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Abstract—Although capacity has been extensively studied in
wireless networks, most of the results are for homogeneous
wireless networks where all nodes are assumed identical. In
this paper, we investigate the capacity of heterogeneous wireless
networks with general network settings. Specifically, we consider
a dense network with n normal nodes and m = nb (0 < b < 1)
more powerful helping nodes in a rectangular area with width
b(n) and length 1/b(n), where b(n) = nw and − 1

2
< w ≤ 0.

We assume there are n flows in the network. All the n normal
nodes are sources while only randomly chosen nd (0 < d < 1)
normal nodes are destinations. We further assume the n normal
nodes are uniformly and independently distributed, while the
m helping nodes are either regularly placed or uniformly and
independently distributed, resulting in two different kinds of
networks called Regular Heterogeneous Wireless Networks and
Random Heterogeneous Wireless Networks, respectively. In this
paper, we attempt to find out what a heterogeneous wireless
network with general network settings can do by deriving a lower
bound on the capacity. We also explore the conditions under
which heterogeneous wireless networks can provide throughput
higher than traditional homogeneous wireless networks.

I. INTRODUCTION

Capacity is one of the most important issues in wireless

networks. Gupta and Kumar [11] show that the per-node

throughput capacity is Θ(1/
√
n logn)1 bits per second in

random ad hoc networks, and the per-node transport capacity is

Θ(1/
√
n) bit-meters per second in arbitrary ad hoc networks.

Following this work, extensive research on capacity has been

conducted in both static ad hoc networks such as [4], [6]–[8],

[29], and in mobile ad hoc networks such as [3], [9], [10],

[16], [20], [26], [28].

However, all the works above are for homogeneous wire-

less networks where all nodes are assumed identical. While

in practice, there are many applications in which wireless

networks are heterogeneous. For example, in a city-wide

wireless network, those wireless devices mounted on top of

the buildings are usually much more powerful than normal

network users. To give another example, in a wireless network

deployed in battlefields, many military vehicles like tanks and
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1In this paper, we use the following notations [12]: f(n) = O(g(n))
means f(n) is asymptotically upper bounded by g(n); f(n) = Ω(g(n))
means f(n) is asymptotically lower bounded by g(n); f(n) = Θ(g(n))
means f(n) is asymptotically tight bounded by g(n).

planes are much more powerful than normal soldiers, and the

communications between them may even be carried out on a

higher frequency and have much larger bandwidth.

Some researchers propose to connect the more powerful

nodes with a wired network, resulting in the so-called “hybrid

wireless networks” [1], [13], [15], [19], [21], [35], [36].

However, this approach has some shortcomings. First, it is

cost-expensive since the powerful nodes they use are in fact

base stations and an optical network connecting the base

stations has to be established first. Second, it is also time-

consuming because it is not so easy and may take a lot

of time to set up such an optical network. Third, current

results show that we can achieve throughput higher than

that in traditional static homogeneous ad hoc networks by

an exponential order only when the number of base stations

is Ω(
√
n) [21], which makes this approach more expensive.

Moreover, in some cases the base stations and wired networks

are even unavailable. For example, in the rescue affairs after

natural disasters like earthquakes, the existing infrastructures

may have been damaged and we need to set up a network

without them immediately.

Thus, here we consider heterogeneous wireless networks,

in which all the transmissions are carried out via wireless

medium, and there are normal nodes and some more powerful

helping nodes. In heterogeneous wireless networks, MAC

protocol design is studied by [17], [18], [27], [37], routing

protocol design is studied by [2], [23]–[25], [33], [34], and

topology control is studied by [14], respectively. However, the

capacity problem has not been well studied before.

In this paper, we investigate the throughput capacity of

heterogeneous wireless networks. We want to find out that

instead of placing base stations interconnected by a wired

network, how we can improve the capacity of homogeneous

ad hoc networks by deploying some more powerful wireless

helping nodes. Notice that most of the previous research on

capacity assumes the network area is a square, and the traffic

is symmetric implying that the number of source nodes is

the same as the number of destination nodes. However, those

are only special cases. In practice, the shape of a network

area is determined by the distribution of network users, which

is further dependent on many factors such as geographical

characteristics. For example, about 75% of the population of

Utah lies in a corridor which stretches approximately from

Brigham City at the north end to Nephi at the south end



along the Wasatch Mountains [32]. So, instead of a square,

we may consider the network area in rectangle. Besides, in

many applications such as peer-to-peer (P2P) networking,

the number of source nodes is usually different from that

of destination nodes. Thus, instead of symmetric traffic, we

consider asymmetric traffic. In the literature, Liu et al. [22]

study the capacity of 2-dimensional strip hybrid wireless

networks with symmetric traffic, and Toumpis [31] studies the

throughput capacity of 2-dimensional square ad hoc networks

with asymmetric traffic. Li et al. [15] investigate the impacts of

both network area shape and traffic pattern on the throughput

capacity of hybrid wireless networks. But, when it comes to

heterogeneous wireless networks, the situation becomes more

complicated and it is really worthwhile to seriously analyze

the capacity of the networks again. Besides, [15] considers an

extended network, while we consider a dense network here as

we will introduce soon.

