
Energy-efficient Autonomic Offloading in Mobile Edge Computing

Changqing Luo
Dept. of Electrical Engineering & Computer Science

Case Western Reserve University
Cleveland, OH 44106

Email: cxl881@case.edu

Sergio Salinas
Dept. of Electrical Engineering & Computer Science

Wichita State University
Wichita, KS 67260

Email: salinas@cs.wichita.edu

Ming Li
Dept. of Computer Science & Engineering

University of Nevada, Reno
Reno, NV 89557

Email: mingli@unr.edu

Pan Li
Dept. of Electrical Engineering & Computer Science

Case Western Reserve University
Cleveland, OH 44106

Email: lipan@case.edu

Abstract—The booming growth and popularity of mobile de-
vices have led to the surge of various mobile applications.
Many mobile applications, such as online video, gaming, are
essentially computation-intensive, and hence can quickly de-
plete mobile devices’ battery energy. To address this issue,
academia and industry have proposed mobile edge computing
(MEC) that can enable mobile devices to automatically offload
computations to the edge servers located within the radio
access networks of cellular operators. However, energy-hungry
wireless communications incur extra energy consumption that
may offset the energy saving due to computation offloading.
To this end, we design an energy-efficient autonomic offloading
scheme by jointly considering the physical layer design and ap-
plication running latency. Specifically, we first mathematically
model the energy consumption of a mobile application in MEC
environment by taking into account the energy consumption
incurred by the interactions among the tasks for the same
application, which is largely ignored by previous studies. Then,
we identify task execution flows based on a task interaction
matrix, and formulate the maximum of the task flow’s latencies
as the application’s latency. Finally, we formulate an energy-
efficient offloading problem, which is generally NP-hard, and
develop an efficient heuristic method to solve the problem. We
present extensive simulation results to show that our proposed
scheme can achieve significant reduction (up to 20% around)
in energy consumption compared with previous schemes.

1. Introduction

The booming growth and popularity of mobile devices
like smartphones and tablets have resulted in the surge
of various mobile applications. Many mobile applications
like online video, virtual reality, and interactive gaming
are typically computation-intensive, thus resulting in very
high energy consumption [1]. Mobile users tend to enjoy
such mobile applications much longer and more often than

before, which can deplete their mobile devices’ battery
energy very quickly.

To overcome this problem, industry and academia have
recently proposed mobile edge computing (MEC) which en-
ables mobile devices to automatically offload computations
to the edge servers located within the radio access networks,
instead of the core network, of cellular operators [2]. In
MEC, mobile devices may reduce their energy consumption
and in the meanwhile experience lower latency compared
with that in cloud computing.

However, we notice that wireless communications are
energy-hungry. Thus, outsourcing computations to edge
servers can incur extra energy consumption due to data
transmission over wireless links [3], which may even offset
the energy saving due to computation offloading. In par-
ticular, a mobile application is generally composed of a
number of tasks. Some of them are computation-intensive
but data-light, while others may be computation-light but
data-intensive [4]. A mobile device consumes a huge amount
of energy when it locally processes computation-intensive
but data-light tasks, or offloads computation-light but data-
intensive tasks to edge servers. Therefore, when designing
our energy-efficient autonomic offloading scheme, we need
to carefully determine which tasks should be offloaded to
edge servers.

Some previous works have attempted to reduce the en-
ergy consumption of offloading computations in MEC. Chen
et al. [1] study a multi-user computation offloading problem
in a multi-channel wireless interference environment. The
distributed computation offloading decision-making problem
is formulated as a multi-user computation offloading game.
Zhang et al. [5] develop an energy-efficient computation
offloading mechanism for MEC in 5G heterogeneous net-
works. Sardellitti et al. [6] propose to reduce the energy
consumption by jointly considering the radio resources and
computational resources. Mao et al. [3] exploit renewable
energy to help reduce the energy consumption of mobile
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devices. However, such works have not considered the in-
fluence of physical-layer design like the adaptive modulation
and coding schemes.

