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Abstract—The popularity of smart mobile devices has resulted
in the surged growth of mobile data traffic, which makes current
cellular communication systems overloaded. To accommodate the
data, the current wireless communication system is evolving
to a 5G wireless communication system that employs multi-
ple technologies to boost its system capacity. We notice that
non-line-of-sight (NLOS) transmission is ubiquitous in wireless
communication systems, and is even more common in 5G
wireless communication systems due to using millimeter-Wave
(mmWave) communications. Previous works employ beamform-
ing techniques to enhance NLOS transmission performance but
suffer from the high cost for controlling antennas. In this paper,
we propose a dynamic transmission power control scheme for
improving NLOS transmission performance. Particularly, we
explore the control of UE association with MBS/SBSs and power
allocation to maximize UEs’ sum-rate under the constraints of
transmission power and UEs’ quality of service (QoS). To solve
this maximization problem, we propose a deep Q-network (DQN)
scheme, in which we apply a convolutional neural network (CNN)
to estimate the Q-function offline and conduct a deep Q-learning
online to find the control strategy. We offer simulation results to
show the efficacy of the proposed scheme.

Index Terms—5G wireless communications, deep learning,
non-line-of-sight (NLOS) transmission, power control

I. INTRODUCTION

The exploding growth and popularity of mobile devices like
smartphones and tablets have resulted in sudden surges of
various mobile applications [1]–[4], such as anywhere anytime
online social networking, Internet of Things (IoT), vehicular
communications, and smart health. These mobile applications
daily create the massive amount of data. According to Cisco
Visual Networking Index [5], the volume of mobile data traffic
will experience a 1000-fold growth by the year 2020.

However, current cellular communication systems, even the
newly-developed LTE/LTE-advanced ones, have been nearly
or already overloaded. As a consequence, accommodating the
newly-increased mobile data traffic inevitably incurs severe
degradation of communication performance in these current
cellular communication systems. For example, with the ever-
growing mobile devices and mobile data traffic, mobile users
will be gradually suffering from data traffic congestion and
low per-user throughput. Therefore, current cellular commu-
nication systems need to evolve to the next-generation (5G)
wireless communication systems for providing higher system
capacity and per-user data rate.

To boost system capacity, academia and industry have
proposed various wireless technologies like massive

MIMO (multiple-input-multiple-output) and millimeter-wave
(mmWave) communications, and consider such technologies
as ideal candidates for 5G wireless communications. For
massive MIMO, by using large-scale antenna arrays, a
base station (BS) can transmit high-speed data streams
to multiple user equipment (UEs) with different spatial
patterns concurrently. mmWave communications allow 5G
wireless communication systems to exploit high-frequency
band, i.e., 30 - 300 GHz, for providing UEs with high
available bandwidth. Due to employing these technologies for
supporting a great number of mobile devices, a 5G wireless
communication system is a dense and large-scale system.

Due to utilizing high-frequency spectrum band, 5G wireless
communications easily suffer from performance degradation
incurred by obstacles. Basically, in a 5G wireless communica-
tion system, there exist two types of information transmissions:
the line-of-sight (LOS) and the non-line-of-sight (NLOS). LOS
transmission often happens when a transmitter is close to
its corresponding receiver and NLOS transmission is very
common since obstacles (e.g., buildings, trees, and hills) can
be easily seen everywhere. NLOS transmission performance
degrades sharply since radio signals are attenuated a lot after
they penetrate large obstacles. Due to adopting mmWave com-
munications for 5G wireless communications, the signal at-
tenuation loss becomes even worse. As a consequence, NLOS
transmission in 5G wireless communication systems is much
more vulnerable to degrading communication performance.

To tackle this issue, researchers have proposed to employ
beamforming techniques. Lin and Akyildiz [6] consider em-
ploying the beamforming technique to improve NLOS trans-
mission performance. They allocate beamforming weights for
UEs at each remote radio head and maximize UEs’ sum-
rate of the considered 5G wireless communication system.
Renzo and Lu [7] try to enhance system performance by
jointly considering a realistic channel model, cell association
criteria, and directional beamforming. Turgut and Gursoy [8]
offer an analytical framework for improving NLOS trans-
mission performance in heterogeneous downlink mmWave
cellular networks by considering directional beamforming and
derive signal-to-interference-plus-noise ratio (SINR) coverage
probability. Some other researchers also consider coordinating
multiple antennas of multiple BSs to enhance NLOS trans-
mission performance [9]. However, it is not cost-effective to
control antennas for achieving the beamforming in wireless



communication systems. Particularly, due to using large-scale
antenna arrays, it is more difficult to achieve the beamforming
in 5G wireless communication systems. We notice that so far
the improvement of NLOS transmission performance with low
cost in 5G wireless communication systems is still an open and
challenging problem.