Specifically, in this paper, we consider a dense network with

n normal nodes and m = nb (0 < b < 1) more powerful

helping nodes in a rectangular area with width b(n) and length

1/b(n), where b(n) = nw and − 1
2 < w ≤ 0. We consider

there are n flows in the network. All the n normal nodes are

sources while only nd (0 < d < 1) randomly chosen normal

nodes are destinations. Helping nodes do not serve as data

sources or data destinations. Instead, they only help relay pack-

ets for the normal nodes. Moreover, notice that in real wireless

networks, the normal nodes are usually WiFi users which have

low data rates while the helping nodes may use more advanced

technologies such as MIMO (Multi-Input and Multi-Output)

and UWB (Ultra-WideBand), which can provide much higher

data rates. Without loss of generality, we assume the normal

users share a bandwidth of 1 and the helping nodes have much

higher bandwidth for the transmissions between themselves.

We further assume the n normal nodes are uniformly and

independently distributed, while the m helping nodes are either

regularly placed or uniformly and independently distributed,

resulting in two different kinds of networks called Regular

Heterogeneous Wireless Networks and Random Heterogeneous

Wireless Networks, respectively. We attempt to find out what a

heterogeneous wireless network with general network settings

can do by deriving a lower bound on the capacity. We also

explore the conditions under which heterogeneous wireless

networks can provide throughput higher than traditional pure

static ad hoc wireless networks by an exponential order.

The rest of this paper is organized as follows. Section II

gives the heterogeneous wireless network model, including

topology model, traffic model, and achievable transmission

rate model. In Section III and Section IV, we derive a

lower bound on throughput capacity of heterogeneous wireless

networks, when helping nodes are regularly and randomly

distributed, respectively. We finally conclude this paper in

Section V.

II. HETEROGENEOUS WIRELESS NETWORK MODEL

In this section, we introduce the topology model, traffic

model, and achievable transmission rate model for heteroge-

User network Helping network

Normal nodes Helping nodes

Fig. 1. Our proposed two-tier network model.

neous wireless networks.

A. Network Topology

We consider a dense network with n normal nodes and

m = nb (0 < b < 1) more powerful helping nodes in a

rectangular area with width b(n) and length 1/b(n), where

b(n) = nw and − 1
2 < w ≤ 0. We assume the n normal

nodes are uniformly and independently distributed, while the

m helping nodes are either regularly placed or uniformly

and independently distributed. The resulting two kinds of

networks are called Regular Heterogeneous Wireless Networks

and Random Heterogeneous Wireless Networks, respectively,

which will be discussed in Section III and Section IV shortly.

As shown in Fig. 1, our network model has a two-tier

hierarchy. Notice that all transmissions in the network are

carried out via wireless medium, which is different from

hybrid wireless networks.

B. Traffic Pattern

Instead of symmetric traffic mostly assumed in the literature,

we assume the network has asymmetric traffic. Specifically, we

consider there are n flows in the network. All the n normal

nodes are sources while only randomly chosen nd (0 < d < 1)

normal nodes are destinations. Helping nodes do not serve as

data sources or data destinations. Instead, they only help relay

packets for the normal nodes.

C. Achievable Transmission Rate

Let dij denote the distance between a node i and another

node j. The reception power at node j of the signal from

node i, denoted by Pij , follows the power propagation model

described in [30], i.e.,

Pij = C
Pi

d
ij
, (1)

where Pi is the transmission power of node i, 
 is the path

loss exponent, and C is a constant related to the antenna

profiles of the transmitter and the receiver, wavelength, and so

on. As a common assumption, we assume 
 > 2 in outdoor

environments [30].

We consider the Shannon Capacity as the achievable trans-

mission rate between two nodes. Specifically, a transmission



from node i to node j can achieve transmission rate, Rij ,

which is calculated as follows:

Rij = W log(1 + SINRij), (2)

where W is the channel bandwidth, and SINRij =
C

Pi

d


ij

N+
∑

k ∕=i
C

Pk

d


kj

is the SINR (Signal-to-Interference plus Noise

Ratio) of the signal from node i to node j. In this paper,

we assume the n normal nodes employ the same transmission

power P (n) for all their transmissions, and the m helping

nodes use the same transmission power P ′(m) for the trans-

missions among themselves.