In this paper, we design an energy-efficient autonomic
offloading scheme that can automatically offload computa-
tional tasks to edge servers. Specifically, we aim to mini-
mize the total amount of energy consumption of a certain
application running on a mobile device. In particular, we
notice that an application is usually composed of a number
of computation tasks, some of which are dependent on
data input from others. Energy consumption due to task
interactions has been largely overlooked in previous studies.
Thus, in this study, we consider that the energy consumption
of an application on a mobile device is incurred by local task
computation, wireless communications in task offloading,
and wireless communications in task interactions. Moreover,
considering that the physical layer design like the adaptive
modulation and coding (AMC) scheme and radio resources
allocation has great impact on energy consumption of of-
floading transmission [7], we also investigate the physical
layer design in our proposed scheme. In addition, due to
mobile users’ quality of experience (QoE) demand, we
consider a constraint on the latency of a mobile application.
Consequently, we formulate the energy-efficient autonomic
offloading problem as a joint physical layer design and com-
putation task assignment problem with constrained latency
and limited radio resources. We then solve this problem
by developing a heuristic algorithm. Finally, we show by
extensive simulation results that the proposed scheme can
achieve significant reduction in energy consumption.

The key contributions of this paper are summarized as
follows:

1) We design an energy-efficient autonomic offloading
scheme for MEC by jointly considering physical
layer design and application latency, which can
achieve up to 20% around reduction in energy
consumption compared with previous schemes.

2) We develop three energy consumption models for
task computation, offloading transmission, and task
interaction, respectively, the last of which is largely
ignored by previous studies.

3) We construct a directed graph based on a task
interaction matrix to identify task execution flows,
and in turn formulate the application latency.

4) We develop an efficient heuristic algorithm to solve
the formulated optimization problem.

The rest of this paper is organized as follows. In Section
2, we describe a mobile application model and mobile edge
computing framework. Section 3 presents the mathematical
energy consumption models for task computation, task of-
floading, and task interaction, respectively. Section 4 details
the formulation of the energy-efficient autonomic offload-
ing problem and the solution to the formulated problem.
We present the simulation results in Section 5, and finally
conclude this paper in Section 6.

2. System Model

In this paper, we consider a typical MEC framework as
shown in Fig. 1, where a mobile device offloads parts of an
application to an edge server via wireless communications.

Figure 1. The MEC framework.

2.1. Mobile Application Model

In practice, a mobile device runs applications in the
granularity of computing units, i.e., computation tasks. Sup-
pose that a certain application running on a mobile de-
vice is composed of N computation tasks represented by
N = {1, · · · , i, · · · , N}, where i denotes task i that is
usually defined by a 2-tuple < Li, Di >. Here Li, i.e.,
the workload, is the number of CPU cycles and Di, i.e., the
data size, is the number of bits. Both Li and Di are typically
used to represent the computation required to complete task
i. The relationship between them is that for a specific data
size, its corresponding workload is a random variable with
an empirical distribution [8].

In particular, to run an application, some computation
tasks are often dependent on data input from others, which
is called as task interactions [9]. Let Bint = [bi′ ,i]N×N

denote a matrix indicating whether task interaction occurs
between two tasks, where bi′ ,i, a binary variable, indicates

whether task interaction occurs between tasks i
′

and i.
bi′ ,i = 1 implies that task i needs data from task i

′
. It

is noteworthy that we set bi′ ,i = 0 when i = i
′
. The

computation due to task interaction is also represented by a
2-tuple < Li′ ,i, Di′ ,i >, where Li′ ,i denotes the additional
workload that needs to be processed by task i and Di′ ,i is

the additional data bits that needs to be sent from tasks i
′

to i.

2.2. Mobile Edge Computing Framework

In MEC, mobile devices and edge servers execute tasks
locally and remotely, respectively. In this paper, we consider
virtual machines as computational resources that are used
to execute tasks [10] and particularly one virtual machine is
only able to execute one task at a time.

For a specific application running on a mobile device, the
mobile device needs to conduct the autonomic scheduling
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for task offloading and transmit the computation tasks to be
executed remotely to the edge servers located within radio
access networks. Let ai be a binary variable to indicate
where task i is executed. ai = 0 means that task i is executed
remotely and ai = 1 implies that task i is processed locally.
We represent the number of tasks to be executed locally by
Nmd and remotely by Ncc, respectively, and we have

Nmd =

N∑

i=1

ai, and Ncc =

N∑

i=1

āi, (1)

where āi = 1− ai.

Figure 2. A simplified network scenario for offloading transmission.

To offload computation tasks to the edge servers, wire-
less communications need to be used in MEC, as shown
in Fig. 2. We notice that wireless communications are also
energy-hungry. The energy consumption of wireless com-
munications usually depends on physical layer design, i.e.,
the AMC rate and the radio resources (i.e., transmission
power and bandwidth) at the physical layer. However, in
wireless communications, the AMC rate and the radio re-
sources are usually limited. In the following, we show the
constraints on AMC rate, transmission power, and transmis-
sion bandwidth, respectively.