In this paper, we propose to dynamically control transmis-
sion power for improving NLOS transmission performance in
5G wireless communication systems. In particular, we aim to
maximize the total data rate (i.e., sum-rate) achieved by all
UEs in a 5G wireless communication system. Specifically, we
explore UE association with MBSs/SBSs and power allocation
and formulate the maximization problem of UEs’ sum-rate
under the constraints of transmission power and UEs’ quality
of service (QoS) requirements. We notice that the formulated
optimization problem is a large-scale mixed integer nonlinear
programming (MINLP) problem that is generally NP-hard
[10]. To efficiently solve the formulated problem, we propose
a deep Q-network (DQN) that is based on the reinforcement
learning but applies a deep neural network to estimate the
Q-function. In particular, the Q-function is estimated offline
and the deep Q-learning is conducted online to derive the
control strategy (i.e., UE association with MBSs/SBSs and
power allocation), hence leading to the significant computation
time reduction.

The rest of this paper is organized as follows. We briefly
depict the considered system model in Section II. We then
present the problem formulation in Section III. Afterwards, we
describe Q-network based solution to the formulated problem
in IV. Finally, we present simulation results in Section V, and
conclude this paper in Section VI.

II. SYSTEM DESCRIPTION

To simplify the presentation, we consider a simple scenario
for 5G wireless communications, as shown in Fig. 1. In this
scenario, we have a single MBS presented by m. Within the
coverage area of this MBS, there are a set of SBSs denoted by
S = {1, 2, · · · , S} and a large number of UEs presented by
U = {1, 2, · · · , U}, where s ∈ S and u ∈ U denote an SBS
and a UE, respectively. We consider that all SBSs are carefully
located to offer services and all UEs are randomly distributed
within this coverage area. Moreover, we have a cloud server
that connects with the MBS and SBSs via wired links like
optical fiber cables. The learning operations are performed at
this server.

We consider downlink information transmission in this
scenario. In particular, we employ the CoMP transmis-
sion/reception technique [11] to coordinate multiple-path in-
formation transmission. Hence, a UE can receive (or transmit)
signals from (or to) the MBS and multiple SBSs at the same
time. Specifically, a UE has the following three information
transmission cases: 1) a UE only receives information from the
MBS; 2) a UE only receives information from one or several
SBSs; and 3) a UE receives information from the MBS and
one or several SBSs.

Fig. 1. The considered scenario for 5G wireless communications.

We evaluate link quality by channel gain. Let {hu,m|u ∈ U}
and {hu,s|u ∈ U , s ∈ S} denote the channel gain of UE/MBS
(U-M) link between UE u and MBS m and UE/SBS (U-S)
link between UE u and SBS s, respectively. In particular, we
consider a block-fading channel model [12]. The channel gain
is divided into discrete levels, each of which is related to a
state. The state set is denoted by C = {1, 2, · · · , C}, where
|C| is the number of states.

A UE receives signals transmitted over links from MBS and
SBSs. When MBS m transmits signals xu,m to UE u over the
U-M link between MBS m and UE u, UE u receives signals
yu,m that can be expressed as follows:

yu,m =
√
Pu,mhu,mxu,m + nu,m, (1)

where Pu,m is the transmission power at MBS m and nu,m is
the additive Gaussian white noise (AGWN) received by UE u.
Likewise, when SBS s (∀s ∈ S) transmits signals xu,s to UE
u over the U-S link between SBS s and UE u, UE u receives
signals yu,s that can be expressed as follows:

yu,s =
√
Pu,shu,sxu,s + nu,s, (2)

where Pu,s is the transmission power at SBS s and nu,s is
the AGWN received by the UE. We consider that the noise
power, denoted by σ2, is identical for all links.

