
Secure Outsourcing of Matrix Convolutions
Kaijin Zhang, Changqing Luo, and Pan Li

Department of Electrical Engineering and Computer Science,
Case Western Reserve University, Cleveland, OH 44120

Email: {kxz138, cxl881, and lipan}@case.edu

Abstract—Due to the rapid growth of various systems and
applications like cyber-physical systems, smart cities, and e-
commerce systems, we have a massive volume of data collected
from these systems and applications. We notice that matrix
convolution is one of the most fundamental operations on large-
scale data, such as using it for image registration and object
detection. However, performing large-scale matrix convolutions
is usually time-consuming, hence hindering a general-purpose
computer to conduct large-scale matrix convolutions by its own.
Cloud computing allows using an economical way to offload
the most expensive computations to the cloud. This, however,
obviously raise security concerns. To this end, we proposed
an efficient secure outsourcing scheme for large-scale matrix
convolutions. Specifically, the user first masks the matrices for
protecting the security and sends the masked matrices to the
cloud. Then, the cloud conducts matrix convolution and returns
the result to the user. Finally, the user recovers the real result
from the returned one. Particularly, the matrix convolution is
performed in a non-interactive way, hence leading to the very
low communication cost. We implement the proposed algorithm
on the Amazon Elastic Compute Cloud (EC2) platform and a
laptop. The experiment results show significant time saving for
the user.

Index Terms—Big Data, secure outsourcing, cloud computing,
matrix convolution

I. INTRODUCTION

With the booming development of the IT industry, a vast
amount of data are created. For example, social networks
need to keep track of millions of users’ activity records,
online shopping websites have to deal with enormous amount
merchandises information and transaction data, scientists need
to analyze genome sequence which comprises billions of
base pairs, and bankers are always facing the problem of
finding the fraudulent transactions pattern from huge amount
of transaction history. International Data Corporation (IDC)
reported there have been 1.8 ZB (= 1021 Bytes) of data in
2011 and predicted that the figure will be at least doubled
every other two years [1].

Meanwhile, the advanced development of cloud computing
has made it possible for people to conveniently utilize the
powerful computation offered by computing clusters at the
cloud. By adopting cloud computing, people can outsource the
most expensive computations to the cloud without investing
capital for constructing the computing infrastructure. Thus, it
is an economical way for people performing computations. In
these days, many companies have provided customers with
their cloud services, such as Amazon’s AWS, Microsoft’s
Azure cloud, and Google’s CloudPlatform.

Matrix/tensor Convolution is an important mathematical
tool used in many fields like image processing. For exam-
ple, the matrix convolution can be employed for filtering,
blurring, de-blurring, noise suppression, etc. Moreover, the
matrix convolution is also widely used in some higher-level
applications like object recognition [2], edge detection [3],
data compression [4], and simulation [5]. Furthermore, matrix
convolution is an important component in the convolutional
neural network (CNN) [6]. In addition, matrix convolution can
be extended to higher dimensions. For examples, convolution
is exploited to process 3D-seismic data for petroleum discov-
ery [7]. From these applications of matrix convolutions, we
find that performing matrix convolution is time-consuming [8],
[9]. Thus, an ordinary user with a general-purpose computer
cannot conduct matrix convolutions on its own within a
feasible time period. As a result, the user needs to outsource
the most expensive computations of the matrix convolution to
the cloud.

This, however, raises the critical security concerns. In some
scenarios, people are not willing to outsource their data to the
cloud because processing data in the cloud may compromise
their data confidentiality. Securely outsourcing computing
tasks to the cloud has drawn a lot of attention in the past
few years. One of the promising technique group is Fully
Homomorphic Encryption (FHE) [10], [11]. More specifically,
FHE enables computations (i.e. addition and production) on
the ciphertext to reflect on the plaintext without actually ex-
posing the plaintext. Like most public-key cryptosystem, their
security is based on hard problems defined in a finite field.
Many previous works have developed the secure outsourcing
schemes based on this idea [12], [13]. However, the FHE
based schemes require high computational complexity and
have its inevitable extra cost of scaling numbers into integers.
For large-scale tasks that are both computational-intensive
and data-intensive, homomorphic encryption is not practical
because it incurs too much overhead to the cloud.