Due to the capability of mobile devices, the AMC rate
is constrained. Let ρmax denote the maximal AMC rate that
a mobile device can provide. Thus, to offload computation
task i and the additional computation due to task interaction
between tasks i

′
and i, the used AMC rates need to satisfy:

0 ≤ ρi, ρi′ ,i ≤ ρmax, (2)

where ρi is the AMC rate for offloading computation task
i and ρi′ ,i is the AMC rate for offloading the additional

computation incurred by task interaction between tasks i
′

and i. On the other hand, due to the essentially limited radio
resources in wireless networks, the transmission power and
bandwidth are constrained as well. Moreover, due to the
features of radio links, the computation tasks to be offloaded
or those involved in task interaction share the transmission
bandwidth offered by a wireless link and the transmission
power provided by a base station or a mobile device. We
consider that all task transmissions are allocated the identical
radio resources. In addition, to avoid transmission collision,
the number of virtual machines at a mobile device, denoted
by Nw, is equal to the number of task execution flows.
Let Pmax denote the maximum transmission power, and

Bmax the maximum transmission bandwidth. Therefore, for
each wireless channel, the maximum transmission power is
P vm
max = Pmax

Nw
, and the maximum transmission bandwidth

Bvm
max = Bmax

Nw
. The transmission power for offloading task

i and the computation incurred by task interaction between
tasks i

′
and i are denoted by Pi and Pi′ ,i, respectively, and

we have

0 ≤ Pi, Pi′ ,i ≤ P vm
max. (3)

Similarly, the transmission bandwidth for offloading task i
and the additional computation for task interaction between
tasks i

′
and i are denoted by Bi and Bi′ ,i, respectively, and

we have

0 ≤ Bi, Bi′ ,i ≤ Bvm
max. (4)

3. Modeling and Analysis of Mobile Device’s
Energy Consumption

In this section, we present the energy consumption
models for task computation, offloading transmission over
wireless connections, and task interaction, respectively.

3.1. Energy Consumption for Task Computation

The amount of energy consumption incurred by execut-
ing computation tasks locally depends on the workload and
the used clock frequency of a CPU (central processing unit).
Particularly, the energy consumption for each operation at
a virtual machine is proportional to f2 [11], where f is
the clock frequency of the virtual machine. Thus, we can
calculate the energy consumption as follows:

f(Li, f) = kdev · f3 · t(Li, f), (5)

where kdev is the energy coefficient depending on the chip
architecture [12], and t(Li, f) is the execution time that can
be given by

t(Li, f) =
Li

f
. (6)

3.2. Energy Consumption for Offloading Transmis-
sion

When task i is offloaded to the edge servers over a
wireless link, wireless communications consume the energy.
To find the energy consumption incurred by offloading
transmission, we first obtain the bit error rate suffered by
the wireless link as follows [13]:

BERi = k1 · exp(− k2γiPi

2ρi − 1
), (7)

where BERi is the bit error rate, γi is the signal-to-noise
ratio (SNR) of the wireless link used for transmitting task i,
ρi is the used AMC rate determined by the modulation rate
ρmod
i and the channel coding rate ρcodi , i.e., ρi = ρmod

i ·ρcodi
[13], and k1 and k2 are constants related to the specific
constellations and codes, respectively.
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Subsequently, we can obtain the corresponding frame
error probability, denoted by FEi, as follows:

FEi = 1− (1−BERi)
Lfr , (8)

where Lfr is the length of a frame.
Due to the frame error, a frame possibly needs to be

retransmitted. In a basic ARQ scheme, a source successfully
transmits a frame only if the number of retransmission
trials reaches a pre-defined threshold Nre. Thus, the ex-
pected number of transmissions for one frame, denoted by
Nex(ρi, Pi), can be derived as follows:

Nex(ρi, Pi) = {1 + 2FEi + · · ·+Nre · FENre−1
i }(1− FEi)

+(Nre + 1) · FENre
i = (1− FENre+1

i )/(1− FEi).

