
Outsourcing Power System Simulations
Yue Tong, Student Member, IEEE, Jinyuan Sun, Member, IEEE, Kai Sun, Member, IEEE Pan Li, Member, IEEE

Abstract—The advancement of cloud-computing technologies
opens new possibilities to outsource to the third-party cloud
the computation-intensive and time-consuming dynamic simu-
lations needed in power grid system research and operations.
Outsourcing makes it possible to conduct dynamic simulations
much faster and with lower cost than to keep all computations
local. On the other hand, outsourcing, however, also gives rise to
the risk of information leak, as the outsourced simulation contains
sensitive information, such as critical operational parameters and
projected states of the power grid. In this paper, a novel secure
outsourcing scheme, combining disguising technique and code
obfuscation, was proposed to enable efficient outsourcing while
preserving the confidentiality of the information. It was shown
that our scheme can limit the adversary’s capability to obtain
the sensitive information in the context of outsourcing of power
system dynamic simulations.

Index Terms—security, data confidentiality, scientific compu-
tation, cloud computing, outsourcing, disguising technique, code
obfuscation

I. INTRODUCTION

Dynamic simulations play critical roles in power system
research and operations. They are used to predict the dynamic
behaviors of power systems under contingencies such as
generator tripping, line switching, and short circuit [2]. In real
practice, due to the heavy computational burden of simulating
large scale power systems, dynamic simulation is currently
conducted offline on hourly or daily basis, making it hardly
useful in practice to respond to emergent contingencies.

Recently, outsourcing the dynamic simulations to the cloud
has emerged as a promising solution to the problem mentioned
above. Pilot studies done in [6] showed that by outsourcing
the heavy computational burden to the cloud, it is possible to
conduct power system simulations, not only much faster but
also with less cost. According to [6], an N-1-1 contingency
analysis with 4,100 scenarios, which would have taken 1,700
hours at a commodity laptop, or 40 hours at the internal
computing cluster of 40 cores, now needs a running time
of only 1.5 hours with 150 Amazon EC2 nodes for a total
monetary cost of about $60.

Despite that cloud computing has demonstrated its tremen-
dous potential, the fact that outsourcing requires dynamic sim-
ulation to take place in an external and a potentially malicious
facility (the cloud) gives rise to concerns about the information
security during the course of outsourcing, considering that both
information required by and the results produced from the
dynamic simulation are sensitive and private to the power grid
owners. These concerns have restrained the utility companies

Yue Tong, Jinyuan Sun, and Kai Sun are with the Department of Electrical
Engineering and Computer Science, University of Tennessee, Knoxville, TN,
37921 USA e-mail: {ytong3, jysun, ksun}@utk.edu

P. Li is with the Department of Electrical and Computer Engineering,
Mississippi State University.

from taking advantages of the aforementioned outsourcing
paradigms. Instead, they would opt for conservative measures
such as keeping all the computations local in exchange for
the absolute data privacy assurance. The primary goal of this
paper is to explore the possibility to outsource the computation
overhead without giving away data privacy.

II. RELATED WORKS

Our work falls under the broad topic of non-interactive
outsourcing of scientific computation. Early research by [14]
showed that any function can be securely evaluated by us-
ing garbled circuit. More recently, with the breakthrough
of fully homomorphic encryption, homomorphic encryption
appears as the most straightforward solution to computation
outsourcing. Informally, homomorphic encryption allows one
(the cloud in our case) to execute encrypted software over
encrypted data to generate an encrypted result, which can be
decrypted only by outsourcers later. The problem is, however,
even the state-of-the-art fully homomorphic encryption [5]
is too inefficient for practical uses. Relatively more efficient
somewhat homomorphic encryption [7] only supports a very
limited number of additive or multiplicative operations. As
a result, the prospect of directly applying homomorphic en-
cryption to secure the outsourcing of dynamic simulation is
remote. Aside from homomorphic encryption, cryptographic
tools are also invented to facilitate the outsourcing of specific
computations like ranked keyword search [11], multiparty
back-propagation[15], and ridge regression [8]. However, they
focus on specific applications and cannot be readily applied
to dynamic simulations. Additionally, these schemes utilize
heavy cryptographic primitives like public key cryptography
and pairing-based cryptography, which introduce significant
computation overhead.