III. PROBLEM FORMULATION

A. The transmission power constraints

In 5G wireless communication systems, the transmission
power is always limited due to devices’ capabilities. To achieve
efficient 5G wireless communications, we need to allocate
transmission power to active links. Let xu,m and xu,s, binary
variables, denote whether the U-M link between UE u and
MBS m and the U-S links between UE u and SBS s (for
u ∈ U and s ∈ S) are active or not, and we have

xu,m =

{
1, if the U-M link between u and m is active
0, otherwise ,

(3)



for u ∈ U , and

xu,s =

{
1, if the U-S link between u and s is active
0, otherwise ,

(4)
for u ∈ U and s ∈ S.

Transmission power at MBS and SBSs is naturally limited
due to the capability of their equipment. We denote by Pmxm

and Pmxs the maximum transmission power an MBS and
an SBS can provide, respectively. Besides, for each active
link, no matter U-M and U-S links, its transmission power
is also constrained. Let Pmxu,m and Pmxu,s denote the maximum
transmission power of U-M or U-S links, respectively. Thus,
for U-M and U-S links, we have

0 ≤ xu,mPu,m ≤ Pmxu,m, and 0 ≤ xu,sPu,s ≤ Pmxu,s , (5)

for u ∈ U and s ∈ S. Furthermore, for all U-M and U-S links,
we have the constraints as follows:

0 ≤
U∑
u=1

xu,mPu,m ≤ Pmxm , and 0 ≤
U∑
u=1

xu,sPu,s ≤ Pmxs ,

(6)
for s ∈ S. Note, we consider that all SBSs have identical
capabilities, i.e., Pmxs ’s (for s ∈ S) are the same for all SBSs.

B. The UEs’ QoS Requirements

UEs usually have QoS requirements for their information
transmission. Thus, we consider to provide them with satis-
factory services. In this paper, we use SINR to capture the
QoS requirement, and hence formulate the SINR received by
a UE. In practical 5G wireless communications, when MBS
m transmits information to UE u, other UEs u′ ∈ U nearby
can be interfered since they can also receive the information at
the same time. The received interference power at UE u′ can
be expressed by |hu′,m|2Pu,m. Similarly, when SBS s sends
information to UE u, other UEs u′ ∈ U nearby can also be
interfered. We can find the received interference power at UE
u′ as |hu′,s|2Pu,s. Let γu,m and γu,s denote the received SINR
for the U-M link between UE u and MBS m and the U-S link
between UE u and SBS s, respectively. We can obtain γu,m
and γu,s by using (7).

Let γu and γmin denote the received SINR and the mini-
mum SINR requirement of the UE u, respectively. Based on
the study in [13], we can formulate the SINR received by UE
u as follows:

γu = γu,m +

S∑
s=1

γu,s. (8)

We consider that all UEs in the considered scenario have
the identical minimum SINR requirement. To satisfy the QoS
requirement, the SINR received by each UE needs to satisfy
as follows:

γu ≥ γmin, (9)

for u ∈ U .
From the above description, we can notice that the SINR re-

ceived by a UE largely depends on transmission power. When

we increase transmission power for transmitting information
to a UE, the power at the receiver of a UE will be grown up.
However, this will result in the increasing interference power
at other UEs’ receiver in the neighborhood. As a consequence,
the SINR received by other UEs’ SINR will be getting low.
Thus, we need to well control transmission power for all active
links.

C. The Data Rate Achieved by a UE

Due to employing the CoMP transmission technique, the
data rate achieved by a UE is the sum of the data rate achieved
each active link owned by this UE. In the following, we first
find the data rate that an active link is able to achieve, and
then the data rate achieved by a UE.

When MBS m transmits information to UE u with trans-
mission power Pu,m, we can find the data rate of the link as
follows:

Cu,m = Bu,m log2(1 + γu,m), (10)

where Bu,m is the transmission bandwidth of a U-M link.
Similarly, when SBS s transmits information to UE u, we can
obtain the data rate of the link as follows:

Cu,s = Bu,s log2(1 + γu,s), (11)

where Bu,s is the transmission bandwidth of a U-S link. Thus,
the sum-rate achieved by a UE u can be expressed as follows:

Cu = Cu,m +

S∑
s=1

Cu,s. (12)

D. The Formulated Optimization Problem

So far, we have successfully characterized transmission
power constraints, UEs’ QoS requirements, and data rate
achieved by a UE. We notice that these together affect the
sum-rate achieved by all UEs. To maximize the sum-rate,
we need to control them. Thus, we formulate the sum-rate
maximization problem as follows:

P-NLOS: max
U∑
u=1

Cu,

s.t. (5), (6), and (9).

