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ABSTRACT

Today’s massive amount of biological sequence data has the poten-

tial to rapidly advance our understanding of life’s processes. How-

ever, since analyzing biological sequences is a very expensive com-

puting task, users face a formidable challenge in trying to analyze

these data on their own. Cloud computing o�ers access to a large

amount of computing resources in an on-demand and pay-per-use

fashion, which is a practical way for people to analyze these huge

data sets. However, many people are still reluctant to outsource

biological sequences to the cloud because they contain sensitive in-

formation that should be kept secret for ethical, security, and legal

reasons. One of the most fundamental and frequently used compu-

tational tools for biological sequence analysis is pairwise sequence

alignment (PSA). Previous works for securely solving PSAs at the

cloud su�er from poor scalability, i.e., they are unable to exploit the

cloud’s infrastructure to solve PSAs in parallel because resource-

limited users need to be constantly involved in the computations.

In this paper, we develop a secure outsourcing algorithm that al-

lows users to solve an arbitrary number of PSAs in parallel at the

cloud. Compared with previous works, our algorithm can reduce

computing time of a large number of PSAs by more than 50% with

as few as 5 computing nodes at the cloud.

1 INTRODUCTION

�e exponentially growing amount of biological sequence data

holds the potential to rapidly advance scienti�c knowledge [10, 21].

To e�ciently and economically analyze these large-scale data sets,

resource-limited users can choose to employ cloud computing. In

this computing paradigm, users outsource their computing tasks

to a cloud server [19], which contains a large amount of comput-

ing resources and o�ers them on an on-demand and pay-per-use

basis [18].

Unfortunately, many people are unwilling to outsource their

data to the cloud due to privacy concerns [20]. Speci�cally, bi-

ological sequences are very sensitive and should be kept secret

from the cloud for ethical, security, and legal reasons [17]. For

example, analyzing plant genetic data at the cloud could disclose

an agricultural company’s intellectual property. Moreover, since
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biological sequences o�en belong to di�erent parties, it is di�cult

for researchers to perform collaborative analyses at the cloud with-

out compromising the sequence owners’ privacy. For instance, to

enable collaboratively drug discovery at the cloud, pharmaceuti-

cal companies would need to share their sequences, compromis-

ing their intellectual property[15]. �erefore, to enable scientists

and engineers to collaboratively analyze biological sequences at

the cloud, it is important to design secure outsourcing tools that

preserve data privacy.

One of the most fundamental mathematical problems in biolog-

ical sequence analysis is pairwise-sequence alignment (PSA), i.e.,

�nding the least-cost set of edit operations, such as insertion, dele-

tion, and substitution, that transform a sequence into another one.

For example, in phylogenetics, scientists compute PSAs to obtain

genetic trees that reveal organisms evolutionary relationships; and

pharmaceutical companies identify protein functionality for drug

discovery by solving many PSAs.

Some existing works on secure outsourcing of large-scale com-

putations may potentially be used to collaboratively solve PSAs at

the cloud. In particular, Gennaro et al. [9] propose fully homo-

morphic encryption (FHE), which allows secure outsourcing of a

function to the cloud. Although FHE o�ers a theoretical privacy

guarantee, it requires the user to perform computationally expen-

sive operations and forces the cloud to carry out operations on

ciphertexts, which adds signi�cant overhead to already expensive

computations at the cloud. Researchers have proposed improve-

ments to the computing time of FHE, e.g., [7], but its overhead

remains impractically large for users to analyze large-scale data

sets. To avoid the computational complexity introduced by FHE,

Wang et al. [22] propose to privately outsource a linear program,

which can be used to solve a PSA, by applying a linear algebra-

based transformation to the objective and constraints. However,

this transformation requires prohibitively expensive matrix mul-

tiplications, and results in an optimization problem that prevents

users from employing the Simplex algorithm, which is the most

e�cient solution method for linear programs such as the ones that

arise when solving PSAs.

�ere are some works based on secure multi-party computa-

tions (SMC) that allow two users, each holding a private sequence,

to compute a PSA by performing local computations and exchang-

ing some data. In the work by Atallah et al. [1], users �rst protect

their privacy with partially homomorphic encryption and then col-

laborate with each other. Jha et al. [13] further reduce computing

times by designing an algorithm where the users �rst create a cus-

tom garbled circuit and then collaboratively evaluate it. Huang

et al. [12] achieve further improvements on garbled circuit evalu-

ation times by employing optimizations such as pipelined circuit
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execution, and a reduced number of circuit gates. Although SMC-

based approaches allow users to collaboratively solve a PSAwithin

a practical amount of time, their performance depends on the qual-

ity of the communication link between the users, and it is unclear

how they can be applied to securely solve the computation of a

two-user PSA at the cloud.

More importantly, we notice that SMC-approaches share a com-

mon serious problem, i.e., users actively participate during the so-

lution of the PSA. �e need for users to be online during PSA com-

putations signi�cantly limits the scalability of SMC-approaches,

and thus are impractical for the analysis of large-scale biological

sequence data sets at the cloud. Speci�cally, since users only have

modest computing resources, they are unable to participate in the

solution of more than a few PSAs at a time. �erefore, any practi-

cal algorithm for large-scale biological sequence analysis should

be parallel and scalable, i.e., the cloud should be able to solve

an arbitrary number of PSAs in parallel with minimal computing

resources, and without having to continuously interact with the

users.