There are also many works on outsourcing of computations
that do not heavily rely on cryptographic tools. Wang et al.[12]
investigates the problem of cloud-based outsourcing of linear
programming for large-scale systems. Their proposal, however,
dealt with only linear programming while the computations
in dynamic simulations are based on nonlinear differential
algebraic equations. Atallah et al.[1] studies extensively the
problem of secure outsourcing of scientific computations such
as sorting, template matching, string pattern matching, and
differential equations. However, dynamic simulation is not
considered.

III. PROBLEM STATEMENT

A. System Model and Threat Model

1) System Model: Figure. 1 illustrates the conceptual sys-
tem model, consisting of two entities: the user and the cloud.
The user wishes to outsource to the cloud power system

978-1-4799-5952-5/15/$31.00 ©2015 IEEE

Cloud

One-time
BlackboxUpload the

blackbox

Configure and
build the black

box

Disguised
input

Disguised
output

Recovered
Output

Recovering
operation

Local computing

Return disguised
output

Fig. 1: Ideal system model for secure computation outsourcing

dynamic simulations with privacy preservation, by uploading
a configured black box to the cloud. An ideal black box is a
piece of executable software that encapsulates all the informa-
tion it requires, except for the external input, to complete the
computation while looking “unintelligible” to the cloud. The
cloud performs all computations through the black box. To
preserve the privacy of both the input and output values, the
black box is constructed in such as way that it takes protected
inputs and produce protected outputs, which will be recovered
by the user later.

As data confidentiality is of the primary interest of this
work, we enumerate in the following the private data involved
in a typical dynamic simulation.
• Power System Models: these are the mathematical mod-

els, usually nonlinear differential algebraic equations,
of machines and control systems, such as generators,
governors, motor load.

• Model data: the specific parameters and configurations
with respective to power system models, including the bus
connectivity and information about where and when to
apply faults. Model data are usually measured, validated
or defined by utility planning engineers.

• Operating conditions of the system: the values of
system states at the beginning of the simulation. They
are updated based on the real-time data from the SCADA
(Supervisory Control and Data Acquisition)/EMS (En-
ergy Management System) in the control room.

• Simulation results: the output of the contingency simu-
lation in the form of trajectories of state variables over
the simulated time.

Data are divided into two categories: input data and output
data. Input data are defined as the data submitted to the
cloud so that the simulation can be conducted on the cloud
end. Output data refer to any information that the simulation
produces as the result of the dynamic simulation. Naturally,
all the kinds of data listed above except for the simulations
results belong to the input data. Simulation results are the only
kind of output data. Both input data and output data are at risk
of unauthorized disclosure if left unprotected.

2) Threat model and security goals: In the threat model,
the adversary is a semi-honest cloud service provider, who

is not entirely trusted by the user in the sense that the
cloud service provider will honestly carry out the delegated
computation tasks and deliver the result of the computations,
but it is curious about the computation happening in the
cloud, and may try to compromise the user’s data privacy by
eavesdropping any data stream that flows in and out of the
cloud. The security goal of our work is to limit the adversaries’
ability to compromise the users’ data confidentiality, which, in
this particular context, is defined as not any private data listed
in Section.III-A1 can be gleaned from the data sent to and
produced by the cloud.

B. Background on Power System Dynamic Simulations

Dynamic simulation refers to a computer-based approach
to study a system’s dynamic behavior as a function of time
[16]. The key idea is to describe the system with a set of
mathematical equations, where the variables are the time-
varying states of the system. The dynamic states are obtained
by solving the equations over the simulated time. As the
equations are usually nonlinear, for example, ordinary differ-
ential equations or partial differential equations, solving them
requires numerical methods such as Euler method, Runge-
Kutta method, trapezoidal method, and so forth. In the power
system research and operations, dynamic simulations are used
to simulate the time-varying trajectories of the state variables
of a power system, such as machine speeds, rotor angles under
certain initial conditions and disturbances.