Through solving P-NLOS, we can find an optimal control
strategy about UE association with MBS/SBSs and transmis-
sion power, i.e., xu,m, xu,s, Pu,m, and Pu,s, for u ∈ U and
s ∈ S. In particular, we can meet UEs’ QoS requirements
and enhance NLOS transmission performance by finding the
solution to this formulated optimization problem.

IV. DYNAMIC POWER CONTROL VIA DEEP
REINFORCEMENT LEARNING

We can notice that P-NLOS is a large-scale mixed integer
nonlinear programming (MINLP) problem that is generally
NP-hard. To efficiently solve P-NLOS, we propose a deep
Q-network (DQN) that is based on reinforcement learning
but applies a deep neural network to estimate the Q-function
values. Specifically, the proposed approach combines two



γu,∗ =
|hu,∗|2xu,∗Pu,∗

σ2 +
∑U
u′=1,u′ 6=u

∑S
s=1(|hu,m|2xu′,mPu′,m + |hu,s|2xu′,sPu′,s)

, for ∗ ∈ {m, s}. (7)

parts: one is a CNN, a variant of the deep neural network,
which is performed offline for estimating Q-function values
and the other is the deep Q-learning for online control of
UE association with MBS/SBSs and power allocation. In what
follows, we describe the reinforcement learning based dynamic
control and DQN based dynamic control, respectively.

A. Reinforcement Learning based Dynamic Control

The DQN approach is evolved from the reinforcement
learning. The difference between them is the deep neural
network used to estimate Q-function values. Therefore, in
this part, we first describe the reinforcement learning based
dynamic control scheme for solving P-NLOS.

In our considered scenario, there is an agent located within
the cloud. This agent is responsible for conducting the required
learning process and outputting best strategies for online
control of UE association with MBS/SBSs and power allo-
cation. Specifically, this agent continually interacts with the
considered 5G wireless communication system for a long term.
It observes system states and finds its accumulated rewards it
can obtain. At a decision epoch, it derives a control strategy,
based on which an action is designated. After an action is
taken, the system evolves into a new state that will be later
presented to the agent.

To derive the best control strategy, we identify system state
space, action space, and reward functions to construct the
reinforcement learning process. In the following, we describe
them one by one.

1) System state space: In 5G wireless communication
systems, the state is characterized by all UEs’ states. A UE’s
state is characterized by the channel state of all U-M and U-
S links. Thus, at epoch k, we can characterize the state of
UE u by sku = (sku,m, s

k
u,1, s

k
u,2, · · · , sku,S), where sku,∗ ∈ C is

the state of the link between UE u and MBS (or SBS) ∗. As
a result, we can have the state of the considered system by
sk = (sk1 , s

k
2 , · · · , skU ). Recall that each link has an identical

channel state set C. Note that, we can see that the system state
space is very large in our consider 5G wireless communication
system.

2) Action space: In our formulated problem, we need
to control UE association with MBS/SBSs and transmis-
sion power allocation, which leads to a composite ac-
tion. For UE u, its composite action at epoch k is
aku = (xku,mP

k
u,m, x

k
u,1P

k
u,1, · · · , xku,SP ku,S , xku,m). Here, if

xu,∗ Mu,∗= 0, where ∗ presents symbols m and s, and M
presents symbols P , we say xu,∗ = 0 and u,∗ = 0, otherwise
xu,∗ = 1 and Mu,∗= xu,∗ Mu,∗> 0. For all UEs, the action
space is ak = (ak1 , a

k
2 , · · · , akU ).

3) Reward function: In a 5G wireless communication
system, UEs’ sum-rate is one of important parameters used to
evaluate UEs’ communication performance. Thus, we consider

the sum-rate as the system reward that is originally defined as
follows:

R(sk, ak) =

U∑
u=1

Cku , (13)

where R(ak) is the reward function, showing that the reward
highly depends on the system state and the action to be taken
and Cku is the data rate received by UE u at epoch k.

Due to natural dynamics, the system state of a 5G wireless
communication system transits over time. Thus, the agent
interacts with this system continually. At epoch k, the agent
knows sk and derives an optimal strategy π by using a learning
process. Then, the agent maps sk to ak based on the strategy
π. As a result, the system takes an action ak, and afterwards
obtains reward R(sk, ak). Finally, the system state transits to
a new one sk+1 and the agent continues the above operations
until it reaches a final epoch. The returned reward Rk is
the accumulated and discounted reward that is calculated as
follows:

Rk =

T∑
t=0

αR(sk+t, ak+t), (14)

where t is the epoch, T is the maximum epoch, and α ∈ (0, 1]
is the discount factor.