(9)

Therefore, given ρi, Pi, and Bi for transmitting
task i, the expected transmission time, denoted by
ttr(Di, ρi, Pi, Bi), can be approximated by

ttr(Di, ρi, Pi, Bi) ≈
Di

(Lfr − Lfrh)
· Lfr ·Nex(ρi, Pi)

R(ρi, Bi)
,

(10)
where Lfrh is the length of a frame header and R(ρi, Bi) is
the transmission rate that is determined by the AMC scheme
and the transmission bandwidth, i.e., we have R(ρi, Bi) =
ρi ·Bi. Finally, we can find the amount of energy consump-
tion, denoted by ftr(Di, ρi, Pi, Bi), as follows:

ftr(Di, ρi, Pi, Bi) = Pi · ttr(Di, ρi, Pi, Bi). (11)

3.3. Energy Consumption for Task Interaction

Some of computation tasks forming an application often
need to data input from others, i.e. task interaction, which
incurs the additional energy consumption at the mobile
device. The amount of energy consumption incurred by
task interaction between two tasks usually depends on the
locations where two tasks are. Specifically, if both tasks are
executed locally, or if a task at a mobile device requests
data input from a task in the edge servers, the energy
consumption is incurred by conducting task computation
locally. Moreover, if a task in the edge servers requests
data input from a task at the mobile device, the energy
consumption is incurred by wireless communications.

Based on the above analysis, we calculate the energy
consumption for task interaction in the following. When
task i is executed at the mobile device and needs data input
from task i

′
, the amount of energy consumption, denoted by

Emd
i′ ,i , can be calculated as Emd

i′ ,i = f(Li′ ,i, fmd), where fmd

is the clock frequency of a virtual machine at the mobile
device. When task i is executed in the edge servers and
requests data from task i

′
executed at the mobile device,

the amount of energy consumption, denoted by Etr
i′ ,i, can

be calculated as Etr
i′ ,i = ftr(Di′ ,i, ρi′ ,i, Pi′ ,i, Bi′ ,i). When

two tasks are both located in the edge servers, the mobile
device has no energy consumption. Thus, the amount of

energy consumption incurred by task i interacting with all
other tasks, denoted by Ett

i , can be calculated as follows:

Ett
i =

N∑

i′=1

[Emd
i′ ,i · ai + Etr

i′ ,i · (ai′ · āi)]. (12)

4. Energy-efficient Task-level Offloading
Scheme

In this section, we formulate the energy-efficient auto-
nomic offloading problem as a mobile device’s energy con-
sumption minimization problem. Particularly, this optimiza-
tion problem is subject to AMC scheme, radio resources,
and user-defined application latency. To solve the formu-
lated problem, we propose an efficient heuristic method. In
what follows, we describe the problem formulation and the
solution to the formulated problem, respectively.

4.1. Problem Formulation

Our objective is to minimize a mobile device’s total
energy consumption when it runs a certain application in
MEC. In particular, we take into account the energy con-
sumption for task computation, wireless communications
in task offloading, and wireless communications in task
interaction. Moreover, we explore physical layer design and
computation task assignment when we optimize the mobile
device’s energy consumption. In addition, we consider the
application running latency constraint as the user-defined
QoE demand.

If task i is executed locally, the amount of energy
consumption, denoted by Emd

i , is Emd
i = f(Li, fmd).

Moreover, if task i is offloaded over a wireless connection
to the edge servers, the amount of energy consumption,
denoted by Etr

i , is Etr
i = ftr(Di, ρi, Pi, Bi). Thus, we can

obtain the total amount of energy consumption incurred by
task i, denoted by Ei, as follows:

Ei = Emd
i · ai + Etr

i · āi + Ett
i . (13)

Finally, we can find the total amount of energy consumption
at the mobile device for running an application, denoted by
E, as follows:

E =

N∑

i=1

Ei. (14)

On the other hand, to satisfy a mobile user’s QoE de-
mand, a certain application needs to be executed completely
before a user-defined latency T . To characterize the appli-
cation running latency, we first construct a directed graph,
as shown in Fig. 3, indicating the task execution sequence,
where nodes present the tasks and edges indicate the task
execution order. Note that this graph can be constructed by
matrix power operation Bn

int (n ∈ {1, 2, · · · , N}), where
n is the number of power, indicating the number of hops
from one node arriving at another one. Thus, the applica-
tion running latency can be obtained by finding each task
execution flow’s latency. Specifically, we denote the set of
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task execution flows by F , and have Nw = |F|. Let Ai,Fj

be a binary variable, and Ai,Fj
= 1 indicates that task i is

on task execution flow Fj (Fj ∈ F).