IV. SECURE OUTSOURCING SCHEMES

A. Scheme Overview

Our scheme is comprised of the following functions.
• ProbEnc(Φ,Ψ) → Ψ′. This function takes as input Ψ,

the original simulation in the form of source code, and
Φ, the spline functions used to disguise the simulation
results. The function applies the disguising technique
to the state variables by modifying simulation source
code as explained in the next section. The function then
conducts code obfuscation to the modified source code in
order to generate the encrypted simulation source code,
which is output as Ψ′.

• SimulationExec(Ψ′) → Sdisguise. This function takes
as input and executes the source code of an encrypted
simulation, and produces the disguised simulation result
Sdisguise.

• ResultRec(Sdisguise,Φ) → S. This function takes as
input Sdisguise and Φ. It recovers the original simulation
result by transforming the disguised result back to the
original one.

In accordance with the system model illustrated in Section
III-A1, the user performs SplineGen and ProbEnc, which
are discussed in Section IV-B and Section IV-C, respec-
tively, to produce the encrypted simulator. It then uploads
the encrypted simulator to the cloud. The cloud performs
SimulationExec(Ψ′) and returns the disguised trajectories to
the user. Finally, the user calls ResultRec to recover the right
trajectories from the disguise ones.

B. Protecting the simulation results with the disguising tech-
nique

In outsourcing, the simulation result, the trajectories of
system variables, is first been by the cloud once it is calculated
even before the simulation results are returned to the user. So a
trajectory must be protected in such a way that when a point
is calculated out, its exposure to the cloud does not reveal
the point’s real values during and after the simulation to the
cloud. To this end, considering the form of the output data, we
adopt the disguising technique to mask the trajectories while
the simulation is still in progress. That is, original trajectories
are transformed into another form so that their actual values
remain secret to the cloud. Later, only the one who knows
how the transformation can undo the applied transformation
and recover the original trajectories. We elaborate this idea as
follows.

1) Using injective mappings to disguise the DAE’s solution:
Dynamic simulations, in essence, solve a set of differential-
algebraic equations (DAE from now on) in order to get
the trajectories of state variables that describe the system’s
behavior. In order to disguise the trajectories, the original
DAEs need to be transformed accordingly in the first place.

More specifically, DAEs can be generally represented as

F(ẋ(t),x(t), t) = 0

where x, i.e., the solution of the DAEs, is a time-varying
vector holding n state variables. To hide the original solu-
tion, i.e., the trajectory x(t), we define an injective mapping
sm : xdisguised(t)→ x(t) such that sm[x](t) = xdisguise(t).
The disguised DAEs, as a result of the replacing x(t) with
xdisguise(t) will then be outsourced in place of the original
DAEs as:

Fdisguised(˙(xdisguised(t),xdisguised(t), t) = 0

which is equivalent to:

F(˙sm−1[xdisguised](t), sm−1[xdisguised](t), t)) = 0

where sm−1 denotes the inverse function. Since sm and
sm−1 are generated and kept secret by the user, after the
cloud returns the disguised solution xdisguised(t), only the
user can recover the original trajectories by computing x(t) =
sm−1[xdisguised](t).

2) Choice of injective mappings: To achieve the best hiding
without incurring too much computational overhead, we note
that the secret injective mapping sm should satisfy the a
number of properties summarized as follows.

1) No ambiguity. This property requires that the mapping,
sm, should be one-on-one. That is, given the disguised
result, there is only one corresponding original result.

2) Differentiable. The mapping, which intends to replace
the initial state variable, needs to be differentiable
because the solution of DAEs involves the numerical
integration of a state variable’s derivative. Otherwise,
singularity may occur, leading to numerical instability
in solving the disguised DAE.

3) Random. If the mapping is deterministic or predictable,
the adversary can guess the original result by merely

looking at the disguised trajectories, and, thus, there is
no effect of hiding at all.

4) Efficient to evaluate. The outsourcing scheme should not
incur much overhead by evaluating the extra mappings.

