
Efficient Privacy-preserving Outsourcing of Large-scale QR Factorization

Changqing Luo
Dept. of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, OH 44106

Email: cxl881@case.edu

Kaijin Zhang
Dept. of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, OH 44106

Email: kxz138@case.edu

Sergio Salinas
Dept. of Electrical Engineering and Computer Science

Wichita State University
Wichita, KS 67260

Email: salinas@cs.wichita.edu

Pan Li
Dept. of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, OH 44106

Email: lipan@case.edu

Abstract—Modern organizations have collected vast amounts
of data created by various systems and applications. Scientists
and engineers have a strong desire to advance scientific and
engineering knowledge from such massive data. QR factor-
ization is one of the most fundamental mathematical tools
for data analysis. However, conducting QR factorization of
a matrix requires high computational complexity. This incurs
a formidable challenge in efficiently analyzing large-scale data
sets by normal users or small companies on traditional resource
limited computers. To overcome this limitation, industry and
academia propose to employ cloud computing that can offer
abundant computing resources. This, however, raises privacy
concerns because users’ data may contain sensitive information
that needs to be hidden for ethical, legal, or security reasons.
To this end, we propose a privacy-preserving outsourcing algo-
rithm for efficiently performing large-scale QR factorization.
We implement the proposed algorithm on the Amazon Elastic
Compute Cloud (EC2) platform and a laptop. The experiment
results show significant time saving for the user.

1. Introduction

In recent years, we have been creating enormous
amounts of data in our daily life. International Data Corpo-
ration (IDC) has reported that the world created about 1.8
ZB (= 1021 Bytes) of data in 2011 [1], and predicts that
this figure will be at least doubled every other two years in
the near future. These data are produced by various systems
and applications, including power systems [2], intelligent
transportation systems [3], and e-commerce companies [4].

By analyzing such large-scale data, scientists and engi-
neers are able to better advance scientific and engineering
knowledge. For example, power engineers can find the op-
timal power flow by performing real-time analysis of the

This work was partially supported by the U.S. National Science Foundation
under grants CNS-1602172 and CNS-1566479.

huge amount of smart metering data in electric grids [5];
social scientists can study social interactions by analyzing
large volumes of records from smart transportation systems
[6]; and e-commerce companies are trying to provide cus-
tomers with better recommendations by analyzing billions
of product reviews [4].

We observe that QR factorization [7] is one of the most
fundamental mathematical tools for big data analysis. For
instance, in power systems, power engineers applied QR
factorization to estimate power system state in the presence
of bad data [8]. In e-commerce companies, marketing spe-
cialists employed QR factorization to analyze large data for
finding business trends and predicting forthcoming social
agendas [9]. More importantly, QR factorization is a very
popular tool for conducting singular value decomposition
(SVD) [10] and solving least squares problems [11] that
widely exist in real-world data analysis problems. Therefore,
we focus on large-scale QR factorization in this paper.

In the literature, researchers have developed several
methods to conduct QR factorization like Householder Re-
flection [12]. It has been shown that conducting QR fac-
torization on an m × n matrix by employing this method
requires O(m2n) computational complexity. Consequently,
users face a formidable challenge in computing large-scale
QR factorization on general-purpose computers.

So far, industry and academia have proposed to employ
cloud computing for large-scale computations. This is be-
cause the cloud is capable of providing an efficient and
economical way to analyze such massive data. Specifically,
a user with a general-purpose computer outsources his/her
computational tasks to the resource-rich cloud, and thus
enabling to solve the computation problems very quickly.
More importantly, the cloud offers on-demand services,
and requires no specific hardware and software from users.
However, adopting cloud computing raises privacy concerns.
To be more specific, the data implicitly contain users’ private
information. For example, we can find out customers’ energy

2017 IEEE Trustcom/BigDataSE/ICESS

2324-9013/17 $31.00 © 2017 IEEE

DOI 10.1109/Trustcom/BigDataSE/ICESS.2017.331

917

consumption patterns by analyzing energy customers’ meter
readings [13] and learn people’s daily live behaviors from
people’s intelligent transportation records [14]. Therefore,
to enable large-scale QR factorization, we need to design
a privacy-preserving outsourcing algorithm that is able to
protect users’ data privacy.