Another group of algorithms is based on perturbation [14]–
[22]. Such algorithms have been developed based on algebra
operations. For example, Lei et. al [14] design a secure
outsourcing algorithm for matrix inversion and this algorithm
is designed based on the matrix permutations. Salinas et.al [15]
propose to use random additive noise to protect the security of
coefficient matrix in a large-scale linear system of equations
while guaranteeing the privacy theoretically in the sense of
computational indistinguishability. Lin et. al [16] exploit the
random transformation to perturb the data while training them

for support vector machines in the cloud. Atallah et.al [22]
propose an algorithm for securely outsourcing 1-D convolution
based solely on linear equations. Although it has low local
side computational complexity, it suffers from very high I/O
complexity and cloud side complexity.

In this paper, we propose a secure outsourcing scheme
for matrix convolutions. Specifically, the user first masks the
matrices for protecting the security and sends the masked
matrices to the cloud. Then, the cloud conducts matrix con-
volution and returns the result to the user. Finally, the user
recovers the real result from the returned one. Particularly,
the matrix convolution is performed in a non-interactive way,
hence leading to the very low communication cost. Moreover,
the user performs the mediate-level computations while the
cloud conducts the most expensive computations.

We summarize our key contributions as follows.
1) We design an efficient secure outsourcing algorithm

for large-scale matrix convolutions. Unlike FHE, our
designed algorithm can naturally handle float number
without extra effort.

2) By avoiding doing matrix convolution locally, the client
does not need to do memory-expensive zero-padding
operations for the FFT-based convolution. Besides, our
masking process only imposes sublinear memory burden
on the client side and easily parallelizable.

3) The designed algorithm requires very low computational
complexity at the user and very low communication cost
between the user and the cloud.

4) Our algorithm is CPA-secure.
The rest of this paper is organized as follows. Section

II introduces some preliminaries on matrix convolution and
Pseudo-random function. In Section III-A, a detailed descrip-
tion of our proposed algorithm. Section IV gives a thorough
performance analysis. The experiment results are presented in
Section V. Section VI finally concludes this paper.

II. PRELIMINARIES AND DEFINITIONS

A. Matrix Convolution

Matrix convolution is widely used in many fields especially
in image processing. For two matrix f and g, their convolution
is defined as follows:

f ∗ g(x, y) =
∞∑

i=−∞

∞∑
j=−∞

f(x− i, y − j)g(i, j) (1)

It is also a naı̈ve way of calculating convolution, if the input
matrices’ sizes are Nf

x × Nf
y and Ng

x × Ng
y , the output will

be a matrix with size (Nf
x + Ng

x − 1) × (Nf
y + Ng

y − 1),
and its complexity is Nf

xN
f
yN

g
xN

g
y . Another popular way of

calculating matrix convolution is called “Fast Convolution”,
which utilizes the famous Convolution Theorem and Fast
Fourier Transform (FFT). Its main idea is to turn a matrix
convolution in the time domain into a point-wise multipli-
cation in the frequency domain. Fast Convolution can reach
a computational complexity as low as (Nf

x + Ng
x)(N

f
y +

Ng
y)[

9
2 log2((N

f
x + Ng

x)(N
f
y + Ng

y)) + 1]; it however, as a

trade-off, introduces some extra memory complexity. FFT-
based convolution suffers from its huge memory overhead
introduced by zero-padding and number precision extending.
Zero-padding is to make two signal the same size to perform
FFT (e.g. Radix-2 FFT) and element-wise multiplication. For
example, to perform an FFT-based convolution of a 20 × 20
and a 5×5 matrix, they all need to be zero-padded to 32×32
matrices if Radix-2 FFT is used. Number precision extending
is necessary to maintain a reasonable accuracy level of the
FFT results because we will lose data precision in the division
calculation which is a key step in FFT. For example, when data
size is 256, 8-bit precision will be lost when we divide each
intermediate result by 256. In modern information system of
big data, the size of f and g can both be very large, and data
can be collected very frequently. It is intractable for some
devices with limited computational power to perform large-
scale matrix convolution. Therefore outsourcing this task to
the cloud is a reasonable option in some big data scenarios. On
the other hand, the outsourced matrices may contain important
private information. For example, if one of the matrices is an
MRI digital image, it contains information that’s relevant to a
patient’s health condition. On account of the privacy concern,
how to outsource matrix convolution task to the cloud without
revealing any private information is the major issue which
will be addressed in this paper. We will introduce the detailed
design in Section III-A.

