Fatigue and Toughness of Niobium-Silicon Alloys David M. Herman and John J. Lewandowski Materials Science and Engineering, Case Western Reserve University

ABSTRACT

Advanced aerospace materials continue to be developed in order to address the continuing need for high temperature materials that retain high strength at high temperatures. An important property of any high temperature aerospace engineering material is its resistance to fatigue crack growth and toughness both at room temperature and elevated temperatures. In this work, the Center for Mechanical Characterization of Materials at CWRU and the unique equipment housed therein is being utilized to mechanically evaluate the fatigue crack growth properties of advanced Niobium Silicon alloys. The poster will present experimental work that has been performed to determine the fatigue crack growth resistance and toughness of these alloys at room temperature and high temperatures. Detailed examination has been performed on the alloys in order to correlate the mechanical properties to the microstructures. Analysis included Scanning Electron Microscopy and Laser Confocal Microscopy.

Testing Performed

Analysis of microstructures

Notch toughness

- •Fatigue crack growth
 - •Room temperature and 550°C threshold
 - •Room temperature and 550°C Paris slope
 - •Room temperature and 550°C fracture toughness
 - Analysis of fatigue crack path

Toughness

- •Notch toughness
 - •3 point bend testing, a/w = 0.45-0.55
 - •Notched to 200 µm root radius
 - •Displacement rate = 0.2 mm / min
 - •RT testing
- •Fatigue crack growth toughness
 - •Fatigue crack grown to catastrophic failure
 - •Room temperature and 550°C

Fatigue Crack Growth

•3 point bend testing, R = 0.1•Room temperature, 550°C •Test frequency 16-18 Hz da/dN monitored via DC potential drop

Notch Toughness

Sample ID	Notch Toughness (MPa √m)
Alloy B5	15.0, 19.3
Alloy C3	16.5, 16.1
Alloy D4	16.7

•Niobium matrix fails via cleavage/brittle fracture Some evidence of local plasticity Secondary phases fail in a brittle manner

Fatigue Crack Growth

Room Temperature Alloy B5

550°C Alloy B5 (a) 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-07 1.0E-08 1.0E-09

Alloy C3, RT Test	Crack Growth Direction
	Server and the server
and the second	1.0 mm
Crack Path	Selection

•Fatigue crack path imaged via SEM

•Extensive crack bridging and branching

Fracture Path Analysis

•Fatigue crack growth to threshold at RT, 550°C •SEM BSE images taken of total crack length •Fatigue crack path determined and quantified •Cracking through Nb phase •Cracking through brittle (i.e. silicide, Laves) phases Cracking along Nb/Brittle phase interfaces •Quantified fracture path roughness and branching •Linear roughness quantified •Extent of crack bridging/branching determined •RT Crack path selects secondary phases and interface

	Microstructure Constituents	Volume %	Crack Path Selection	
	Matrix	53	35	
Alloy B5	Secondary Phases	47	60	
	Interface	NA	5	
Alloy C3	Matrix	58	49	
	Secondary Phases	42	44	
	Interface	NA	6	
Alloy D4	Matrix	64	54	
	Secondary Phases	36	42	
	Interface	NA	4	

•Current 3.5 amps

Microstructures

SEM BSE images taken + EBSD analysis on Alloy C3

•Volume fraction analysis via systematic point count ASTM E562-95

ASE WESTERN RESERVE . EST. 1826

ΔK (MPa √m)

Room Temperature Alloy D4

Sample ID	RT Threshold (MPa √m)	550ºC threshold (MPa √m)	RT K _q (MPa √m)	550⁰C K _q (MPa √m)	RT Paris Slope	550°C Paris Slope
Alloy B5	8.1 ± 1.4	7.6 ± 1.9	20 ± 10.6	15.5 ± 3.5	13.8	14.2
Alloy C3	7.2 ± 0.6	5.5 ± 0.1	12.4	20 ± 4.2	20.5	16.8
Alloy D4	6.0	<3		TBD	9.8	TBD

ΔK (MPa √m)

10

10

ΔK (MPa √m)

550°C Alloy C3

.0E-02	
.0E-03	
.0E-04	
.0E-05	
0E-06	
0E-07	
.0E-09	
	1 ,10
	ΔK (MPa √m)

550°C Alloy D4

Conclusions

- •Nb-Si Alloys tested exhibited toughness greater than 15 MPa \sqrt{m} •Nb matrix fails via cleavage and brittle fracture •Secondary phases fail via brittle fracture Toughness greater than ceramics •Fatigue behavior determined at room temperature and 550°C •Fatigue Threshold is higher than ceramics •Paris slope is lower than ceramics
 - •RT fatigue crack path selects secondary phases/interface

References

- 1. R.O. RITCHIE. Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture. 100: 55–83, 1999.
- 2. ASTM E 647. Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM, Philadelphia, PA.

Acknowledgements

The authors acknowledge financial support from GE, in addition to supply of materials and many useful interactions with Drs. Bernard Bewlay, Laurent Cretegny, P.R. Subramanian, and R. DiDomizio.