III. THROUGHPUT CAPACITY OF REGULAR

HETEROGENEOUS WIRELESS NETWORKS

In this section, we derive a lower bound on the throughput

capacity of heterogeneous wireless networks by presenting

an achievable per-node throughput. We assume the helping

nodes are regularly placed. As shown in Fig. 2, transmissions

in the network can be carried out either in user mode or

in help mode. In user mode, packets are forwarded from

a source node to a destination node with the help of only

normal nodes, i.e., without the help of helping nodes. While in

help mode, packets are firstly transmitted from a source node

to the helping network, and then forwarded to the intended

destination user. Besides, we assume all the normal nodes have

a total bandwidth of 1, which is split into three frequency

bands, i.e., W1 for ad hoc transmissions in user mode, W2

for uplink transmissions in help mode, and W3 for downlink

transmissions in help mode, respectively. Thus,

W1 +W2 +W3 = 1.

We also assume the ad hoc transmissions in help mode have

a bandwidth W4, which may have much higher order than 1

since it is the bandwidth of backbone helping network.

Let Tu and Tℎ denote an achievable per-node throughput

by all nodes when all the transmissions are carried out in

user mode and in help mode, respectively. Then, a per-node

throughput achievable by all nodes in heterogeneous wireless

networks, denoted by T , can be calculated as follows:

T = max{Tu, Tℎ}. (3)

In the following, we will derive the throughput in user mode

and in help mode, respectively. The basic idea is that given any

source-destination pair, if we could find a path between them

and the scheduling for all nodes on the path to transmit, then

the resulting throughput will be an achievable throughput in

this network. Thus, in order to find an achievable throughput

in the network, we need to give the medium access control

(MAC) and routing strategies first.

A. Achievable Throughput in User Mode

We first introduce the MAC strategy. We divide the network

into squares with length l =
√

c1 logn/n where c1(c1 > 1)
is a constant. Then, we have the following lemma.

Source node

Destination node

Help Mode

Step I Step II Step III

User Mode

Fig. 2. Transmissions in two modes in the network.

Lemma 1: Every square contains at least one normal node

with high probability (w.h.p.).

Proof: For square i, the probability that there is at least

one normal node in it, denoted by ℙi, as n → ∞, is

ℙi = 1− (1 − l2)n = 1− en log(1−l2) = 1− O(1)

nc1
.

So, ℙi → 1 as n → ∞. Moreover, let ns be the number of

squares in the network. We have

ns =
1

l2
=

n

c1 logn
.

Then, the probability that every square has at least one normal

node in it, denoted by ℙA, is

ℙA = ℙ
ns

i =

(

1− O(1)

nc1

)ns

= e
− O(1)

(c1nc1−1)⋅log n .

Since c1 > 1, we obtain that ℙA → 1 as n → ∞, i.e., no

square is empty w.h.p..

Besides, in the network, we allow a transmission between

two normal nodes only when they are located in two neigh-

boring squares. Notice that each square can have at most four

neighboring squares. Thus, we arrive at the following lemma.

Lemma 2: Each square in the network can transmit at a

transmission rate c2W1 where c2 is a deterministic positive

constant.

Proof: We further divide the network into groups each

of which contains nine squares. As shown in Fig. 3, the nine

squares in each group are numbered from 1 to 9 in the same

way. We also divide time into sequences of successive slots,

denoted by t (t = 0, 1, 2, 3, ...). During a slot t, all squares that

are numbered (t mod 9) + 1 are allowed to transmit packets

simultaneously.

Consider a slot when square si is allowed to transmit. Then,

those squares that may interfere with si are located along

the perimeters of concentric squares centered at si. Since we

only allow transmissions between two neighboring squares, at

jth tier, there are at most 8j interfering squares that are at

least (3j − 2)l away from the receiver of si. Besides, recall

that the network is a rectangle with width b(n) and length

1/b(n) where b(n) = nw and −1/2 < w ≤ 0. Denote the

maximum value of j by J . Obviously, we have j ≤ J < +∞.

Thus, with the power propagation model in (1), the cumulative
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Fig. 3. An example for dividing the network into groups of 9 squares.

interference to the transmission of square si, denoted by Ii,
can be calculated as

Ii ≤
J
∑

j=1

8j × CP (n)

[(3j − 2)l]



≤ 8CP (n)

l


⎡

⎣1 +

J
∑

j=2

(3j − 2)(1−
)

⎤

⎦

<
8CP (n)

l


[

1 +

∫ +∞

j=0

(3j + 1)(1−
)dj

]

<
8CP (n)

l


[

1 +
1

3(
 − 2)

]

=
8CP (n)

l

⋅ 3
 − 5

3
 − 6
. (4)

We also need a lower bound on the reception power level at

the receiver of si, denoted by Ri. Since the maximum distance

for a transmitter to a receiver is
√
5l, we can have

Ri ≥
CP (n)

(
√
5l)


. (5)

As a result, the SINR at the receiver of si, denoted by SINRi,

is:

SINRi =
Ri

N0 + Ii

≥
CP (n)

(
√
5l)


N0 +
8CP
l


⋅ 3
−5
3
−6

,

where N0 is the ambient noise power at the receiver. By

choosing the transmission power P (n) = c3l

 where c3

(0 < c3 < +∞) is a constant, we can obtain a lower bound

on SINRi, i.e.,

SINRi ≥
c3C

5


2

(

N0 + 8c3C
3
−5
3
−6

) ,

which is a constant irrespective to the number of nodes n.