B. Pseudorandom Function

The theoretical construction of pseudorandom objects has
been widely studied, and its extraordinary power in securing
communication has also been verified by the successful ap-
plication of various encryption schemes. One of the widely-
known concepts is pseudorandom number generator (PRG).
PRG can expand short randomly selected seeds into much
longer bit sequences that are computationally indistinguishable
from true random sequences. Pseudorandom function (PRF),
less well-known but very useful, is different from PRG. The
motivation of pseudorandom function is to realize a “seem-
ingly random” mapping between two strings with equal length.
Its formal definition is [23]:

Definition 1: Let F :{0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an
efficiently length-preserving, keyed function. We say that F is
a pseudorandom function if for all probabilistic polynomial-
time distinguisher D, there exists a negligible function ε such
that

|Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ≤ ε(n), (2)

where k ← {0, 1}∗ is chosen uniformly at random and f is
chosen uniformly at random from the set of functions mapping
n-bit strings to n-bit strings.

PRF can be constructed based on any hard problems that
allow the construction of PRGs. In practice, it can be realized
by a very efficient primitive called Block Cipher. In this paper,
the construction method of PRF is not specified, because it will
not affect the secure property of the whole system.

III. PRIVACY-PRESERVING MATRIX CONVOLUTION
OUTSOURCING ALGORITHM

A. Basic Algorithm Design

Suppose we have two matrices M1 and M2 with dimensions
NX

1 ×NY
1 and NX

2 ×NY
2 respectively. Without loss of general-

ity, we assume all elements of matrices appear in this paper are
in length n. Instead of directly sending the original matrices
M1, M2 to the cloud, we send four “masked” version of them,
along with a constant number, i.e. {C1, C2, C3, C4, s}:

C1 = αM1 + γ(Z1
1 + Z1

2), (3)
C2 =M1 − β(Z1

1 + Z1
2), (4)

C3 = αM2 + γ(Z2
1 + Z2

2), (5)
C4 =M2 − β(Z2

1 + Z2
2), (6)

s =
αγ

β
, (7)

where Z1
1 , Z

2
1 , Z

1
2 , Z

2
2 are rank-1 random matrices. Among

which, Z1
1 and Z1

2 have the same size as M1, and Z2
1 and

Z2
1 have the same size as M2. They are used to mask the true

value of the elements in the original matrices. Since they are
rank-1 matrices, each of them is generated by doing the outer
product of two random vectors. In detail, for a mask matrix
Zki , it can be presented as:

Zki =

{
(uki)

t ⊗ vki , if i = 1
(vki)

t ⊗ uki , if i = 2
(8)

where the elements of vector uki are uniformly distributed
in the range of [0, 2n−1), and vki is also a random vec-
tor with its elements following a discrete distribution of
Pr{1} = Pr{−1} = 1

2 . In this way, any randomly selected
element of Zki follows uniform distribution over the range
of (−2n−1, 2n−1). Due to the simplicity of the vector v, we
generate two mask matrices for each message to eliminate
the correlation between neighboring rows and columns respec-
tively. α, β and γ are also randomly selected numbers.

After receiving C1, C2, C3, C4, s from the user, the cloud’s
objective is to compute the following matrix convolutions:

Y1 = C1 ∗ C3, Y2 = C2 ∗ C4, (9)

and then send Y0
∆
= Y1 + sY2 back to the user. It’s obvious

that the user can easily recover M1 ∗M2 by calculating

β

α2β + αγ
(Y0− (γ2 +αβγ)((Z1

1 +Z1
2) ∗ (Z2

1 +Z2
2))). (10)

Note that besides matrix scalar production and addition, the
above calculation also involves matrix-matrix convolution term
(Z1