Some previous works have studied this privacy issue
raised by using the cloud, and design privacy-preserving out-
sourcing algorithms. Some of them propose to protect users’
data privacy by utilizing traditional cryptographic techniques
like homomorphic encryption. For example, Gennaro et al.
[15] develop a privacy-preserving outsourcing algorithm by
employing fully homomorphic encryption (FHE). Wang et
al. [16] develop a partial homomorphic encryption based
privacy-preserving outsourcing scheme for solving a linear
system of equations (LSEs). However, these schemes require
clients to perform expensive data pre-processing. Besides,
due to the expensive encryption/decryption operations, FHE
is inefficient for practical big data applications. On the
other hand, some other works consider employing linear
algebra operations to transform the data for protecting data
privacy. For instance, Salinas et al. devise privacy-preserving
outsourcing schemes for solving LSEs [17] and quadratic
programs (QP) [18], where the original problems are trans-
formed by efficient arithmetic and linear algebra operations.
However, the privacy-preserving outsourcing algorithm for
large-scale QR factorization has not well been studied so
far.

In this paper, we design an efficient and practical
privacy-preserving outsourcing algorithm for performing
large-scale QR factorization in the cloud environment.
Specifically, a user first conceals the original data by em-
ploying the privacy-preserving orthogonal matrix transfor-
mation and the privacy-preserving upper triangular matrix
transformation. Then, the cloud performs QR factorization
on the transformed matrix in a non-interactive way, and
outputs two factor matrices. At last, the user recovers the
correct results from the returned factor matrices through
multiplying them by the inverse of the random masking
matrices, respectively. In our proposed algorithm, the user
only performs operations with random sparse matrices when
decomposing an m×n matrix, resulting in the computational
complexity ofO(max{m2,mn}). Moreover, since the cloud
conducts QR factorization on the transformed matrices with-
out exchanging data with the user, the communication over-
head is very small.

We summarize our key contributions as follows.

1) We develop an efficient privacy-preserving out-
sourcing algorithm for large-scale QR factorization.

2) We develop three privacy-preserving matrix trans-
formations to transform an orthogonal matrix, an
upper triangular matrix, and a general matrix, re-
spectively.

3) The proposed privacy-preserving outsourcing QR
factorization algorithm requires computational
complexity of O(max{m2, mn}) at the user side,
and very low communication overhead between the

user and the cloud.
4) We implement the proposed algorithm on the Ama-

zon EC2 platform and a laptop. We find that our
proposed algorithm can significantly save the user’s
computing time.

The rest of this paper is organized as follows. In Section
2, we introduce the QR factorization and the system archi-
tecture. Section 3 describes the proposed privacy-preserving
matrix transformations. Section 4 details the proposed al-
gorithm for privacy-preserving outsourcing large-scale QR
factorization. Section 5 provides a thorough performance
analysis. We present the experimental results in Section 6,
and finally conclude the paper in Section 7.

2. Problem Formulation

In this section, we introduce the QR factorization and
the considered system architecture.

2.1. Householder based QR Factorization

QR factorization is to decompose a matrix with linearly
independent columns into a product of an orthogonal matrix
and an upper triangular matrix, i.e.,

A = Q×R, (1)

where A is an m× n (m ≥ n) full column rank matrix, Q
is an m ×m orthogonal matrix, and R is an m × n upper
triangular matrix. All the computations are conducted within
the group G, which is a sufficiently large multiplicative
subgroup of Z

∗
p where Z∗p = {z|1 ≤ z ≤ p − 1} and p

is a large prime. Besides, we consider that all the variables
are integer.

To find Q and R, we perform orthogonal transformations
on A. It is noteworthy that performing a QR factorization
by Householder Reflection and Givens Rotation requires the
same computational complexity. Here, we employ House-
holder Reflection whose process is as follows.