Figure 3. An example of a directed graph constructed from a task interac-
tion matrix.

To find each task execution flow’s running latency, we
first derive the time spent for executing a task. For task i on
task execution flow Fj , its processing time, denoted by ti,
depends on the task’s and other interacting tasks’ locations.
Note that, if both tasks are executed at a mobile device or in
the edge servers, their communication delay is negligible.

Specifically, we consider ti in following four folds. First,
if task i is running by a virtual machine at a mobile device,
tmd
i can be calculated as tmd

i = t(Li, fmd). Second, if
task i is running by a virtual machine in the edge servers,
the processing time includes the transmission delay over a
wireless channel and the remote execution time. Thus, we
can calculate tcci as tcci = ttr(Di, ρi, Pi, Bi) + t(Li, fcc),
where fcc is the clock frequency of a virtual machine
in the edge servers. Third, if task i at a mobile device
interacts with task i

′
in the edge servers, the processing

time consists of the transmission delay over the wireless
channel and the local execution time. Hence, we can derive
tmc
i′ ,i as tmc

i′ ,i = ttr(Di′ ,i, ρi′ ,i, Pi′ ,i, Bi′ ,i) + t(Li′ ,i, fmd).

Finally, if task i in an edge server interacts with task i
′

at a mobile device, the processing time is composed of
the transmission delay over the wireless channel and the
remote execution time. Therefore, we can calculate tcm

i′ ,i as

tcm
i′ ,i = ttr(Di′ ,i, ρi′ ,i, Pi′ ,i, Bi′ ,i) + t(Li′ ,i, fcc).

Based on the above discussion, we are able to calculate
task i’s total processing time, denoted by ti, as follows:

ti =

N∑

i′=1

[tmc
i′ ,i · (ai · āi′ ) + tcm

i′ ,i · (āi · ai′ )] · bi′ ,i+

tmd
i · ai + tcci · āi.

(15)

Subsequently, we can obtain the task execution flow latency
along task execution flow Fj , denoted by TFj

, as follows:

TFj =

N∑

i=1

ti ·Ai,Fj . (16)

Here, TFj
is bounded by T , i.e.,

0 < TFj
< T. (17)

Therefore, we can formulate the energy-efficient auto-
nomic offloading problem as follows:

MCO: min E,

s.t. Eqs. (2)− (4), (17), (18)

ai, ai′ ∈ {0, 1},
i, i

′ ∈ N ,

Fj ∈ F .

4.2. The Solution to The Energy-Efficient Offload-
ing Problem

We can see that MCO is a quadratically constrained
mixed-integer quadratic programming problem, which is
generally NP-hard [14]. To efficiently find a solution to
MCO, we propose an efficient heuristic algorithm. Specif-
ically, we first randomly fix the binary variables ai’s to
reformulate MCO as MCO-PHY that is solved by em-
ploying a KKT Lagrangian multiplier method. Then, we fix
the physical layer parameters by using the derived optimal
physical layer parameters to reformulate MCO as MCO-
BV that can be solved by the off-the-shelf DP solver. In the
following, we describe our proposed algorithm.

To find the solution to MCO, we first randomly fix the
binary variables ai’s to reformulate MCO as the transmis-
sion energy consumption optimization problem, i.e., MCO-
PHY, as follows:

MCO-PHY: min Efb,

s.t. Eqs. (2)− (4), (17), (19)

i, i
′ ∈ N ,

Fj ∈ F ,
where Efb represents the total amount of energy consump-
tion in MCO-PHY.

To solve MCO-PHY, we employ KKT Lagrangian mul-
tiplier method that extends the unconstrained first-order
condition to the case of inequality constraints. To setup
the KKT, we build up the Lagrangian by adding to Efb

inequality constraints each with a Lagrange-like multiplier
[15]. The KKT Lagrangian is expressed as Eq. (20). In Eq.
(20), λFj

, αi, αi′ ,i, βi, βi′ ,i, εi, and εi′ ,i are the Lagrangian
multipliers. By solving this equation, we can find the optimal
parameters, i.e., ρ∗i , ρ∗

i′ ,i, P
∗
i , P ∗

i′ ,i, B
∗
i , and B∗

i′ ,i.

