Dynamic Compression Behavior of Zirconium and Iron-Based Bulk Metallic Glasses
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In the present study, the Split-Hopkinson Pressure Bar (SHPB) was employed to i N . 1500
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perform high strain-rate compression tests on a Zr-based bulk metallic glass H sG4  p  sG8 SG'“ . o = . N
(Li 1) for length-to-diameter (L/D) ratios varying from 0.5 to 2.0 and for both € of o -, Z o .
as-cast (i.e. fully amorphous) and annealed conditions. Ultra high-speed photography, g € 1000 "
scanning electron microscopy, and optical microscopy were utilized to examine the ®) 7 ook £
macroscopic and microscopic fracture surfaces. These fracture surfaces and the 8 5 ™ -
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corresponding stress-strain curves both exhibit evidence of the presence of stress 500 o se8 sée
concentrations. SHPB tests were also performed on an Fe-based BMG (SAM 1651) Shaie S e SO 4 peakstess from transmitied signal A a sc1z
that shows promise due to its higher hardness. Figure 3: Macroscopic fracture behavior of LM-1 4 Peakstress from specimen sirain gage Hp st e
(A) As-cast specimens with L/D of 1 or 2: Single dominant shear plane, fracture angle about 50°. (&) o£B)
From the results of the experiments, combined with finite element simulations, a novel (B) As-cast specimens with L/D of 0.5: Single shear plane, then crushing and consolidating behavior. Figure 7: Finite Element Simulations of New Experimental Setup Figure 12: Comparison of stresses and strain-rates from specimen and bars
experimental design has been developed to eliminate the effect of stress concentrations (C) Annealed Extensive regardless of L/D ratio. "
high " (A) homogeneous, uniaxial stress state and (B) negligible shear stress. (A) Stresses from specimen strain gage, transmitted signal are similar
on failure. Ultra peed phc reveals a significant change in the Inserts (B) Strain-rates from specimen strain gage, reflected signal are not similar (deformation of inserts)
fracture behavior of LM-1 and evidence of failure in the gage section of the specimen. r—— = =
Moreover, experiments were conducted using strain gages mounted directly to the as00f E “
specimen surface in order to determine accurately the stress-strain behavior of LM-1.
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0 (Frame 1): The initially undeformed specimen is shown. (Frame 9): During loading, two planes of shear soof S0F B oreckenal 1564  no specimen suan gage
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Figure 4: SHPB compression test on SAM 1651 (Fe-based BMG) ratio

(A) In-situ video: (Frame 1) shows the undeformed specimen, (Frame 6) initial failure at the insert-
specimen interface, (Frame 8) additional shear plane formation, and (Frame 10) fragmentation.
(B) Stress-strain curve at 1000/s. Maximum stress in Fe-based BMG: 2.7-3.3 GPa.
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Figure 13: Effect of L/D on Peak Stresses
(A) Peak stress appears to be independent of L/D ratio
(B) Comparison of results with previous work performed by Bruck (1994)

SUMMARY

» The as-cast LM-1 fails via shear band formation and slip; the
annealed LM-1 fails via extensive fragmentation.

» Finite element simulations show a non-uniform stress state due
to stress concentrations at specimen-bar interface.

» A new experimental design has been developed to provide a
uniform stress state in the specimen.
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Figure 1: Properties and Applications
(A) BMGs exhibit very high strength and elastic strain compared to other engineering materials.
(B) Potential applications taking advantage of unique properties of BMGs

OBJECTIVES

» Amorphous LM-1

Figure 9: Evolution of stresses in New Experimental Setup

io, ing, i Finite element simulations reveal equilibrium is reached well before specimen failure. = Failure occurs in the gage section of the specimen. _
» Annealed LM-1 * [Experment sGo12 = Equilibrium conditions are not compromised because of new inserts.
= Promote fragmentation P (A) Lo=10 (B) = Strain gage experiments reveal constant strain-rate and no effect of
» Fe-based BMG (SAM 1651) ol R L/D ratio on peak stress of LM-1. ) .
: . : i M = Stress from transmitted signal and specimen strain gage are similar.
= Exceptional hardness (13 GPa), more extensive fragmentation ey N . . P
s = Stress from reflected signal and specimen strain gage are not similar.
ES § onl Linear fit = Due to deformation of the new inserts
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Figure 5: Finite Element Simulation of Experiments spost 1. Telford, M. (2004). Materials Today 7, 36-43.
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Figure 2: (A) Schematic and (B) picture of SHPB, (C) high-speed camera Figure 6: Novel Experimental Setup, including (A) schematic and (B) actual inserts. Strain