We denote matrix A as A = [u1, u2, · · · , un] where ui

(1 ≤ i ≤ n) is the ith column vector. Then, based on u1,
we derive its Householder transformation P1 as

P1 = I − 2u1u
T
1

||u1||22
, (2)

where P1 is a m×m symmetric orthogonal matrix and I is
an identity matrix. Subsequently, multiplying P1 by A, we
can have a new matrix, denoted by A1, as follows:

A1 = P1 ×A. (3)

Following the same process, we set u2 =
(0, a12,2, a13,2, · · · , a1m,2)

T , where a1i,j (i, j ∈ [1,m])
is the element in the ith row and jth column of A1.
Subsequently, we obtain the Householder transformation
P2 of u2, and then multiply P2 by A1 to get a new matrix,
denoted by A2, as follows:

A2 = P2 ×A1 = P2P1A.

918

����

���	
 ������

���	
 �����

������
�����

�����
 ����� �����
 ������
�������

������
�������

Figure 1. A privacy-preserving architecture for outsourcing large-scale QR
factorization.

We continue this process until it reaches the Householder
transformation Pm−1, which finally leads to R as follows:

R = Pm−1 · · ·P2P1A. (4)

In the meantime, Q can be obtained by

Q = P−1
1 P−1

2 · · ·P−1
m−1. (5)

2.2. System Architecture

We consider a two-party computing architecutre for
conducting large-scale QR factorization, as shown in Fig. 1.
One part is a resource-limited computer client who needs to
perform the QR factorization, and the other is the resource-
abundant cloud server which is able to offer on-demand
services to help complete large-scale QR factorization.

3. Privacy-preserving Matrix Transformations

In this section, we describe three privacy-preserving
matrix transformations used for protecting an upper trian-
gular matrix, an orthogonal matrix, and a general matrix,
respectively.

3.1. The Privacy-preserving Upper Triangular Ma-
trix Transformation

To protect the privacy of an upper triangular matrix,
we propose to multiply the matrix by a pseudorandom
upper triangular matrix. Specifically, we conceal matrix
R = (ri,j)1≤i≤m,1≤j≤n as follows:

R̂ = R× S, (6)

where S represents an n × n upper triangular matrix, and
its elements are determined by

si,j =

⎧⎨
⎩

di, for 1 ≤ i = j ≤ n,
di,j , for 1 ≤ i < j ≤ n
0, otherwise

. (7)

Each diagonal elements di ∈ G (1 ≤ i ≤ n) is determined
by a pseudorandom function Fo : {0, 1}ω × {0, 1}ω →
{0, 1}ω , i.e.,

di = Fo(ri, g), (8)

where ri is a random string and g is a constant one. The
off-diagonal values di,j ← {0, 1}k ∈ G (1 ≤ i < j ≤ n)
are set to arbitrary positive constants.

Thus, each non-zero element of matrix R̂, denoted by
r̂i,j (1 ≤ i ≤ j ≤ n), can be calculated as

r̂i,j = R(i, ·) · S(·, j) = ri,idi,j + ri,i+1di+1,j + · · ·
+ri,jdj . (9)

We denote the computation as

r̂i,j = MaskFo(ri, di,j , di+1,j , · · · , dj−1,j , ri,i, ri,i+1, · · · , ri,j).
(10)

3.2. The Privacy-preserving Orthogonal Matrix
Transformation

To protect the privacy of an orthogonal matrix, we
propose to multiply it by a random orthogonal matrix.
Specifically, we hide an m × m orthogonal matrix Q =
(qi,j)1≤i,j≤m by

Q̂ = O ×Q, (11)

where O = (oi,j)1≤i,j≤m denotes an m × m orthogonal
matrix.