The objective of the agent is to maximize the expected
accumulated reward, i.e., maxE[Rk|sk]. Through solving the
maximization problem, it can derive the optimal strategy
π. For solving this maximization problem, researchers have
already developed two types of widely used methods: the value
function based [14] and the policy based [15]. We adopt the
value function based method in this paper.

Value function is a fundamental notion in reinforcement
learning and Q-learning is a popular algorithm for learning
state-action value functions. To find a state-action value func-
tion, we first define a state value function, denoted by Vπ(sk).
Vπ(s

k) is the accumulated reward for the strategy π. Thus, we
have Vπ(sk) = E[Rk|sk]. Due to the feature that the channel
state transits independently in 5G wireless communication
systems, we can rewrite this state value function as follows:

Vπ(s
k) = r(sk, πk) + α

∑
sk′∈s

Psksk′ (πk)Vπ(s
k′), (15)

where Psksk′ (πk) is the state transition probability when
strategy πk is taken.

Furthermore, we define a Q-function Qπ(s
k, ak), a state-

action value function, to characterize the expected reward
for choosing action ak at system state sk by following the
strategy π. We have Qπ(sk, ak) = E[Rk|sk, ak]. Due to the
special feature, which the system state changes independently



of the control of UE association and power allocation, we have
Qπ(s

k, ak) = Vπ(s
k), i.e.,

Qπ(s
k, ak) = r(sk, ak) + α

∑
sk′∈s

Psksk′ (ak)Vπ(s
k′ , ak

′
).

(16)
At this moment, the agent needs to maximize the value
of Q-function Qπ(s

k, ak). Through solving this optimization
problem, this agent is able to find the best strategy.

We can notice that r(sk, ak) and Psksk′ (ak) are unknown in
this optimization problem. To solve such types of optimization
problems, Q-learning is one of most commonly used algo-
rithms. For Q-learning based algorithms, Q-function is usually
found in a recursive fashion using the available information
(sk, ak, r(sk, ak), sk+1, ak+1). Thus, we can update Q(sk, ak)
as follows:

Q(sk+1, ak+1) = Q(sk, ak) + β(r(sk, ak) +

α[max
a′k

Q(s′k, a′k)]−Q(sk, ak), (17)

where β is the learning rate, and s′k and a′k are states and
actions in system state space and action space at epoch k,
respectively.

We can see that updating Q(sk+1, ak+1) needs to search
over the whole system state space and action space. Due to
the very large-scale system state space, the so-called curse of
dimensionality, it needs to take a very long time to update
the Q-function value. As a consequence, this reinforcement
learning method does not work well in solving large-scale
optimization problems.

B. DQN based Dynamic Control

To accelerate the learning process of the Q-learning method,
we propose a deep reinforcement learning method, i.e., DQN.
In this method, DNN is used to estimate the values of the
Q-function Qπ(sk, ak) offline and the deep Q-learning based
online control is conducted based on the estimated values. In
particular, since DNN based Q-learning causes the instability,
we integrate the experience replay technique into the deep Q-
learning.

To estimate the Q-function values, the current system state
and historical system states are input into a CNN network
and the output is Q(ssk, ak|θk) for a given weight vector
θk, where ssk = (sk−N , sk−N+1, · · · , sk). Based on the
experience replay, θk is updated for each time. The memory
is used to store the experiences. We denote the experience at
epoch k by ek = (ssk, ak, r(sk, ak), ssk+1) and the memory
by D = (e1, e2, · · · , ek). Based on the experience replay
technique, the agent selects at random an experience from D
used to update the weight vector θk of the CNN.

