫
S2

Ψ(�)B̃i log2
(
1 + SINR(�)

)
d�∫

S2∪S3
Ψ(�) d�

≥
Ψ∣S2∣ �B

2Ψ(∣S1∣+∣S2∣)
log2

(
1 + −2

22+1

(�(m)
�2

))

Ψ(∣S2∣+ ∣S3∣)

≥ �BΨ

8��2(m)Ψ
2

∣S2∣
∣S1∣+ ∣S2∣

log2

(
1 +

 − 2

22+1

(�(m)

�2

)
)
.

Note that ∣S1∣+ ∣S2∣ = ��22, which gives us

�̃B
HS(n) ≥

�BΨ∣S2∣
8�2�2(m)Ψ

2
�22

log2

(
1 +

 − 2

22+1

(�(m)

�2

)
)
. (24)

Recall that the ad hoc mode per-node throughput of the

nodes in area S3 is shown in (18). Comparing (18) with (24),

we can have the following results.

Case I: �(m) = !(
√
lnn/Ψ), i.e., Ψ = !(n�−2�). In this

case, �(m) = !(
√
∣St∣) and Ψ = !(n�−2�). Choosing �2 and

� in the same way as that in Section IV-A, we can know that

infrastructure mode transmissions are the bottleneck compared

to ad hoc mode transmissions. Therefore, under bandwidth-

fairness constraint, the per-node throughput in hybrid mode is

as follows:

�̃B
H(n) =

∫
S1∪S2

Ψ(�)B̃i log2
(
1 + SINR(�)

)
d�∫

Aj
Ψ(�) d�

≥
∫
S1∪S2

Ψ(�)B̃i d�∫
Aj

Ψ(�) d�
log2

(
1 +

 − 2

22+1
(
�(m)

�2
)
)

≥ �B

8�Ψ�2(m)
log2

(
1 +

 − 2

22+1
(
�(m)

�2
)
)
.

Thus, we can have that when � → 1−,

�̃B
H(n) ∼ cbB

8�Ψ�2(m)
log2 n (25)

=
n�−2�

Ψ
⋅ cbB

800� ln 2
.

where cb equals ct when �(m) = !(1), c′t when �(m) = o(1),
and c′′t when �(m) = Θ(1). Comparing (23) with (25), we

can see that hybrid mode transmissions can result in higher

throughput than pure infrastructure mode transmissions by a

scaling factor of log2 n. Moreover, comparing (19)-(21) with

(25), we can find when using hybrid mode transmissions,

bandwidth-fairness can have higher per-node throughput than

throughput-fairness by a scaling factor of Ψ/Ψ.

Case II: �(m) = O(
√
lnn/Ψ), i.e., Ψ = O(n�−2�). In

this case, ��22 = O(��2(m)) = O(∣St∣). Thus, the same as

that in Section IV-A, we can obtain that the maximum feasible

per-node throughput in hybrid mode is

�̃B
H(n) =

ΨB

32Ψ
2∣St∣

log2

(
1 +

 − 2

22+1

)
= O

(
�̃B(n)

)
. (26)

Thus, when the minimum node density is smaller than the

density of base stations in the network, we should carry out

all transmissions in infrastructure mode. Moreover, comparing

(14) and (23), we can see throughput-fairness and bandwidth-

fairness lead to the same feasible throughput in this case.

V. CONCLUSION

In this paper, we have investigated the capacity of multihop

cellular networks. Both regular and heterogeneous multihop

cellular networks are explored, and both throughput-fairness

and bandwidth-fairness constraints are considered. We find

that compared to traditional cellular networks, regular multi-

hop cellular networks can have higher per-node throughput by

a scaling factor of log2 n, and heterogeneous cellular networks

can achieve the same throughput improvement under certain

conditions. Moreover, the results obtained herein also suggest

new results for the number of base stations needed to achieve

constant per-node throughput in multihop cellular networks.
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