To build the matrix O, we first generate an m×1 random
vector u with its elements ui ∈ G (for i ∈ [1,m]) is deter-
mined by a pseudorandom function Fo : {0, 1}ω × {0, 1}ω ,
i.e.,

ui = Fo(r̄i, g), ∀i ∈ [1,m], (12)

where r̄i is a random string and g is a constant one. Then,
we find O by employing the Householder transformation of
the vector u based on Eq. (2), i.e., . Thus, O is given by

O = I − 2uuT

||u||22
. (13)

Therefore, the elements of matrix Q̂ are calculated as:

q̂i,j = Oi,· ×Q·,j , (14)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m. We denote such computations
as

q̂i,j = MaskFo(r̄i, q1,j , q2,j , · · · , qm,j). (15)

919

3.3. The Privacy-preserving Low-complexity Ma-
trix Transformation

To efficiently conceal the private information of a gen-
eral matrix, we propose to employ the following low-
complexity matrix multiplication. Specifically, we pre-
serve the privacy of an m × n general matrix G =
(gi,j)1≤i≤m,1≤j≤n by

Ĝ = DGGFG, (16)

where FG is an n×n diagonal matrix with arbitrary positive
constants that are within the group G and DG is an m ×
m random diagonal matrix. Note that we will use D∗ ∗
F∗ and F∗ ∗ D∗ to represent this efficient general matrix
transformation in the rest of this paper, where ∗ indicates a
general matrix to be transformed.

Matrix DG is determined by

dgi,j =

{
ti, if i = j for i, j ∈ [1,m]
0, otherwise

, (17)

where diagonal elements are determined by a pseudorandom
function Fo : {0, 1}ω × {0, 1}ω → {0, 1}ω , i.e.,

ti = Fo(r
′′
i , g), ∀i ∈ [1,m], (18)

where r′′i is a random string and g is a constant one.
Matrix FG is defined by

fgi,j =

{
hi,j , if i = j for i, j ∈ [1, n]
0, otherwise,

. (19)

where hi,j ← {0, 1}k is an arbitrary positive constant in G.
As a result, based on Eq. (16), the elements in matrix

Ĝ are given by

ĝi,j = tigi,jhj , (20)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We denote such computations as

ĝi,j = MaskFo(r′′i , hj , gi,j). (21)

4. Privacy-preserving Outsourcing QR Factor-
ization

4.1. The Main Idea

Our privacy-preserving outsourcing algorithm for large-
scale QR factorization consist of the following steps: trans-
forming an original matrix at the user, decomposing the
transformed matrix in the cloud, and recovering the correct
results at the user. In the following, we explain each of the
steps in detail.

First, to privately outsource QR factorization, a user
employs simple linear algebra operations to transform the
original matrix. Specifically, the user transforms matrix A
by multiplying it with a random orthogonal matrix and a
random upper triangular matrix, i.e.,

Â = OAS. (22)

Here, each element âi,j of Â can be computed as âi,j =∑m
j′=1 q̂i,j′ · r̂j′,j .
Second, the cloud conducts QR factorization on the

transformed matrix Â in a non-interactive way, which results
in limited communication overhead. The cloud then directly
sends the user the two factor matrices, i.e., Q̂ and R̂.

Finally, the user conducts the matrix recovery to find
the correct decomposition results from the returned factor
matrices. Intuitively, the recovery can be done by multiply-
ing a factor matrix with the inverse of the corresponding
mask matrix. For example, to recover matrix R from matrix
R̂, we need to perform the following multiplication, i.e.,
R = R̂S−1. Since both matrix inverse and matrix multipli-
cation involve high-complexity computations, the user needs
to outsource both operations to the cloud.

4.2. The Privacy-preserving Outsourcing of Large-
scale QR Factorization

We present the designed privacy-preserving outsourcing
QR factorization algorithm step by step.

Step 1: Privacy-preserving Transformation of the
Original Matrix A: At this step, the user needs to transform
matrix A into Â = OAS. Due to the high complexity, the
user outsources the multiplications to the cloud.

The user first generates matrix O from a random vector
u according to Eq. (13). Then, the user utilizes the privacy-
preserving low-complexity matrix transformation to trans-
form matrices O, A, and S as follows:

O′ = DOOFO, A
′ = FAADA, and S′ = FSSDS , (23)

whereFA = F−1
O , and transmits O′, A′, and S′ to the cloud.

The cloud first performs matrix multiplication to obtain

ŌA = O′A′ = DOOADA. (24)

Subsequently, the cloud returns matrix ŌA to the user which
performs the following computation:

ŌA
′
= ŌAD−1

A FOA = DOOAFOA, (25)

where FOA = F−1
S .