1 +Z
1
2)∗(Z2

1 +Z
2
2) = Z1

1 ∗Z2
1 +Z

1
1 ∗Z2

2 +Z
1
2 ∗Z2

1 +Z
1
2 ∗Z2

2 .
It seems that it will lay the same computational burden on
the user’s end as doing the original convolution task locally.
However, this term de facto requires much less computational
effort due to the rank-1 property of Z1 ∼ Z4. According
to the fact that the convolution of a column vector and a
row vector is equivalent their outer-production, convolution
involving rank-1 matrices can be simply decomposed into

several lower dimensional convolutions. If we take Z2
1 ∗ Z1

1

for example, it can be presented as

Z2
1 ∗ Z1

1 = [(u2
1)
t ⊗ v2

1] ∗ [(u1
1)
t ⊗ v1

1]

= [(u2
1)
t ∗ v2

1] ∗ [(u1
1)
t ∗ v1

1]

= [(u1
1)
t ∗ (u2

1)
t]⊗ (v1

1 ∗ v2
1).

(11)

Now the matrix-matrix convolution is replaced by three
vector-vector convolutions, which can significantly reduce
the computational complexity. The detailed analysis will be
presented in Section IV. The above algorithm gives a rough
description of how we outsource the matrix convolution task to
the cloud without compromising user’s privacy. However, the
generation method of the random components of this algorithm
is not well-defined. In the next section, we will introduce the
detailed process of generating u, v, α, β, γ and prove that the
matrix masking technique presented in this section is secure
again Chosen-Plaintext-Attack(CPA).

B. Matrix masking

The basic idea of Chosen-Plaintext Attack is that the
adversary A is allowed to ask for encryptions of multiple
messages of chosen adaptively by A. Before presenting the
security analysis of our scheme, we first introduce a theorem
to simplify our task [23]:

Theorem 1: Any private-key encryption scheme that has
indistinguishable encryptions under a chosen-plaintext at-
tack also has indistinguishable multiple encryptions under a
chosen-plaintext attack.

This theorem presents a significant technical advantage of
CPA security that provides us a shortcut to realizing CPA-
security. It means we can guarantee that all masked matrices
are CPA-secure if each independent element of the masked
matrices is CPA-secure.

Assuming we have an oracle that can map one element in
the plaintext matrix M1 to another string that concatenates
the two corresponding elements in C1 and C2 defined by
(3)(4). i.e. Enck((M1)ij) = (C1)ij ||(C2)ij . To avoid abus-
ing notation, we simplify it by Enck(m) = c1||c2 where
c1 = αm + γ(u1v1 + u2v2), c2 = m − β(u1v1 + u2v2).
Based on this, we are able to design a CPA indistinguishability
experiment PrivcpaA (n) as shown in Algorithm 1:

In particular, a probabilistic polynomial-time adversary A
queries two arbitrary indexed strings, m0 and m1. The oracle
selects the string mb and outputs another string with twice of
its original length using a masking scheme, where b← {0, 1}
is randomly chosen. After receiving Enck(mb), A continues
to query the oracle with any arbitrary input for polynomial
times. A then guesses which arbitrary string was “encrypted”
and outputs a bit b′. If b′ = b, we say A succeeds and set
PrivcpaA (n) = 1 Based on this experiment, CPA-security can
be defined:

Definition 2: The masking scheme described in Section
III-A has indistinguishable encryptions under CPA (or is CPA-

Algorithm 1 A CPA Indistinguishability Experiment:
PrivcpaA (n)

1: A key k is generated by running Gen(1n).
2: The adversary A is given input 1n and oracle access to
Enck(·), and the outputs a pair of messages m1, m2 of
the same length.

3: A random bit b← {0, 1} is chosen, and then a ciphertext
with length 2n: v ← Enck(mb) is computed and given
to A.

4: The adversary A continues to have oracle access to
Enck(·), and outputs a bit b′.

5: return 1 if b′ = b (which means A succeeded), and 0
otherwise.

secure) if for all probabilistic polynomial-time adversaries A
there exists a negligible function ε such that

Pr[PrivcpaA (n) = 1] ≤ 1

2
+ ε(n), (12)

where the probability is taken over the random coins used by
A, as well as the random coins used in the experiment.