Then, we fix the physical layer parameters that were
derived by solving MCO-PHY to reformulate MCO as
MCO-BV:

MCO-BV: min Efp,

s.t. Eq. (17),

ai, ai′ ∈ {0, 1}, (21)

i, i
′ ∈ N ,

Fj ∈ F ,
where Efp represents the total amount of energy consump-
tion in MCO-BV.
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L(ρi, ρi′ ,i, Pi, Pi′ ,i, Bi, Bi′ ,i, λFj , αi, αi′ ,i, βi, βi′ ,i, εi, εi′ ,i) = Efb +

|F|∑

Fj=1

λFj (

N∑

i=1

tiAi,Fj − T ) +

N∑

i′=1

N∑

i=1

αi′ ,i(ρi′ ,i − ρmax)

+

N∑

i=1

αi(ρi − ρmax) +

N∑

i=1

βi(Pi − P vm
max) +

N∑

i′=1

N∑

i=1

βi′ ,i(Pi′ ,i − P vm
max) +

N∑

i=1

εi(Bi −Bvm
max) +

N∑

i′=1

N∑

i=1

εi′ ,i(Bi′ ,i −Bvm
max).

(20)

We can see that MCO-BV is a quadratically constrained
binary quadratic programming problem, which is generally
NP-hard [16]. Generally, such a problem can be solved by
using the off-the-shelf DP solver [17]. Thus, we find the
solution, i.e., ai’s, to MCO-BV by DP solver in this paper.

To sum up, we solve MCO by separately solving MCO-
PHY and MCO-BV iteratively until the optimal physical
layer design and task assignment policy are obtained.

5. Performance Evaluation

In this section, we present the simulation settings and
the simulation results, respectively.

5.1. Simulation Settings

To validate the efficacy of the proposed scheme, we
carry out extensive simulations. Simulations are conducted
by using CPLEX 12.4 and Java on a Laptop with a dual-
core 2.7 GHz CPU and 8GB RAM memory. We aim at
demonstrating the performance improvement over other two
previous schemes (i.e., one without considering task inter-
action and the other without considering the physical layer
design), and showing the impact of physical layer design.

In the simulations, we consider a square network of
area 500m × 500m, with a base station located at the
center. We assume that the base station can provide mobile
devices with the transmission bandwidth of 60 MHz and
the transmission power of the base station is 1 W . Since an
edge server located in this access network is very close to
the base station, we set the transmission delay is zero in the
simulations.

Moreover, we set the parameters of the wireless link
as follows. First, we set the transmission power of a mo-
bile device as 400 mW . Then, to evaluate the impact of
the physical layer design on energy consumption, we use
quadrature PSK (QPSK), eight PSK (8PSK), and 16 QAM
as the modulation scheme and 3/4 Turbo code as the coding
scheme. The maximal AMC rate is 3 and the SNR is varied
within the range [0dB, 30dB]. At last, we set the parameters
of the data frame as follows: the maximum length of a frame
is 1120 bits and the maximal number of retransmissions for
each frame is 5.

Moreover, we consider an application that is composed
of 400 tasks. For simplicity, each task has the same profile,
i.e., D = 600 bytes and L obeying the Gaussian distribution
with (6000, 100). Besides, the sign indicating the interaction

between two tasks, bi′ ,i (for each i, i
′ ∈ N , except i = i

′
), is

randomly set as 1 or 0. When bi′ ,i = 1, the corresponding
Di′ ,i = 60 bytes and Li′ ,i is considered as a Gaussian
distribution with (600, 10). Besides, we assume that this
application has to be completed within 200 ms.

The mobile device has to offload its computations to
an edge server via wireless communications. The clock
frequencies of the mobile device and the edge serve are
set as fmd = 10 MHz and fcc = 50 MHz, respectively.
The energy coefficient, kdev , is 0.344 · 10−9 [18].

5.2. Performance Comparison

Fig. 4 shows the comparison of the energy consumption
at the mobile device among our proposed scheme, the one
without considering task interaction, and the one without
considering physical layer design. Besides, this figure also
demonstrates the impact of the application running latency,
the task data size, and the data size of the task interaction
on the energy consumption.