Then, the user outsources ŌA
′

to the cloud which com-
pletes the matrix transformation as follows:

Â′ = ÔA
′
S′ = DOOASDS , (26)

and returns Â′ to the user.
Finally, the user recovers matrix Â from Â′ as follows:

Â = D−1
O Â′D−1

S = OAS. (27)

Step 2: Privacy-preserving Decomposition of the Ma-
trix Â: At this stage, the user first outsources matrix Â to
the cloud. Then, the cloud conducts QR factorization on Â,
computes an orthogonal matrix Q̂ and an upper triangular
matrix R̂, i.e.,

Â = Q̂R̂, (28)

where Q̂ = OQ and R̂ = RS, and returns Q̂ and R̂ to the
user.

920

Step 3: Privacy-preserving Recovery of the Orthog-
onal Matrix Q: To recover matrix Q from Q̂, the user has
to perform the multiplication, i.e., Q = O−1Q̂ = OT Q̂,
which needs to be outsourced to the cloud because of the
high computational complexity.

Similarly, the user first employs the privacy-preserving
low-complexity matrix transformation to transform matrix
Q̂, i.e.,

Q̂′ = FQ̂Q̂DQ̂. (29)

On the other hand, the user first makes matrix transpose to
obtain OT = O−1, and then performs the multiplicaiton to
get O′′ = DO−1O−1FO−1 , where F−1

Q̂
= FT

O . As last, the

user sends Q̂′ and O′′ to the cloud.

Then, the cloud performs the following matrix multipli-
cation to get

Q′ = O′′Q̂′ = DO−1QDQ̂. (30)

Finally, the cloud returns matrix Q′ to the user who can
have the correct result as follows:

Q = D−1
O−1Q

′D−1

Q̂
. (31)

Step 4: Privacy-preserving Recovery of the Upper
Triangular Matrix R: The user can recover matrix R by
multiplying R̂ by S−1, i.e., R = R̂S−1. To find matrix
S−1, the user first transforms S into S′′ = DSSFS , and
then outsources it to the cloud which call a matrix inverse
algorithm to get S′′−1 = F−1

S′ S
−1D−1

S′ .

The user employs the privacy-preserving low-complexity
matrix transformation to transform matrix R̂, i.e.,

R̂′ = DR̂R̂FR̂, (32)

where FR̂ = FS′ , and sends R̂′ to the cloud.

Subsequently, the cloud performs the following multi-
plication, and returns the result to the user:

R′ = R̂′S′′−1 = DR̂RSFR̂ · F−1
S′ S

−1D−1
S = DR̂RD−1

S .
(33)

At last, the user can obtain the correct result as follows:

R = D−1

R̂
R′DS . (34)

We summarize the proposed privacy-preserving out-
sourcing algorithm for QR factorization on matrix A in
Algorithm 1.

5. Performance Analysis

In this section, we present the analysis of the compu-
tational complexity, communication overhead, and privacy,
respectively.

Algorithm 1 : The privacy-preserving outsourcing algorithm
for performing QR factorization on a matrix A

1: Initialization: The user generates a vector u, matrices
S, DO, DA, DS , FO, FA, FOA, FS , DQ̂, FQ̂, DR̂, and
FR̂.

2: Step 1: Transforming matrix A
3: The user employs Householder transformation to gen-

erate matrix O from a vector u.
4: The user transforms matrices O, A, and S into ma-

trices O′, A′, and S′, respectively, based on Eq. (23).
5: The user outsources O′, A′, and S′ to the cloud.
6: The cloud computes ÔA by using Eq. (24).
7: The cloud returns ÔA to the The user.
8: The user computes ˆOA′ by using Eq. (25).
9: The user sends ˆOA′ to the cloud.