Inspired by [1], we find that adding a well-chosen cubic
spline functions to the original state variables in the DAEs
is a suitable choice of secret injective mapping. That is:
xdisguise(t) = x(t)+g(t), where g(t) are randomly generated
spline functions. A cubic spline function [9], is defined as a
piecewise cubic polynomial, which joins in the knots obeying
continuity conditions. Knots refer to as points where the two
neighboring pieces connect. A cubic spline function stipulates
that neighboring parts are continuous at their sharing knot
and have the same second and first order derivative. To
obtain a random spline function, we first set a number of
randomly generated knots and then use efficient cubic spline
interpolation to connect these knots.

A well-chosen spline functions can satisfy all properties
listed above.

First of all, adding a spline function to the original state
variable is a one-on-one mapping, so one can always recover
the original result by removing the effect of spline functions
from the disguised result without ambiguity. Second, each
piece is a cubic polynomial. Neighboring pieces must have the
same second-order derivative, so, by definition, splines func-
tion are differentiable at any point in their domain. Thirdly,
spline functions are based on a large number of randomly
generated knots. A cubic spline function with m knots involves
(m+ 1 reginons)× (4 parameter per region)− (m knots)× (3
constraints per knot) = m+4 parameters. As a result, in order
to determine a cubic spline function with m knots, one needs
to guess all the m+4 random values (64-bit double type). If m
is large enough, this will become extremely difficult. Fourthly,
spline functions are highly configurable. We can configure
them such that they have approximately the same range as the
original trajectories to ensure the best disguising effect. Lastly,
a spline function comprises piecewise polynomials, which are
efficient to evaluate. In our design, by limiting the degree
of the spline function to three, we can incur only a small
computation overhead.

3) Implementation of the disguising technique using spline
functions: To disguise a state variable, it requires replacing
all references to the state variable and all references of state
variable’s derivative, with their respective injective mapping,
i.e. adding the corresponding random spline function in the
source code of the simulator program. Here, we exemplify the
source code modification with MATLAB based PST.

In the source code of PST, state variable mac spd is a n-by-
t matrix denoting the speeds of all the n machines in the power
system over t time instant. To disguise mac spd, reference
like mac spd(i, j), which indicates the n-th machine’s speed
at the jth instant, and mac spd(i, :), which refers to the ith
machine’s speed over the simulated time, are to be replaced
by mac spd(i, j) + disg mac spd(i, j), and mac spd(i, :
) + disg mac spd(i, :), respectively. In addition, reference
of the state variable’s derivative like dmac spd(i, j) should
be replaced with dmac spd(i, j) + disg dmac spd(i, j).
Here, disg mac spd denotes the spline functions used to

disguise mac spd, where the prefix disg stands for disguis-
ing, and disg dmac spd is the derivative of disg mac spd.
In practice, disg mac spd is implemented as a function
disg mac spd(k, t) that takes three parameters: k the ma-
chine’s number, and t the time instant. The function outputs
the value of the k-th spline function at time instant t. Similarly,
disg dmac spd(k, t) outputs derivative of the k-th function
in disg mac spd at time instant t.

More specifically, for example, we replace mac spd(i, :)
with mac spd(i, :) + disg mac spd(i, :) by three steps: 1)
extracting the name of the variable, “mac spd” and its as-
sociated indices, “(i, :)”. 2) adding the disguising prefix to
the variable name to get the name of the disguising term
disg mac spd, 3) supplying the same indices to the disguis-
ing term disg mac spd(i, :), and 4) replacing mac spd(i, :)
with mac spd(i, :) + disg mac spd(i, :). The same proce-
dures apply to replacing an arbitrary state variable and its
derivative with their respective disguising terms.

It is worth noting that one problem we encounter when
we try to programmatically modify the source code is that the
resulted source codes after applying the replacing method may
no longer be valid. For example, the initial source code looks
mac spd(:, j) = mac spd(:, k) + h sol ∗ dmac spd(:, k)
After disguising mac spd, it becomes:
mac spd(:, j) + disg mac spd(:, j) = mac spd(:

, k) + disg mac spd(:, k) + h sol ∗ (dmac spd(:, k) +
disg dmac spd(:, k))

The newly generated code is no longer valid nor executable
since the equal sign “=” means assigning the value of the right
operand to the left operand. However, the left-hand side of the
new code is no longer a variable. In this example, the problem
could be solved by rewriting the new code to:
mac spd(:, j) = −disg mac spd(:, j) + mac spd(:

, k) + disg mac spd(:, j) + h sol ∗ (dmac spd(:, k) +
disg dmac spd(:, k))

To solve the problem, when an “=” is scanned in the source
code, we move all terms but the original state variable from
the left-hand side to the right-hand side. We illustrate our
source code modification algorithm in Algorithm. 1, where
the symbol “||” means concatenating.