Thus, referring to (2), we find that in every nine time slots,

each square has a chance to transmit at a constant transmission

rate. As a result, each square in the network can transmit at a

constant transmission rate c2W1, where 0 < c2 < +∞.

Recall that transmissions in user mode are carried out with

only the help of normal nodes. We employ the following

routing strategy to relay the packets. Specifically, as shown

in Fig. 4(a), assume a source node is located in square sj
and its destination node is located in square sk. Packets from

this source node are firstly relayed along those squares that

have the same x-coordinate as square sj until they arrive at

a square that has the same y-coordinate as square sk. Then,

these packets are relayed along the squares that have the same

y-coordinate as square sk until they arrive at the destination

node.

Consider an arbitrary square si in the network as shown in

Fig. 4(b). Let Nx and Ny denote the number of source nodes

which are located in squares with the same x-coordinate as

si, and the number of destination nodes which are located in

squares with the same y-coordinate as si, respectively. Thus,

we have

E[Nx] = n ⋅ l

1/b(n)
= nw+ 1

2 (c1 logn)
1
2 , (6)

E[Ny] = nd ⋅ l

b(n)
= nd−w− 1

2 (c1 logn)
1
2 . (7)

Then, we can obtain the following lemma.

Lemma 3: For every square, w.h.p.,

1) there are at most 2nw+ 1
2 (c1 logn)

1
2 source nodes which

are located in squares with the same x-coordinate.

2) the number of destination nodes which are located

in squares with the same y-coordinate is at most

2nd−w−1
2 (c1 logn)

1
2 when 0 < w + 1

2 < d < 1, and

at most c4 when 0 < d < w + 1
2 ≤ 1

2 , where c4 is a

constant and c4 > 2
w−d+ 1

2

.

Proof: Recall the Chernoff bounds [5]:

∙ For any � > 0,

ℙ (Xi > (1 + �)E[Xi]) < e−E[Xi]f(�) (8)

where f(�) = (1 + �) log(1 + �)− �.

∙ For any 0 < � < 1,

ℙ(Xi < (1 − �)E[Xi]) < e−
1
2 �

2
E[Xi]. (9)

1) According to the Chernoff bound in (8), we obtain that

ℙ

(

Nx > 2nw+ 1
2 (c1 logn)

1
2

)

< e−f(1)nw+1
2 (c1 logn)

1
2 ,

where f(1) = 2 log 2 − 1 > 0. Since − 1
2 < w ≤ 0, as

n → ∞, we have ℙ

(

Nx > 2nw+ 1
2 (c1 logn)

1
2

)

→ 0.

Let ℙ
(

Nx ≤ 2nw+ 1
2 (c1 logn)

1
2 ∀ i

)

denote the proba-

bility that for each square the number of source nodes
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Fig. 4. The routing protocol used for ad hoc mode transmissions.

located in squares with the same x-coordinate is at most

2nw+ 1
2 (c1 logn)

1
2 . We can obtain that

ℙ

(

Nx ≤ 2nw+ 1
2 (c1 logn)

1
2 ) ∀ i

)

≥ 1− n

c1 logn
ℙ

(

Nx > 2nw+ 1
2 (c1 logn)

1
2

)

> 1− n

c1 logn
e−f(1)nw+1

2 (c1 logn)
1
2 ,

which approaches to 1 as n → ∞.

2) Firstly, when 0 < w + 1
2 < d < 1, we have

ℙ

(

Ny > 2nd−w− 1
2 (c1 logn)

1
2

)

< e−f(1)nd−w− 1
2 (c1 logn)

1
2 ,

which approaches to 0 as n → ∞. Sim-

ilar to that in 1), we can easily show that

ℙ

(

Ny ≤ 2nd−w− 1
2 (c1 logn)

1
2 ∀ i

)

→ 1 as n → ∞.

Secondly, when 0 < d < w + 1
2 ≤ 1

2 , according to the

Chernoff bound in (8), we can obtain that

ℙ(Ny > (1 + �)E[Ny]) < e−E[Ny][(1+�) log(1+�)−�]

=
e�E[Ny]

(1 + �)(1+�)E[Ny ]
.

Choose 1 + � = c4
E[Ny]

= c4n
w−d+ 1

2 (c1 logn)
− 1

2 where

c4 is a constant that will be determined later. Then, we

have

ℙ(Ny > c4)<
e[c4n

w−d+1
2 (c1 logn)−

1
2 −1]nd−w− 1

2 (c1 logn)
1
2

[

c4nw−d+ 1
2 (c1 logn)−

1
2

]c4

=
ec4−n

d−w− 1
2 (c1 logn)

1
2

cc44

[

nw−d+1
2 (c1 logn)−

1
2

]c4

<
ec4

cc44
⋅
[

nd−w− 1
2 (c1 logn)

1
2

]c4
,

which approaches to 0 as n → ∞. Besides, we can also

obtain that

ℙ(Ny ≤ c4 ∀ i)≥1− n

c1 logn
ℙ(Nx > c4)

>1− ec4

cc44
n(d−w− 1

2 )c4+1(c1 logn)
1
2 c4−1.