10: The cloud computes Â′ by using Eq. (26).
11: The cloud returns Â′ to the The user.
12: The user recovers Â from Â′ by using Eq. (27).
13: Step 2: QR factorization of matrix Â
14: The user outsources Â to the clodu.
15: The cloud decomposes Â into a product of Q̂ and R̂

by performing Householder based QR factorization.
16: The cloud returns Q̂ and R̂ to the user.
17: Step 3: Recovering matrix Q from matrix Q̂
18: The user computes Q̂′ based on Eq. (29).
19: The user transposes O to obtain O−1.
20: The user computes O′′.
21: The user sends Q̂′ and O′′ to the cloud.
22: The cloud computes Q′ through Eq. (30).
23: The cloud returns Q′ to the user.
24: The user obtains Q by using Eq. (31).
25: Step 4: Recovering matrix R from matrix R̂
26: The user transforms S into S′′, and sends it to the

cloud.
27: The cloud calls a matrix inverse algorithm to obtain

S′′−1
.

28: The user transforms R̂ into R̂′ based on Eq. (32).
29: The user outsources R̂′ to the cloud.
30: The cloud computes R′ through Eq. (33).
31: The cloud returns R′ to the user.
32: The user finds R by using Eq. (34).
33: End;

5.1. Computational Complexity

We present the computational complexity analysis of
the proposed privacy-preserving outsourcing algorithm for
QR factorization. Particularly, we thoroughly analyze the
computational complexity at each stage.

At Step1, the user first generates a random orthogo-
nal matrix O, which takes O(m2) computational complex-
ity. Then, the user employs the privacy-preserving low-
complexity general matrix transformation to respectively
transform O, A, and S into O′, A′, and S′, which requires
computational complexity of O(2m2 + 4mn). Then, the
cloud performs the matrix multiplications, i.e., ŌA = O′A′,

921

resulting in the computational complexity of O(m2n). Af-

terwards, the user obtains ŌA
′

from ŌA, which takes
O(m2) computational complexity. Subsequently, the cloud

performs the computation, i.e., Â′ = ŌA
′
S′, resulting in

O(m2n) computational complexity. Finally, the user re-

covers Â from Â′, which requires the computations with
O(2mn) complexity.

At Step 2, the cloud performs QR factorization on
Â, which generally requires to perform computations with
O(2m2n+m3) complexity.

At Step 3, the user first transposes O to get O−1, which
requires O(m) computational complexity. Afterwards,
he/she employs the privacy-preserving low-complexity gen-
eral matrix transformation to respectively transform Q̂ and
O−1 into Q̂′ and O′′, which takes O(4m2) computational
complexity. Then, the cloud performs the matrix multi-
plication, i.e., Q′ = O′′Q̂′, to get Q′, which requires
computations with O(m2n) complexity. Finally, the user
recovers Q from Q′, which costs computations withO(2m2)
complexity.

At Step 4, the user first applies the privacy-preserving
low-complexity general matrix transformation to respec-
tively transform S and R̂ into S′′ and R̂′, which takes
O(2m2 + 2mn) computational complexity. On the other
hand, the cloud first find the inverse of S′′, which cost the
computations with O(Nn3). Afterwards, the cloud performs

the computation, i.e., R̂′S′′−1, to obtain R′, which requies
O(m2n) computational complexity. At last, the user recov-
ers R from R′, resulting in the computational complexity of
O(2mn).

To sum up, the proposed algorithm requires computa-
tional complexity of O(max{mn,m2}) at the user and that
of O(max{m2n,m3}) in the cloud.

5.2. Communication Overhead

We detail the analysis of the communication overhead at
each stage of the proposed privacy-preserving outsourcing
algorithm for QR factorization as follows.

At Step 1, the user outsources O′, A′, and S′ to the
cloud, and then the cloud returns Â′ to the CC, which results
in communication overhead of C(m2 + 3mn). At Step 2,

the cloud returns Q̂ and R̂ to the user, which results in
communication overhead of C(m2 + mn). At Steps 3 and
4, the user sends Q̂′ and R̂′ to the cloud. Afterwards, the
cloud returns Q′ and R′ to the user, resulting in C(2m2 +
2mn+m+ n) communication overhead.

Therefore, the total communication overhead for per-
forming QR factorization on matrix A is C(4m2 + 6mn +
m+ n).

5.3. Privacy Analysis

Inspecting the proposed privacy-preserving outsourcing
algorithm for QR factorization, we observe that the cloud
only has access to the transformed matrices, and thus is

unable to learn private information from them. In the fol-
lowing, we offer a detailed analysis.