We input a Q-function value Qπ(s
k, ak) into a deep Q-

learning process to derive an optimal online control strategy
for UE association with MBS/SBSs and power allocation.
We employ a stochastic gradient descent method to update
weight parameters. The learning process is as follows. First,
we replace the value function Qπ(sk, ak) by a deep Q-network
with parameters θk, i.e., Qπ(sk, ak) ≈ Q(sk, ak, θk). This

approximation is then used to define the objective function as
follows:

L(θk) = E[(r(sk, ak) + βmax
ak+1

Q(sk+1, ak+1, θk)

−Q(sk, ak, θk))2]. (18)

Subsequently, we can find its gradients as follows:

∂L(θk)

∂θk
= −E[(r(sk, ak) + βmax

ak+1
Q(sk+1, ak+1, θk)

−Q(sk, ak, θk))
∂Q(sk, ak, θk)

∂θk
]. (19)

At each epoch, we continue this process until it reaches T
times. For each updating, we select θk according to the ran-
domly chosen experiences from D. The best control strategies
are derived online. As a result, our proposed scheme is so
efficient that it can adapt to the highly dynamic 5G wireless
communications environment.

V. SIMULATION RESULTS

A. Simulation Settings

In the simulations, we consider a 5G wireless communi-
cation system. In this system, we have 1 MBS, 10 SBSs,
and 100 UEs. The 100 UEs are randomly dispersed over the
MBS’s coverage area that we set as a 200 m × 200 m square.
Besides, the coverage area of a SBS is set as a 50 m × 50
m square and these SBSs are also randomly distributed in
the considered area. To characterize the dynamics of the 5G
wireless communications, we adopt the Manhattan mobility
model [16] in this simulations and all UEs move at a low speed
around the MBS’s coverage area. The maximum transmission
power of the MBS and SBS are Pmxm = 150 mw and
Pmxs = 50 mw, respectively. The maximum transmission
power of the active U-M link and U-S link are Pmxum = 20
mw and Pmxus = 15 mw, respectively. The noise power is set
as σ2 = 10 mw. Similarly, the wireless links’ bandwidth is set
as 5 MHz for the U-M link and 25 MHz for the U-S link,
respectively. Moreover, to characterize the QoS requirement,
we set γmin = 6 dBw. Recall that the channel state is
produced by divided the channel gain. We set the number of
channel state to be 5 for each wireless link.

We also set up a CNN used for estimating the Q-function.
There are three convolutional layers, two pooling layer, and
two fully connected layers. The values of the initial weight
vector are set as random values. The number of previous states
is set as N = 50. We have ε = 0.2. The learning rate used
for the Q-learning is β = 0.2. The discount is α = 0.7. The
number of time slots to be traversed is set to be T = 40. The
memory size is K = 5000.

B. The Convergence Performance

To evaluate the convergence performance of the proposed
scheme, we offer Fig. 2 to show this. We have the following
observations from this figure. At the beginning of the learning
process, the sum-rate achieved by all UEs is very low. As the
time elapses, the sum-rate is increasing but fluctuant. This is
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Fig. 3. The comparison of the sum-rate achieved by all UEs.

because the agent is still learning the parameters of the system
and does not find the best parameters. After 2200 around
time slots, the fluctuation of the sum-rate is very small, which
implies the sum-rate converges. Recall that the estimation of
the Q-function is conducted offline by using a CNN. Thus, the
convergence time has a little influence on the performance of
the proposed scheme.

C. The Improvement of the Sum-Rate

To explore the performance of the proposed scheme, we
measure the sum-rate achieved by all UEs and compare that
achieved by the proposed scheme to the existing scheme. The
measured sum-rate is shown in Fig. 3. Specifically, we show
the sum-rate as the minimum SINR requirement increases. We
can find that the sum-rate is improved a lot by the proposed
scheme. This gives us an insight that we need to maximize
the sum-rate for 5G wireless communications. Moreover, the
sum-rate is decreasing with the increase in the minimum SINR
requirement. Since the higher minimum SINR is required,
some links need to be allocated higher transmission power and
some other links may have to be allocated lower transmission
power. As a result, the sum-rate is decreasing.

VI. CONCLUSIONS

In this paper, we have studied the problem of enhancing
NLOS transmission performance for 5G wireless commu-
nications. To improve NLOS transmission performance, we
propose to dynamically control the transmission power in 5G

wireless communication systems. In particular, we explore
the control of UE association with MBSs/SBSs and power
allocation and formulate the maximization problem of UEs’
sum-rate under the constraints of transmission power and
UEs’ QoS requirements. To solve the formulated problem,
we first apply a CNN to perform the Q-function estimation
offline, and based on the estimation results, then conduct
the deep Q-learning for online control of UE association
with MBSs/SBSs and power allocation. The simulation results
show the significant performance improvement achieved by
our proposed scheme.
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