C. Ensure input privacy through code obfuscation

In the previous section, we use the injective mappings
to mask the output to maintain the output confidentiality.
However, there is yet nothing so far to prevent the adversary
from peeking into the source codes and discovering where
and how the disguise techniques. In that case, the adversary
is free to remove the mask and recover the initial source
code. More importantly, regardless of whether the disguised
technique has been applied to disguise the output, the source
code also contains all the input data discussed in Section. III.
To overcome this, we propose to make use of code obfuscation
to enhance the security protection of the input data.

Code obfuscators are widely used in practice for the in-
tellectual property protection. Collberg [3] gives a formalized
notion of an obfuscating transformation:
Definition (obfuscating transformation) Let P → P ′ be a
transformation of a source program P into a target program

Data: The source code;
{Vars,dVars} names of state variables and

their derivatives to be disguised
Result: Modified source codes
forall the S in {Vars,dVars} do

forall the occurrences of “S(” in the source code do
Initialize character current character ← the
character next to “S(”;
Initialize integer unmatched parenthesis← 1;
Initialize character
start of indices← current character;
while unmatched parenthesis is not 0 do

if current character is “(” then
increment unmatched parenthesis;

if current character is “)” then
decrement unmatched parenthesis

move current character to the next;
end
Initialize character
end of indices← current character ;
Initialize character string indices← substring
between start of indice and end of indice
(inclusive);
/* determine if the current

reference is on the left-hand
side of a equals sign ("=") */

current character ← the next character after
end of indices;
Initialize character operator ←
current character;
/* Initialize the string to

replace the original reference

*/
Initialize character string rep str ← an empty
string;
if operator equals ”=” then

rep str ← S||indices||“=
−disg ”||S||indices;
replace the reference with rep str

else
rep str ←
“(”||S||indices||“+disg ”||S|indices||“)”;
replace original S||indices with rep str;

end
end

end
Algorithm 1: Source code modification algorithm

P ′. P → P ′ is an obfuscating transformation, if P and P ′

have the same observable behavior. More precisely, in order
for P → P ′ to be a valid obfuscating transformation, the
following conditions must hold.
• If P fails to terminate or terminates with an error condi-

tion, then P ′ may or may not terminate.
• Otherwise, P ′ must terminate and produce the same

output as P.
Various obfuscation techniques have been proposed and

used in reality. These include layout transformation, control

transformation, ordering transformation. They have different
levels of potency and can be applied independently. We refer
the reader to [3] for more details on code obfuscation.

In our implementation, we use MATLAB’s pcode function-
ality as a surrogate of the general-purpose code obfuscator.
The pcode functionality is provided in MATLAB. It takes the
MATLAB source code and transforms it into the preparsed and
encoded version, so the resulting code becomes intelligible
but functionally equivalent to the original code. Apparently,
the pcode satisfies the definition of code obfuscation. Note
that pcode is used here to represent the general obfuscation
process. More sophisticated and secure obfuscations can be
chosen depending on the level of protection. To our best
knowledge, there is not yet any known active attack against
the pcode. In addition, when the general-purpose secure ob-
fuscation such as [4] and [10] becomes mature and ready for
practical uses, we can quickly replace pcode employed above
in the dissertation with provable-secure obfuscation without
changing the system model illustrated in Fig. 1.

V. EVALUATIONS

A. Complexity analysis
We based our analysis on the following assumptions.
• The simulation to in involves N state variables and s time

steps.
• The original simulator uses the fixed time step trape-

zoidal method for numerical integration, which is also
commonly used by default in most commercial dynamic
simulation software packages like PSS/E.