At Step 1, the cloud can access to O′, A′, S′, ŌA, ŌA
′
,

and Â′. At Step 2, the cloud can access to Â, Q̂, and R̂. At
Step 3, the cloud accesses to Q̂′, O′′, and O′. At Step 4, the
cloud accesses to S′′, S′′−1, R̂′, and R′. We can see that the
cloud only accesses to the transformed matrices, and thus
the privacy is protected.

6. Experiment Results

To well evaluate the performance, we implement our
proposed algorithm in a real-world scenario. In our exper-
iment, the user is a laptop with a dual-core 2.7GHz CPU,
8GB RAM memory, and 256GB solid state drive. The cloud
is the Amazon Elastic Compute Cloud (EC2) platform with
4 computing nodes. We implement the proposed algorithm
by Java. Moreover, we apply AKKA computing framework
[19] to manage the storage and computations at the EC2
platform. Additionally, we test the performance of our pro-
posed algorithm with the synthetic data.

We first evaluate the running time of the proposed
privacy-preserving outsourcing algorithms for QR factoriza-
tion. Fig. 2 shows the time spent for different total number
of elements in the tested matrices.

Specifically, Fig. 2(a) demonstrates the computing time
at the user for performing QR factorization. We observe that
the computer at the user completes the required computa-
tions very quick, even for large-scale matrices. For example,
when the total number of elements in the matrix is 4× 106,
the user spends 1831s for performing QR factoriztion. Be-
sides, we also find that the running time at the user is
approximately linear regarding to the number of elements,
which is practical for decomposing large-scale matrices.

On the other hand, Fig. 2(b) illustrates the running
time taken by the cloud to perform matrix transformation,
conduct QR factorization, and recover the correct decompo-
sition result. We find that the computing time of the cloud
is increasing with the growth of the matrix size.

Subsequently, we examine the computing time saving
provided by the proposed algorithms. Specifically, in Tables
1, we compare the computing time of a user conducting QR
factorization by itself with that achieved by our proposed
algorithm. We observe that the proposed algorithm has
significant time saving compared to the one only locally
performing QR factorization. For example, the user spends
1297549s to perform QR factorization on the matrix with
1.024 × 107 by itself. This validates the efficacy of our
proposed algorithm.

7. Conclusions

In this paper, we have investigated the problem of
privacy-preserving outsourcing large-scale QR factorization
to the cloud. Specifically, to protect data privacy, we have
developed the privacy-preserving matrix transformations

922

TABLE 1. COMPUTING TIME COMPARISON OF LOCAL QR FACTORIZATION AND THE PROPOSED ALGORITHM FOR QR FACTORIZATION.

Elements in a matrix A Local QR factorization QR factorization at the user User’s speedup

1.6×105 1003s 58s 17.3

6.4×105 14795s 261s 56.7

1.44×106 57426s 638s 90.01

2.56×106 140612s 1149s 121.97

4×106 297319s 1831s 162.4

5.76×106 542514s 2381s 227.9

7.84×106 873885s 3409s 256.4

1.024×107 1297549s 3953s 328.3

Total number of elements of a matrix ×106

0 2 4 6 8 10 12

T
im

e
(S

ec
on

ds
)

0

500

1000

1500

2000

2500

3000

3500

4000
QR Factorization

(a) Computing time running at the user for different data
size.

Total number of elements of a matrix ×106

0 2 4 6 8 10 12

T
im

e
(S

ec
on

ds
)

×105

0

2

4

6

8

10

12

14

16
QR Factorization

(b) Computing time running at the cloud for different data
size.

Figure 2. Computing time of the privacy-preserving outsourcing QR faco-
torization at the user and the cloud for different data sizes.

based on linear algebra operations. Employing the devel-
oped matrix transformations, we have proposed a privacy-
preserving outsourcing QR factorization algorithm, where
the user transforms his/her original matrix and the cloud
performs QR factorization on the transformed matrix to
output the factor matrices in a non-interactive way. Hence,
the proposed algorithm requires the lower computational
complexity at the user and the small communication over-
head between the user and the cloud. We have implemented
the proposed algorithm on the Amazon Elastic Compute
Cloud (EC2) platform and a laptop, and the experimental

results show that the proposed algorithm can offer significant
time saving to the user.