Based on the analysis and definition of security above,
we will now present the method of generating the random
components in the masking scheme, i.e. u1, u2, v1, v2, α, β
and γ. Instead of just using Pseudorandom Generators (PRG)
like [22], we borrow the concept of Pseudorandom Function
(PRF) which has been introduced in Section II-B. Specifically,
the detailed destruction of {α, β, γ, u1, u2, v1, v2}is:

Algorithm 2 Construction of {α, β, γ, u1, u2, v1, v2}
1: Let F be a Pseudorandom function. A key k is generated

by running Gen(1n) using a PRG.
2: for i = 1 to 2 do
3: Two random seeds svi , and sui are selected.
4: let ui = Fk(su) mod 2n−1; vi = (Fk(sv) mod 2 −

1
2)× 2

5: end for
6: Select another three random seeds sα, sβ , sγ , let α =
Fk(sα), β = Fk(sβ), γ = Fk(sγ).

7: if γ − αβ = 0 then
8: go to Step 6
9: end if

10: return {a, b, u1, u2, v1, v2}

Note that all the random seeds used in this construction can
be included in the ciphertext, even though it is not necessary,
i.e. we can send {v, su1

, su2
, sv1 , sv2 , } instead of just {v}.

The property of PRF guarantees that the disclosure of the PRF
inputs will not jeopardize the indistinguishability of its outputs
as well as the system’s security against CPA-attack. Moreover,
the construction method of u and v does not have to be the
one presented in Algorithm 2. as long as it is derived from
the output of a Pseudorandom function in an unbiased way. In
order to make a and b valid, we need to run the test in Step
7. In practice, generating a valid pair of a and b only takes

O(1) time. Due to space limit, the complete security proof is
omitted.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the computational and I/O
complexity of our proposed algorithm and compare it with
a previous algorithm presented in [22].

A. Computational Complexity

We defined the computational complexity of a process
on the number of floating-point(flops) operations, such as
addition, subtraction, multiplication, and division. Without of
loss of generality, we assume the two input matrices are both
square matrices with their dimensions being na and nb. To
estimate the overall computational complexity at the client
end, we look into both the masking and unmasking process.

The masking process of our proposed algorithm is to com-
pute C1, C2, C3, C4, and s through (3)-(8) , which is formed
only by matrix addition, scalar multiplication of matrices and
basic computation between numbers. In specific, it approxi-
mately takes 6n2

a + 6n2
b flops (constant term neglected, and

consider intermediate result reuse). In order to generate those
mask matrices and random parameters, we exploit pseudo-
random generator to obtain the original keys and pseudo-
random functions to get the vectors u’ and v’. The pseudo-
random function can be efficiently constructed by a block
cipher like DES, or AES. The computational complexity of
DES or AES is proportional to the message size, which is na
and nb in terms of getting u and v. Thus, this part is negligible
as well as the cost of pseudo-random generators. To get the
mask matrix as 8, the calculation of all the outer products
takes 2n2

a + 2n2
b flops.

The unmasking process is done through (9)-(11). In specific,
calculating (9)-(11) includes vector-vector convolution, outer-
production of vectors, scalar multiplication of matrices, and
matrix subtraction. They take the overall computational cost
of 4n2

a+4n2
b+6(na+nb−1)2 flops (constant term neglected)

if we do the vector-vector convolution via the Naı̈ve method.
The cost will decrease to 4n2

a+4n2
b+2(na+nb−1)2+36(na+

nb)log2(2na + 2nb + 1) flops if Fast Convolution method is
exploited instead, and of course some extra memory cost will
be introduced. Thus our algorithm yields an overall client-end
computational cost of at least 12n2

a+12n2
b+2(na+nb−1)2+

36(na + nb)log2(2na + 2nb + 1) and 12n2
a + 12n2

b + 6(na +
nb − 1)2 flops at most.

The algorithm presented in [22] is originally designed for
privately outsourcing vector-vector convolution, however, it
can be easily extended to a 2-D version with similar tech-
niques. It takes an overall computational cost of 9n2

a+9n2
b +

9 ∗ (na + nb − 1)2 flops.
From the analysis above, our proposed algorithm similar

client-end computational cost as [22] asymptotically. However,
in the unmasking part of our algorithm in (10) , the term
(γ2 + αβγ)((Z1

1 + Z1
2) ∗ (Z2

1 + Z2
2) is totally independent

of Y0, so it can be “preprocessed” locally while waiting for
the calculation result Y0 from the cloud. On the contrary, the

unmasking process in [22] can only take place after obtaining
results from the cloud. Moreover, because we can use FFT
in the unmasking process, the processing time is actually
much shorter than [22] in our experiments. As a result, our
proposed algorithm always outperformed [22] in terms of its
local computational time cost.