• Each spline function contains k random knots.
• Evaluating a spline function at a certain point is O(1).
• Disguising one state variable in the source code is O(1).
• Obfuscating a program with a code obfuscator is O(1).
1) Local end overhead: The local end performs SplineGen,

ProbEnc, ResultRec. Based on our assumptions, in Big-O
notations, the complexity of ProbEnc is O(N) since it handle
N state variables, with each taking constant time; SplineGen is
also of O(Nk) complexity since it generates a spine function
for N state variables. Each requires Lagrange interpolation
over k knots, which is of O(k). ResultRec is O(Ns), as it
needs to recover N state variables’ trajectories, and each of
the trajectories is s long. Overall, the local overhead is of
O(Nk+N +Ns) = O(Ns) complexity, as s is much greater
than k. As seen, the complexity is predictable and independent
of the complexities of power system models of the power
system thanks to offloading most computation burden to the
cloud.

2) Cloud end overhead: The computational cost that is
pertaining to solving DAEs dominates the computational over-
head in the cloud end. With fixed-step trapezoidal method, the
per step complexity to calculate all the N state variables is
given by O(Nρ), where ρ indicates the average complexity of
evaluating the functions of state variables in the power system
model. Accordingly, the complexity required by solving for the
N state variables’ trajectories over s time steps is O(Nsρ).
With massive and complex system models, i.e.a large ρ, the
computation complexity of the cloud end is enormous and
unpredictable.

B. Experiment results

We implemented our secure outsourcing scheme and tested
whether the scheme would hide the simulation output data
and whether we can recover the original trajectories from
the disguised ones. As a cloud computing application, our
implementation involves two parts: the cloud end and the client
end. The cloud end is a service running in the cloud that
receives and executes MATLAB codes sent from the client
side and returns the result back upon completion. The client
end consists of the source code modifier and code obfuscator.
Source code modifier is a python program that first inserts the
codes responsible for generating disguising spline functions to
the initial source code and then runs Algorithm.1. The code
obfuscator makes use of the MATLAB built-in function pcode
to obfuscate the modified source code.

To demonstrate the correctness of our scheme, we tested it
on the NPCC 48-machine, 140-bus power system model. The
model represents the backbone system of the northeast region
of the North American East Interconnection.

Figure. 2 delineates the original (unmasked), disguised
(masked), and recovered trajectories of all the 48 generators’
angles and speeds. It is shown that the original and the
recovered trajectories are identical. Taking the difference of
the two, which is a zero vector, verifies our observation. By
that, the outsourcing scheme can disguise the original result
and also recover the disguised result without any error.

VI. DISCUSSIONS

We understand that code obfuscation used in our scheme
has its limitation in that given enough time and resources, a
determined adversary will be able to reverse engineer any com-
puter program protected by code obfuscation. However, we
argue that, code obfuscation can still build up a strong defense
against potential privacy breaches in the unique context of
real-time power system simulations. In power system dynamic
simulations, although the input and output information such as
transient states of the power system is sensitive, its value of
providing decision support for real-time power system oper-
ations diminishes quickly after the simulated period passes.
A typical transient stability analysis simulates the system’s
behavior over a period of up to 20 seconds, as transient
stability analysis does not involve dynamic models whose time
constant is larger 20 seconds. Hence, data confidentiality is
most valuable during this 20 seconds. In our ongoing work, we
are conducting penetration testing where we simulate attacks
to evaluate and measure the security of our secure outsourcing
scheme. On the other hand, code obfuscation does show great
usefulness when it comes to stalling the attacker. Collberg
et al.[3] pointed out that applying obfuscating transformations
can be done in polynomial time but removing them takes expo-
nential time complexity. Wroblewski [13] conducted empirical
studies which demonstrated that it takes 100 experienced
crackers to work a year, 4 hours per day, to understand the
meaning of a compiled and obfuscated program that contains
1,400,000 to 70,000,000 instructions protected by the opaque
construct technique.