When we choose c4 > 2
w−d+ 1

2

, we can get (d − w +
1
2 )c4 + 1 < −1, and hence ℙ(Ny ≤ c4 ∀ i) → 1 as

n → ∞.

Besides, in the network we have n source nodes while only

nd destination nodes. We can also have a lemma as follows.

Lemma 4: For each destination node, w.h.p., there are at

most 2n1−d source nodes destined to it.

Proof: Consider destination node i. Let Ni be a random

variable denoted as the number of source nodes that have i as

their destination node, and E[Ni] the expectation of Ni. Then,

we have E[Ni] = n ⋅ 1
nd = n1−d.

According to the Chernoff bound in (8), we can obtain that

ℙ(Ni > 2n1−d) < e−f(1)n1−d

,

where f(1) > 0 and 1 − d > 0. So, ℙ(Ni > 2n1−d) → 0 as

n → ∞. Besides, we also have

ℙ(Ni ≤ 2n1−d ∀ i) ≥ 1− nd
ℙ(Ni > 2n1−d)

> 1− nde−f(1)n1−d

,

which approaches to 1 as n → ∞.

Denote the number of flows that cross square si as Fi. Since

each source node only generates one flow, and there are at most

2n1−d flows for each destination node as shown in Lemma 4,

we can obtain that for all i,

Fi ≤ Nx + 2n1−dNy

≤

⎧





⎨





⎩

2nw+ 1
2 (c1 logn)

1
2 + 4n

1
2−w(c1 logn)

1
2 ,

when 0 < w + 1
2 < d < 1,

2nw+ 1
2 (c1 logn)

1
2 + 2c4n

1−d,
when 0 < d < w + 1

2 ≤ 1
2 ,

i.e.,

Fi = O
(

max
{

nw+ 1
2 (logn)

1
2 , n

1
2−w(logn)

1
2 , n1−d

})

.

(10)

Recall that we have proved in Lemma 2 that a constant

transmission rate c2W1 can be achieved for each transmission.

Thus, from (10), we can obtain

Tu = Ω

(

min

{

n−w− 1
2

√
logn

W1,
nw− 1

2

√
logn

W1, n
d−1W1

})

.



Since − 1
2 < w ≤ 0, we get −w− 1

2 ≥ − 1
2 and w− 1

2 ≤ − 1
2 .

So, we obtain that

Tu = Ω

(

min

{

nw− 1
2

√
logn

, nd−1

})

. (11)

B. Achievable Throughput in Help Mode

Transmissions in help mode are carried out in three steps:

from a source node to the nearest helping node to it, from this

helping node to the helping node nearest to the destination

node, and finally from that helping node to the destination

node. We analyze the throughput capacity in these three steps,

respectively, in the following, and the minimum of these three

is an achievable throughput in help mode.

Step I: from source nodes to the helping network.

Recall that in regular heterogeneous wireless networks the

helping nodes are regularly placed. So a network can be

divided into squares of equal area 1/m, which we call cells.

We assume source nodes have low transmission power and

they need to transmit packets to the helping node in the

same cell via multiple hops. Then, we can have the following

lemma. The proof is omitted due to space limit.

Lemma 5: In each cell, there are at most 2n/m normal

nodes w.h.p., where m = nb, the number of helping nodes.

In Lemma 1, we have shown that in each square, there

exists at least one normal node that can help relay traffic.

Recall that a bandwidth of W2 is used for the transmissions

in Step I. So similar to Lemma 2, we can also show that

each square can transmit at a constant transmission rate c6W2

where 0 < c6 < +∞ is a deterministic constant. Besides, by

Lemma 5, in each cell, there are at most 2n
m

−1 normal nodes

that one square has to relay traffic for. Assume each packet

has a constant packet size. So, in O
(

9× 2n
m

)

time slots, every

normal node is able to transmit a packet towards the helping

node closest to it.

Denote the throughput capacity in Step I by Tℎ1. We can

obtain that

Tℎ1 = Ω
(m

n
W2

)

= Ω
(

nb−1
)

. (12)

Step II: helping network relay.

Notice that each cell is a big square with length l′ =
√

1/m,

and there is exactly one helping node in each cell. Thus,

similar to Lemma 2, we can also have the following lemma.

Lemma 6: Each cell in the network can transmit at a

transmission rate c7W4, where c7 is a deterministic positive

constant.

Besides, as shown in Fig. 5, notice that the m big squares

with length l′ =
√

1/m cannot cover the whole network when

b(n) = O(l′), i.e., w + b/2 < 0. In this case, we choose

l′ = n−w−b to ensure full network coverage. As a result, we

have the following lemma.