B. I/O complexity

To estimate the external memory I/O requirement, we pro-
pose to use the number of data values that are written/read
from/into the external memory. In the masking part, the client
reads the original input matrices, and send the masked matrices
C1 − C4 to the cloud, which totally takes n2

a + n2
b I/O

operations. After sending C1 − C4 to the cloud, the client
may want to write the vector u′s and v′s to the external
memory if unmasking is not done immediately or it’s done
somewhere else. It takes 4na + 4nb I/O operations. This part
of I/O cost can be left out if u′s and v′s stay in RAM for the
whole time which is also an alternative way of implementing.
In the unmasking phase, the client needs to receive y0, and
save the final result to the local storage, i.e. 2(na + nb − 1)2

operations. Extra 4na + 4nb I/O operations if u′s and v′s are
read from external disk. So the total number of I/O operation
is n2

a + n2
b + (na + nb − 1)2 + 8na + 8nb at most.

In [22], on the other hand, takes 3n2
a+3n2

b+3(na+nb−1)2
I/O operations.

C. Communication cost

In order to utilize the computation power of the cloud,
clients have to pay the extra communication cost. If we do
not take privacy issue into consideration by simply sending the
two input matrices in plain-text to the cloud and then receive
the final result from the cloud, the communication cost here is
sending/receiving data with size being n2

a+n
2
b+(na+nb−1)2.

If privacy is taken into account, our proposed algorithm takes
communication cost of 2n2

a + 2n2
b + (na + nb − 1)2, which

means only n2
a+n

2
b extra cost is introduced. The algorithm in

[22] takes communication cost of 3n2
a+3n2

b+3(na+nb−1)2,
which is three times larger than the non-private version.

V. EXPERIMENTAL RESULT

In this section, we evaluate the computational, I/O and
communication performance of proposed scheme for secure
outsourcing matrix convolution to the cloud. We implement
the local computation tasks on a regular PC (Apple MacBook
Pro, 2.7 GHz Intel Core i5, 8GB RAM, SSD equipped), and
cloud tasks on Amazon AWS EC2 instances. We choose HDF5
file system to handle large input and output files in a flexible
and convenient manner. All the codes are written in Python
2.7. The core mathematical operations of multiplication, outer-
product, FFT-based convolutions and others are implemented
using the Python toolkits numpy and scipy.

Firstly, we explore the local computation cost of our pro-
posed algorithm. We firstly compare it with the case that we
do the FFT-based convolution locally (following overlap-save
method). The result is shown in Fig. 1. Specifically, we split

Fig. 1. Local cost comparison

Fig. 2. Total cost comparison

the large matrix into chunks of 4000x4000 size, and we use
the number of chunks to denote the size of the matrix. We
also convolve them with a smaller matrix of size 31x31 and
101x101. As can be seen from the figure, the local cost of the
FFT-based algorithm increases very fast especially when the
smaller matrix is large. Convolving with a larger matrix means
more extra effort needed in splitting and recovering during
convolution. Our algorithm completely offloads this burden to
the cloud, thus the local cost is very minimal compared to
doing it locally. Moreover, during the experiment, we did not
explore the possible time saving of not needing to extending
number precision. We used double precision float number
for the whole experiment. If the original matrix has a lower
precision format such as integer, our algorithm is supposed
to yield better result compared to what’s shown in the figure,
because it does not require extending the number to double
precision as local FFT does.

Fig. 3. Parallel computation performance under different cluster size

Secondly, we compare the total time cost of our algo-
rithm and local FFT. The result is shown in Fig 2. Here
communication cost of transmitting data to the cloud is not
included, and an 8-node cluster is used. From this figure, we
can see we are able to approximately save half of the time by
outsourcing the problem to the cloud when dealing with large
matrices. We also need to keep in mind that our computing
scheme in the cloud may not be the optimal solution. Possible
hardware setup and software features of the cloud may lead
to much larger performance gap such as GPU-based cluster,
specially-designed FPGA, better intra-cluster communication
speed, lower-level programming languages(e.g. C/C++) and so
on. Because it’s not within the scope of this paper, here we
only use CPU-based cluster with medium level bandwidth and
computational power for demonstration purposes.