Specifically, Fig. 4(a) illustrates the mobile device’s
energy consumption as the predefined application running
delay changes. From this figure, we can see that the mobile
device’s energy consumption decreases with the increase in
the application execution deadline. The reason is that some
tasks may cost high energy consumption and low execution
delay at the mobile device but low energy consumption and
high execution delay for remote execution. Thus, extending
the application running delay makes these tasks can be
offloaded into the edge servers in order for the further energy
consumption reduction. Moreover, the proposed scheme can
achieve the lowest energy consumption. For example, when
the application running latency is 300 ms, the amounts
of energy consumption for the proposed scheme, the one
without considering task interaction, and the one without
considering physical layer design are 4100 J, 5200 J, and
6900 J around, respectively. We can see the the reduction
in energy consumption is up to 20% around. This means
that task interaction and physical layer design do need to be
carefully considered in the energy consumption minimiza-
tion. Furthermore, the scheme considering physical layer
design but without task interaction can lead to higher energy
consumption than the proposed scheme. This is because task
interaction can affect the task offloading policy. As a result,
the mobile device’s energy consumption is increased. In
addition, the scheme considering task interaction but without
physical layer design has the highest energy consumption.
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(a) The execution deadline.
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(b) The data size of each task.
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(c) The exchanged data size for task interaction.

Figure 4. Performance improvement by the proposed scheme.

This curve indicates that the physical layer design has sig-
nificant impact on the mobile device’s energy consumption.

Fig. 4(b) shows mobile device’s energy consumption as
the data size of each task changes. We find that the mobile
device’s energy consumption is increasing with the increase
in data size, and especially the growth rate is monotonously
increasing. The reasons are as follows. Firstly, the increase
in data size of each task definitely results in rising en-
ergy consumption; Secondly, the physical layer settings for
wireless communications have to be adjusted to execute the
tasks within their predefined execution deadline, and thus the
energy consumption may be raised. Third, since the energy
consumption for offloading transmission is increasing, the
task assignment policy would be changed to minimize the
total energy consumption. Moreover, from Fig. 4(b), we can
also see that three curves corresponding to the three schemes
has the same relationship as shown in Fig. 4(a). Thus, we
have the insight that the energy consumption for offloading
transmission can greatly affect the task assignment policy.

Fig. 4(c) shows mobile device’s energy consumption as
the data size of task interaction rises. From Fig. 4(c), we
can notice the similar curves to that in 4(b). The reason is
also the same as that of increasing the data size. From this
figure, we can see that the task interaction has a significant
impact on the task assignment policy.

5.3. Effects of Physical Layer Design Parameters
on Energy Consumption

Fig. 5 show the impact of the AMC scheme, trans-
mission power, and transmission bandwidth on the energy
consumption due to wireless communications.

Specifically, Fig. 5(a) demonstrates the energy consump-
tion under different AMC schemes as the channel gain
increases. From this figure, we can see that the three curves
under the different AMC schemes have the similar trends.
Specifically, the energy consumption approaches a constant
when the channel condition is bad. This is because no infor-
mation can be transmitted successfully to the receiver and
the energy consumption is caused due to the transmission
attempts. Then, a lower-order AMC scheme can first achieve
a sharp increase in energy consumption as the channel

gain increases, then the sharp decreasing, and finally the
stable curve. The reason is that some portion of information
can be sent to the receiver but the average number of
retransmissions are very high. As a consequence, much
more energy is consumed. Another observation is that the
energy consumption decreases as the channel gain increases.
This is because the lower BER leads to the lower average
number of retransmissions, and thus the energy consumption
is decreasing. In particular, if the channel condition is very
good, the information can nearly be sent to the receiver
at a time. Thus, all AMC schemes can achieve the same
energy consumption. More importantly, this figure shows
us that AMC schemes at the physical layer have to be well
considered to minimize energy consumption.

Fig. 5(b) illustrates the energy consumption under dif-
ferent AMC schemes as transmission power increases. From
this figure, we can find that the energy consumption is in-
creasing as the transmission power increases. This is because
the increasing transmission power would potentially lead to
the growing energy consumption. Moreover, the lower-order
AMC scheme has the lower energy consumption. The reason
is that the lower-order AMC scheme can achieve the lower
bit error rate and then the lower energy consumption when
the channel is at a certain state. This figure shows us that
whether the increase in the transmission power may lead to
the increasing energy consumption depends on the channel
condition.

Fig. 5(c) depicts the energy consumption under differ-
ent AMC schemes as the available bandwidth increases.
We can notice that the energy consumption is degrading
with the increase in the transmission bandwidth. The more
transmission bandwidth, the lower transmission delay. Thus,
the energy consumption may be reduced. Moreover, similar
to the curves in Fig. 5(b), the lower-order AMC scheme
can achieve lower energy consumption. This figure gives us
an insight that the transmission bandwidth has a significant
influence on the energy consumption.