Lemma 7: For every cell, w.h.p.,

1) the number of source nodes which are located in the

cells with the same x-coordinate, denoted by Cx, is at

most 2nw− b
2+1 when w + b

2 > 0, and at most 2n1−b

when w + b
2 < 0.

2) the number of destination nodes which are located in

the cells with the same y-coordinate, denoted by Cy ,

is at most 2nd−w− b
2 when d > w + b

2 > 0, at most

c8 when w + b
2 > d > 0, where c8 is a constant and

c8 > 4
b+2w−2d , and at most nd when w + b

2 < 0.

Proof: When w + b
2 > 0, the proof is similar to that in

Lemma 3. When w+ b
2 < 0, there is only one cell for each x-

coordinate, and hence the number of source nodes is the same

as shown in Lemma 5. Besides, all the cells have the same y-

coordinate. So the number of destination nodes located in the

cells with the same y-coordinate is at most the total number

of destination nodes in the network, i.e., nd.

Denote the number of flows that cross an arbitrary cell Ci

as Bi where i ∈ [1, n]. Remember that each source node only

generates one flow, and there are at most 2n1−d flows for each

destination node as shown in Lemma 4, we can obtain that for

all i,

Bi ≤ Cx + 2n1−dCy

≤

⎧

⎨

⎩

2nw− b
2+1 + 4n−w− b

2+1, when 0 < w + b
2 < d < 1,

2nw− b
2+1 + 2c3n

1−d, when 0 < d < w + b
2 < 1,

2n1−b + n, when w + b
2 < 0.

Denote the throughput capacity in Step II by Tℎ2. Thus,

from Lemma 6, we can obtain that

Tℎ2 = Ω
(

min
{

n−w+ b
2−1W4, n

I(w+ b
2 )−1W4, n

d−1W4

})

= Ω
(

min
{

nI(w+ b
2 )−1W4, n

d−1W4

})

, (13)

where I(.) is a function, and I(x) = x if x > 0, and I(x) = 0
if x < 0.

Step III: from the helping network to destination nodes.

We first give two lemmas that will be used later.

Lemma 8: In each cell, w.h.p., there are at most 2nd−b

destination nodes when 0 < b < d < 1, and at most c9, where

c9 > 1+b
b−d

, destination nodes when 0 < d < b < 1.

Proof: Consider cell i. Let Yi be a random variable

denoted as the number of destination nodes in cell i, and E[Yi]

the expectation of Yi. Then, we have E[Yi] =
nd

m
= nd−b.

1) 0 < b < d < 1.

According to the Chernoff bound, we can obtain that

ℙ
(

Yi > 2nd−b
)

< e−c10n
d−b

,

where c10 = f(1) = 2 log 2− 1 > 0. Thus, as n → ∞,

we have ℙ
(

Yi > 2nd−b
)

→ 0. Besides, the probability

that the number of destination nodes is at most 2nd−b

in all cells, denoted by ℙ
(

Yi ≤ 2nd−b ∀ i
)

, can be

calculated as:

ℙ
(

Yi ≤ 2nd−b ∀ i
)

≥ 1−mℙ
(

Yi > 2nd−b
)

> 1− nbe−c10n
d−b

,

which approaches to 1 as n → ∞.

2) 0 < d < b < 1.
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Fig. 5. A special case for covering the network with m squares.

Again, according to the Chernoff bound introduced

before, we can obtain that

ℙ(Yi > (1 + �)E[Yi]) < e−E[Yi][(1+�) log(1+�)−�]

=
e�E[Yi]

(1 + �)(1+�)E[Yi]
.

Let 1 + � = c9
E[Yi]

= c9n
b−d where c3 is a constant that

will be determined later. Then, we have

ℙ(Yi > c9) <
e(c9n

b−d−1)nd−b

(c9nb−d)c9

=
ec9−nd−b

cc99 nc9(b−d)

<
ec9

cc99
⋅ nc9(d−b) → 0 as n → ∞.

Besides, we can also obtain that

ℙ(Yi ≤ c9 ∀ i) ≥ 1−mℙ(Yi > c9)

> 1− nb e
c9

cc99
⋅ nc9(d−b)

= 1− ec9

cc99
⋅ nc9d−(c9−1)b.

When we choose c9 > 1+b
b−d

, we can get c9d−(c9−1)b <
−1, and hence ℙ(Yi ≤ c9 ∀ i) → 1 as n → ∞.

Since all the cells are of the same size, we assume the

transmission power of helping nodes for the transmission in

Step III is strong enough so that helping nodes can directly

transmit to destination nodes within the cells. Besides, as

in cellular systems, we use 7-cell frequency reuse to enable

adjacent cells to transmit at the same time with no interference.