We also compare the performance of our algorithm with the
one proposed in [22] which is shown in Fig 3. Although [22]
attacks 1-D convolution, we are able to extend the algorithm
into a higher dimension. The experiment results match the
analysis we did in the previous section. Our algorithm is over
two times faster than [22] when applied to given dataset.
The performance gap will be even greater if we include
transmission cost into consideration.

VI. CONCLUSION

In this paper, we study the problem of securely outsourcing
the computations of matrix convolutions. To guarantee the
CPA security of the computations, we propose a secure out-
sourcing scheme for matrix convolutions. Specifically, the user
first masks the matrices for protecting the security and sends
the masked matrices to the cloud. Then, the cloud conducts
matrix convolution and returns the result to the user. Finally,
the user recovers the correct result from the returned one. Since
the cloud works on the masked matrices to perform the matrix
convolution directly, thus leading to very low communication
cost. To validate the performance of the proposed scheme, we

implement the scheme on the Amazon Elastic Compute Cloud
(EC2) platform and a laptop and the experiment results show
the significant time saving for the user.

REFERENCES

[1] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC iview, vol.
1142, no. 2011, pp. 1–12, 2011.

[2] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[3] J. R. Parker, Algorithms for image processing and computer vision. John
Wiley & Sons, 2010.

[4] D. Salomon, Data compression: the complete reference. Springer
Science & Business Media, 2004.

[5] D. Svoboda, M. Kozubek, and S. Stejskal, “Generation of digital
phantoms of cell nuclei and simulation of image formation in 3d image
cytometry,” Cytometry part A, vol. 75, no. 6, pp. 494–509, 2009.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[7] A. A. Aqrawi, “Three dimensional convolution of large data sets on
modern gpus,” Norwegian University of Science and Technology, 2009.

[8] K. Pavel and S. David, Algorithms for efficient computation of convo-
lution. INTECH Open Access Publisher, 2013.

[9] P. Karas and D. Svoboda, “Convolution of large 3d images on gpu and
its decomposition,” EURASIP journal on advances in signal processing,
vol. 2011, no. 1, pp. 1–12, 2011.

[10] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2010, pp. 24–43.

[11] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on Computing, vol. 43,
no. 2, pp. 831–871, 2014.

[12] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[13] F. Kerschbaum, “Outsourced private set intersection using homomorphic
encryption,” in Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security. ACM, 2012, pp. 85–86.

[14] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix
inversion computation to a public cloud,” IEEE Transactions on cloud
computing, vol. 1, no. 1, pp. 1–1, 2013.

[15] S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure outsourcing of
large-scale linear systems of equations,” in 2015 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2015, pp. 1035–1043.

[16] K.-P. Lin and M.-S. Chen, “Privacy-preserving outsourcing support
vector machines with random transformation,” in Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2010, pp. 363–372.

[17] W. Liao, W. Du, S. Salinas, and P. Li, “Efficient privacy-preserving
outsourcing of large-scale convex separable programming for smart
cities,” in IEEE 14th International Conference on Smart City. IEEE,
2016, pp. 1349–1356.

[18] W. Liao, C. Luo, S. Salinas, and P. Li, “Efficient secure outsourcing
of large-scale convex separable programming for big data,” IEEE
Transactions on Big Data, 2017.

[19] S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure outsourcing
of large-scale quadratic programs,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security. ACM,
2016, pp. 281–292.

[20] C. Luo, K. Zhang, S. Salinas, and P. Li, “Secfact: Secure large-scale
QR and LU factorizations,” IEEE Trans. Big Data, vol. PP, no. PP, pp.
1–13, Nov. 2017.

[21] ——, “Efficient privacy-preserving outsourcing of large-scale QR fac-
torization,” in Proc. IEEE BigDataSE’17, Sydney, Australia, Aug. 1-4
2017, pp. 917–924.

[22] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. E. Spafford,
“Secure outsourcing of scientific computations,” Advances in Computers,
vol. 54, pp. 215–272, 2002.

[23] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC
press, 2014.