6. Conclusions

In this paper, we have studied an energy consumption
minimization problem for autonomic offloading in MEC. To
address this problem, we have designed an energy-efficient
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(a) Energy consumption vs. modulation and coding
schemes.
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(b) Energy consumption vs. transmission power.
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(c) Energy consumption vs. available bandwidth.

Figure 5. Effects of physical layer settings on the energy consumption.

offloading scheme by jointly considering physical layer de-
sign and application running latency. Specifically, we first
have mathematically modeled the energy consumption of a
mobile application by considering the energy consumption
incurred by the interactions among the tasks for the same
application. We then have constructed a directed graph
based on a task interaction matrix by calculating k-hop
connectivity to identify task execution flows, and formulated
each task execution flow’s latency. Finally, we have formu-
lated the energy consumption minimization problem as a
quadratically constrained integer-mixed quadratic program-
ming problem, which is generally NP-hard. To solve the
formulated problem, we have proposed an efficient heuristic
method. To validate the efficacy of the proposed scheme,
we have offered extensive simulation results to show the
significant reduction in energy consumption.

References

[1] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM Trans.
Networking, vol. 24, pp. 2795–2808, Oct. 2016.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–
646, Oct. 2016.

[3] Y. Mao, J. Zhang, and K. Lataief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Select. Areas Commun., vol. PP, pp. 1–16, Sep. 2016.

[4] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? The bandwidth and energy costs of mobile cloud computing,”
in Proc. IEEE INFOCOM’13, (Turin, Italy), pp. 1285–1293, Apr. 14–
19 2013.

[5] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, S. Maharjan, and
Y. Zhang, “Energy-efficient offloading for mobile edge computing in
5g heterogeneous networks,” IEEE Access, vol. 4, pp. 5896–5907,
Aug. 2016.

[6] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimisation of
radio and computational resources for multiple mobile-edge comput-
ing,” IEEE Trans. Signal Inf. Process. Netw., vol. 1, pp. 89–103, Jun.
2015.

[7] C. Luo, L. T. Yang, P. Li, X. Xie, and H. Chao, “A holistic energy
optimization framework for cloud-assisted mobile computing,” IEEE
Wireless Commun. Mag., vol. 22, pp. 118–123, Jun. 2015.

[8] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” in Proc. ACM SIGMETRICS’01, (Cambridge,
MA, USA), pp. 50–62, Jun. 10–20 2001.

[9] J. A. Stankovic and K. Ramamritham, “The spring kernel: A new
paradigm for real-time systems,” IEEE Software, vol. 8, pp. 62–72,
May 1991.

[10] M. Shiraz, S. Abolfazli, Z. Sanaei, and A. Gani, “A study on virtual
machine deployment for application outsourcing in mobile cloud
computing,” The Journal of Supercomputing, vol. 63, pp. 946–964,
Mar. 2013.

[11] J. M. Rabaey, “Digital integrated circuits,” Prentice Hall, 1996.

[12] T. Burd and R. Broderson, “Processor design for portable systems,”
Journal of VLSI Singapore Process, vol. 13, pp. 203–222, Aug. 1996.

[13] X. Wang, G. Giannakis, and A. Marques, “A unified apporach to
QoS-guaranteed scheduling for channel-adaptive wireless networks,”
Proc. of the IEEE, vol. 95, pp. 2410–2431, Dec. 2007.

[14] A. M. Geoffrion, “Generalized bender’s decomposition,” Journal of
Optimal Theory and Application, vol. 10, pp. 237–260, 1972.

[15] H. W. Kuhn and A. W. Tucher, “Nonlinear programming,” in Proc.
the Second Berkeley Symposium on Math. Stat. and Prob., J. Neyman,
ed.,, (University of California), 1951.

[16] C. Audet, P. Hansen, B. Jaumard, and G. Savard, “A branch and
cut algorithm for nonconvex quadratically constrained quadratic pro-
gramming,” Math. Program., Springer, vol. 87, no. 1, pp. 131–152,
2000.

[17] “IBM ILOG CPLEX Optimizer,” http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer.

[18] W. Zhang, Y. Wen, K. Guan, D. Lilper, H. Luo, and D. O. Wu,
“Energy-optimal mobile cloud computing under stochastic wireless
channel,” IEEE Trans. Wireless Commun., vol. 12, pp. 4569–4581,
Sep. 2013.

588