Then, it is easy to show that downlink transmissions in Step

III can also have a constant transmission rate c11W3 where c11
(0 < c11 < +∞) is a deterministic constant. In addition, from

Lemma 4 and Lemma 8, we find that when 0 < b < d < 1,

in each cell, w.h.p., the number of flows from a helping node

to destination nodes is at most 2nd−b × 2n1−d, i.e., 4n1−b,

and when 0 < d < b < 1, in each cell, w.h.p., the number

of flows from a helping node to destination nodes is at most

c9 × 2n1−d, i.e., 2c9n
1−d. Denote the throughput capacity in

Step III by Tℎ3. Then, we can obtain that

Tℎ3 =

{

Ω
(

nb−1W3

)

, when 0 < b < d < 1,
Ω
(

nd−1W3

)

, when 0 < d < b < 1.
(14)

Thus, combining (12), (13), and (14), we can get

Tℎ = Ω(min{Tℎ1, Tℎ2, Tℎ3})
= Ω

(

min
{

nb−1, nI(w+ b
2 )−1W4, n

d−1
})

. (15)

C. An Achievable Throughput in Regular Heterogeneous Wire-

less Networks

Substituting the results in (11) and (15) into (3), we can

have the following theorem.

Theorem 1: An achievable throughput in regular hetero-

geneous wireless networks, denoted by T , is

T= Ω

(

max

{

min

{

nw− 1
2

√
logn

, nd−1

}

,

min
{

nb−1, nI(w+ b
2 )−1W4, n

d−1
}})

.

IV. THROUGHPUT CAPACITY OF RANDOM

HETEROGENEOUS WIRELESS NETWORKS

In this section, we study the throughput capacity of random

heterogeneous wireless networks with uniformly and indepen-

dently placed helping nodes. Similarly, we also need to find an

achievable throughput in user mode and in help mode, denoted

by T ′
u and T ′

ℎ, respectively. Then, an achievable throughput in

random heterogeneous wireless networks, denoted by T ′, can

be obtained by choosing the maximum of these two, i.e.,

T ′ = max{T ′
u, T

′
ℎ}. (16)

Notice that T ′
u is the same as Tu shown in (11), but T ′

ℎ will

be different from Tℎ due to random distribution of the helping

nodes. In the following, we present how to find T ′
ℎ.

Recall the definition of Voronoi Tessellation: given a set of

m points in a plane, Voronoi tessellation divides the domain

in a set of polygonal regions, the boundaries of which are the

perpendicular bisectors of the lines joining the points. It has

been shown in [11] (Lemma 4.1) that for every " > 0, there

is a Voronoi tessellation with the property that every Voronoi

cell contains a disk of radius " and is contained in a disk of

radius 2". Then, for the m base stations in a dense network

with area 1, we can construct a Voronoi tessellation Vn for

which

∙ (V1) Every Voronoi cell contains a disk of area 100 logm
m

.



∙ (V2) Every Voronoi cell is contained in a disk of radius

2�(n), where �(n) := the radius of a disk of area
100 logm

m
.

In this case, we consider each voronoi cell is a cell in the

network. In each cell, we randomly choose one helping node

as the helping node of the cell.

Similar to that in Section III-B, the transmissions in help

mode are also carried out in three steps as follows.

Step I: from source nodes to the helping network.

We also assume source nodes have low transmission power

and they need to transmit packets to helping nodes via multiple

hops. Similar to Lemma 5, we can have the following result.

Lemma 9: In each Voronoi cell, there are at most
1200n logm

m
normal nodes w.h.p..

Denote the throughput capacity in Step I by T ′
ℎ1. Since each

node is a source node, along the line in Section III-B, we can

obtain that

T ′
ℎ1 = Ω

(

m

n logm
W2

)

= Ω

(

nb−1

logn

)

. (17)

Step II: helping network relay.

When w + b
2 > 0, we further divide the network into big

squares with length l′′ =
√

c12 logm/m where c12 > 1/b is

a constant. When w+ b
2 < 0, we make l′′ = c12n

−w−b logm.

Then, we can have the following lemma.

Lemma 10: In random heterogeneous wireless networks,

1) Every big square has at least one helping node in it

w.h.p..

2) Each big square in the network can transmit at a constant

transmission rate c13W2, where 0 < c13 < +∞ is a

deterministic constant.

Besides, similar to Lemma 7, we can have the following

lemma.

Lemma 11: For every big square, w.h.p.,

1) the number of source nodes from which the traf-

fic goes through the big square, denoted by C′
x,

is O
(

nw− b
2+1(log n)

1
2

)

when w + b
2 > 0, and

O(n1−b logn) when w + b
2 < 0.

2) the number of destination nodes to which the traf-

fic goes through the big square, denoted by C′
y , is

O
(

nd−w− b
2 (logn)

1
2

)

when d > w + b
2 > 0, at most

c14 when w + b
2 > d > 0, where c14 is a constant and

c14 > 4
b+2w−2d , and at most nd when w + b

2 < 0.