We also would like to point out that, using code obfuscation
in tandem with other non-cryptographic strategies is also

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time/s

v
a
lu

e
s

Original machine angles

(a) Original machine angles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−80

−60

−40

−20

0

20

40

60

80

time/s

v
a
lu

e
s

disguised machine angles

(b) Disguised machine angles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time/s

v
a
lu

e
s

Recovered machine angles

(c) Recovered machine angles

0 1 2 3 4 5
0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

time/s

v
a

lu
e

s

Original machine speeds

(d) Original speeds

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time/s

v
a
lu

e
s

Disguised machine speeds

(e) Disguised speeds

0 1 2 3 4 5
0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

time/s

v
a

lu
e

s

Recovered machine speeds

(f) Recovered speeds

Fig. 2: Original, disguised, and recovered curves of machine angles and machine speeds

helpful to increase the strength of protection. For example,
we can hide the authentic simulation among a group of
randomly generated bogus but similar simulations. In order
for a successful attack, the attacker will need to analyze all
of the outsourced simulations, which significantly raises the
difficulty to launch an attack.

VII. CONCLUSIONS

In this paper, we presented a novel approach, which com-
bines the disguising technique and the code obfuscation, to
secure the outsourcing of non-linear power system dynamic
simulations against potential privacy breaches. We imple-
mented and tested the proposed schemes. It is shown that the
trade-off between feasibility, efficiency, and security has been
made.

ACKNOWLEDGMENT

This work was partially supported by the NSF/DoE En-
gineering Research Center (ERC) under NSF Award EEC-
1041877. In addition, this work was partially supported by
NSF under grant CNS-1422665. The work of P. Li was
supported by the U.S. National Science Foundation under
grants CNS-1149786 and CNS-1343220. We would like to
thank Bin Wang of Department of Electrical Engineering and
Computer Science at the University of Tennessee for the
helpful discussion on dynamic simulation of power system.
We also thank Dr. Joe H. Chow and Felipe Wilches-Bernal of
RPI for their supports on Power System Toolbox.

REFERENCES

[1] Mikhail J Atallah, K N Pantazopoulos, John R Rice, and Eugene H
Spafford. Secure outsourcing of scientific computations. Advances in
Computers, 54:215–272, 2001.

[2] Joe Chow and Graham Rogers. Power system toolbox. Cherry Tree Sci-
entific Software,[Online] Available: http://www. ecse. rpi. edu/pst/PST.
html, 2000.

[3] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations, 1997.

[4] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters.
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In Foundations of Computer Science (FOCS), 2013 IEEE
54th Annual Symposium on, pages 40–49, Oct 2013.

[5] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[6] Eugene Litvinov. Early experience with cloud computing at iso new
england, 2014.

[7] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? Proceedings of the 3rd ACM
workshop on Cloud computing security workshop - CCSW ’11, page
113, 2011.

[8] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft. Privacy-preserving ridge regression on hundreds of millions of
records. In Security and Privacy (SP), 2013 IEEE Symposium on, pages
334–348, May 2013.

[9] Christian H Reinsch. Smoothing by spline functions. Numerische
mathematik, 10(3):177–183, 1967.

[10] A Sahai and B Waters. How to Use Indistinguishability Obfuscation:
Deniable Encryption, and More. IACR Cryptology ePrint Archive, 2013.

[11] Cong Wang, Ning Cao, and Jin Li. Secure ranked keyword search over
encrypted cloud data. 2010 IEEE 30th International Conference on
Distributed Computing Systems, pages 253–262, 2010.

[12] Cong Wang, Kui Ren, and Jia Wang. Secure and practical outsourcing
of linear programming in cloud computing. In 2011 Proceedings IEEE
INFOCOM, pages 820–828. IEEE, April 2011.

[13] Gregory Wroblewski. General Method of Program Code Obfuscation
(draft). PhD thesis, Citeseer, 2002.

[14] Andrew C. Yao, Andrew C. Yao, Andrew C. Yao, and Andrew C. Yao.
Protocols for secure computations. In Foundations of Computer Science,
1982. SFCS ’08. 23rd Annual Symposium on, pages 160–164, Nov 1982.

[15] Jiawei Yuan and Shucheng Yu. Privacy Preserving Back-Propagation
Neural Network Learning Made Practical with Cloud Computing. IEEE
Transactions on Parallel and Distributed Systems, 99(1):1–1, January
2013.

[16] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of
modeling and simulation: integrating discrete event and continuous
complex dynamic systems. Academic press, 2000.