References

[1] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC iView,
Jun. 2011.

[2] M. Kezunovic, V. Vittal, S. Meliopoulos, and T. Mount, “The big pic-
ture: Smart research for large-scale integrated smart grid solutions,”
IEEE Power and Energy Magazine, vol. 10, pp. 22–34, Jul./Aug.
2012.

[3] Z. Khan, A. Anjum, and S. L. Kiani, “Cloud based big data analytics
for smart future cities,” in Proc. IEEE/ACM UCC’09, (Washington,
DC, USA), pp. 381–386, Dec. 9 - 12 2013.

[4] L. Qi, X. Xu, X. Zhang, W. Dou, C. Hu, Y. Zhou, and J. Yu,
“Structural balance theory-based e-commerce recommendation over
big rating data,” IEEE Trans. Big Data, vol. PP, no. 99, pp. 1–1, 2016.

[5] M. Kezunovic, L. Xie, and S. Grijalva, “The role of big data in im-
proving power system operation and protection,” in Proc. IEEE IREP
Symposium-Bulk Power System Dynamics and Control, (Rethymnon,
Greece), pp. 1–9, Aug. 25 - 30 2013.

[6] L. Liu, A. Hou, A. Biderman, C. Ratti, and J. Chen, “Understanding
individual and collective mobility patterns from smart card records:
A case study in shenzhen,” in Proc. IEEE ITSC’09, (St. Louis, MO,
USA), pp. 842–847, Oct. 4 - 7 2009.

[7] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th Edition.
Baltimore MD: Johns Hopkins University Press, 2013.

[8] S. Pajic and K. A. Clements, “Power system state estimation via
globally convergent methods,” IEEE Trans. Power Syst., vol. 20,
pp. 1683–1689, Nov. 2005.

[9] A. Pandey and S. Shrotriya, “Comparing the effect of matrix factor-
ization techniques in reducing the time complexity for traversing the
big data of recommendation systems,” Int’l Journal of Comput. and
Commu. Eng., vol. 2, pp. 170–173, Mar. 2013.

[10] R. Mathias and G. W. Stewart, “A block QR algorithm and the
singular value decomposition,” Linear Algebra and Its Applications,
vol. 182, pp. 91–100, Mar. 1993.

[11] A. R. Benson, D. F. Gleich, and J. Demmel, “Direct QR factorisations
for tall-and-skinny matrices in MapReduce architectures,” in Proc.
IEEE Int’l Conf. Big Data, (Santa Clare, CA, USA), pp. 264–272,
Oct. 6 - 9 2013.

[12] G. W. Stewart, Introduction to Matrix Computations. NJ: Academic
Press, 1974.

[13] E. L. Quinn, “Privacy and the new energy infrastructure,” Social
Science ResearchNetw., pp. 1995–2008, 2009 [Online]. Available:
http://ssrn.com/pager=1370731.

[14] J. Zhang, F. Wang, K. Wang, W. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Trans.
Intelligent Transportation Systems, vol. 12, pp. 1624–1639, Jul. 2011.

923

[15] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Proc.
Advances in Cryptology (CRYPTO’10), (Santa Barbara, CA, USA),
pp. 465–482, Aug. 15 - 19 2010.

[16] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud for
securely outsourcing large-scale systems of linear equations,” IEEE
Trans. Parallel and Distributed Systems, vol. 24, pp. 1172–1181, Jun.
2013.

[17] S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure outsourcing
of large-scale linear systems of equations,” in Proc. IEEE INFO-
COM’15, (Hongkong, China), pp. 1035–1043, Apr. 26 - May 1 2015.

[18] S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure outsourcing of
large-scale quadratic programs,” in Proc. ACM Asia CCS’16, (Xi’an,
Shaanxi, China), 30 May – 1. Jun 2016.

[19] M. K. Gupta, “Akka essentials,” Packt Publishing, vol. ISBN-13:978-
1-84951-828-4, 2012.

924