Proof: Notice that in random heterogeneous wireless

networks, the expectation of C′
x and C′

y cannot be directly

calculated as in (6) and (7), respectively. Instead, for a big

square, the expectation of C′
x should be the average number

of helping nodes in big squares with the same x-coordinate

times the average number of source nodes associated with each

big square. The expectation of C′
y should be derived similarly.

Thus, we have

E[C′
x] = Θ

(

m

logm

)

⋅ l′′

1/b(n)
⋅Θ
(

n logm

m

)

= Θ
(

nl′′b(n)
)

,

E[C′
y ] = Θ

(

m

logm

)

⋅ l′′

b(n)
⋅Θ
(

nd logm

m

)

= Θ

(

ndl′′

b(n)

)

.

The rest of the proof follows that in Lemma 7.

Denote the number of flows that crosses an arbitrary big

square Si as B′
i where i ∈ [1, n]. We can obtain that for all i,

B′
i ≤ C′

x + 2n1−dC′
y

=

⎧













⎨













⎩

O
(

nw− b
2+1(logn)

1
2

)

+O
(

n−w− b
2+1(log n)

1
2

)

,

when d > w + b
2 > 0,

O
(

nw− b
2+1(logn)

1
2

)

+O
(

n1−d
)

,

when w + b
2 > d > 0,

O
(

n1−b logn
)

+O(n) , when w + b
2 < 0.

Denote the throughput capacity in Step II by T ′
ℎ2. Thus, we

can obtain that

T ′
ℎ2 = min

{

n−w+ b
2−1

(log n)
1
2

W4,
nI(w+ b

2 )−1

(logn)J(w+ b
2 )
W4, n

d−1W4

}

= min

{

nI(w+ b
2 )−1

(logn)J(w+ b
2 )
W4, n

d−1W4

}

, (18)

where J(⋅) is a function, and J(x) = 1
2 when x > 0, and

J(x) = 0 when x < 0.

Step III: from the helping network to destination nodes.

Since the cells are irregular in random heterogeneous wire-

less networks, we cannot assume the transmissions in Step III

can be one hop direct transmissions as in regular heteroge-

neous wireless networks. Instead, we assume the transmission

power of helping nodes for the transmissions in Step III is

the same as normal nodes. Then, we can also show that

transmissions in Step III can have a constant transmission rate

c15W3 where c15 (0 < c15 < +∞) is a deterministic constant.

Besides, similar to Lemma 8, we can have the following

lemma.

Lemma 12: In each cell, w.h.p., the number of destination

nodes is O(nd−b logn) when 0 < b < d < 1, and O(c9),
where c9 > 1+b

b−d
when 0 < d < b < 1.

Denote the throughput capacity in Step III by T ′
ℎ3. Recall

Lemma 4, and we can obtain that

T ′
ℎ3 =

{

Ω(nb−1W3/ logn), when 0 < b < d < 1,
Ω(nd−1W3), when 0 < d < b < 1.

(19)

Thus, combining (17), (18), and (19), we can obtain

T ′
ℎ = Ω(min{T ′

ℎ1, T
′
ℎ2, T

′
ℎ3})

= Ω

(

min

{

nb−1

logn
,

nI(w+ b
2 )−1

(logn)J(w+ b
2 )
W4, n

d−1

})

. (20)

Substituting the results in (20) into (16), we can have the

following theorem.

Theorem 2: An achievable throughput in random hetero-

geneous wireless networks, denoted by T ′, is

T ′= Ω

(

max

{

min

{

nw− 1
2

√
logn

, nd−1

}

,

min

{

nb−1

logn
,

nI(w+ b
2 )−1

(logn)J(w+ b
2 )
W4, n

d−1

}})

.



From Theorem 1 and Theorem 2, we can find that the

number of destination nodes, the number of helping nodes,

and the shape of the network area all have significant im-

pacts on the achievable throughput in heterogeneous wire-

less networks. More importantly, notice that the user mode

achievable throughput is in fact the throughput in traditional

static homogeneous ad hoc networks. Thus, we can find that

instead of placing base stations with a wired network, we can

have higher throughput than homogeneous ad hoc networks

by an exponential order if we deploy some more powerful

wireless nodes with 1) W4 = Ω(nw+ 1
2 ) when w + b/2 < 0

and w − min{b, d} + 1/2 < 0, or 2) W4 = Ω(n
1−b
2 ) when

w + b/2 > 0 and w −min{b, d}+ 1/2 < 0.

V. CONCLUSION

In this paper, we investigate the throughput capacity of

regular and random heterogeneous wireless networks, respec-

tively, and find the network settings such as the number of

destination nodes, the number of helping nodes, and the shape

of the network area all have great impacts on the network

capacity. We also find that by deploying wireless helping

nodes into the network, heterogeneous wireless networks can

provide much higher per-node throughput than traditional

homogeneous wireless networks under certain conditions.
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