In this paper, we develop a practical and e�cient secure out-

sourcing algorithm that allows two users, each holding a private

sequence, to collaboratively solve a large amount of PSAs in par-

allel at the cloud. Speci�cally, the users protect their data privacy

by concealing its sequences with bilinear maps, which is a crypto-

graphic technique that can be e�ciently applied by the users. �en,

based on the encrypted sequences, the cloud securely formulates

a linear program that is equivalent to the user’s PSA. Based on

the Simplex algorithm, the cloud solves the linear program, and re-

turns the solution to the users, who e�ciently retrieve the optimal

solution to the original PSA. To preserve the users’ privacy, our

algorithm restricts the cloud to operate only on the encrypted se-

quences and randomized values, rather than on the original PSA’s

values.

�e proposed algorithm requires the users to perform compu-

tations with only O(m) and O(n) complexity, which is lower than

the complexity of solving a PSA, i.e., O(mn), where m and n are

the users’ sequence lengths. Furthermore, the proposed algorithm

only needs one round of communication between the users and

the cloud, which is optimal. We implement the user part of the al-

gorithm on a general purpose PC, and the cloud part on the AWS

Elastic Compute Cloud (EC2). Compared to previous works, our

algorithm can reduce computing time of a large number of PSAs

by more than 50% with as few as 5 computing nodes at the cloud.

2 PROBLEM FORMULATION

System Architecture. We consider an asymmetric three-party

system architecture formed by two resource-limited users, i.e., Al-

ice and Bob, and a resource-rich cloud server. We show this ar-

chitecture in Fig. 1. Alice and Bob each hold a character sequence,

i.e., a = {a1,a2, . . . ,an−1} and b = {b1,b2, . . . ,bm−1}, respectively,

and intend to calculate the similarity between their sequences by

solving a pairwise sequence alignment (PSA). �e elements in a

and b are taken from a character alphabet H = {h1,h2, . . . ,hp }.

Let the sequence similarity be de�ned as the least-cost set of edit

operations, such as insertion, deletion, and substitution, needed

to transform x = {− | a} into y = {− | b}, where − is the null

character. �en, the PSA is as follows [8]:

min
D

∑

[x ′
i ,y

′
j ]∈D

d([x ′i ,y
′
j ]) (1)

where the minimum is taken over all edit operation sets D that

transform x into y, and [x ′i ,y
′
j ] denotes an edit operation based on

the characters x ′i and y
′
j , and d is the edit operation cost function.

If [x ′i ,y
′
j ] denotes a substitution operation, i.e., when [x ′i ,y

′
j ] =

[xi ,yj ], then function d outputs a value of matrix G ∈ Zp×p

(e.g., the BLOSUM50 matrix), which stores the substitution cost

for pairs of characters in H . In particular, if [xi ,yj ] = [hk ,hl ],

then d([x ′i ,y
′
j ]) = дk,l , which is the element in the kth row and lth

column of G. We denote the substitution costs by wsub ([x
′
i ,y

′
j ]).

Further, if [x ′i ,y
′
j ] denotes a deletion or insertion operation, i.e.,

[x ′i ,y
′
j ] = [xi ,−] or [x

′
i ,y

′
j ] = [−,yj ], then d outputs wdel or wins ,

which are the deletion and insertion costs, respectively.

Due to the large amount of biological sequences, in many appli-

cations, Alice and Bob need to collaborate to compute (1) repeat-

edly many times, and hence, they are unable to solve the PSAs by

themselves in a feasible amount of time. For example, in phylo-

genetic analysis, scientists need to compute a very large amount

of PSAs to classify biological sequences, e.g., ≈ 500, 000 PSAs are

needed to explore the phylogenetic relationships between viruses

within a family [6, 16, 23]. �us, to solve the PSAs, Alice and Bob

need to outsource the most computationally expensive tasks to the

cloud.

�reat Model. We consider a semi-honest threat model for all

parties in the system, i.e., Alice, Bob, and the cloud. In particular,

the cloud a�empts to learn Alice’s and Bob’s private information

from their outsourced sequences and from the results of its own

computations. Moreover, both Alice and Bob will a�empt to ex-

tract each others’ private information from the results that they

receive from the cloud. �erefore, to securely outsource the com-

putation of a PSA problem, the data that Alice and Bob outsource

to the cloud should be provably secure [14]. We note that the semi-

honest model is a standard threat model for secure computations

[11], and it is consistent with previous works in the area of secure

multiparty PSA computations, i.e., [12, 13].

Bilinear Map. In our proposed secure PSA outsourcing algo-

rithm, we leverage the properties of pairing-based cryptography

(PBC) to conceal Alice and Bob’s private sequences. In particular,

let G1 and G2 be cyclic multiplicative groups of the same prime

order q. An admissible bilinear pairing e : G1 × G1 → G2 is a

map with the following property [5]: e(ua ,vb ) = e(u,v)ab , for

any u,v ∈ G1, and a,b ∈ Zq , where Zq denotes the integers mod-

ulo q. �e bilinearity property implies that for any u1,u2 ∈ G1,

e(u1 ·u2,v) = e(u1,v) ·e(u2,v). Besides, a bilinear map satis�es the

non-degeneracy and computability properties. Such an admissible

bilinear pairing e : G1 × G1 → G2 can be implemented by the

modi�ed Weil/Tate pairings.

3 PRIVACY-PRESERVING
TRANSFORMATIONS

To securely upload a PSA to the cloud, Alice and Bob �rst secure

their private information by performing certain computations. In
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Figure 1: A secure architecture for secure outsourcing of pairwise sequence alignment

this section, we describe an e�cient method to conceal a biologi-

cal sequence and a method to securely obtain a PSA’s substitution

costs from two concealed sequences. �is method can be used by

the cloud to securely �nd the similarity between the sequences.

Privacy-Preserving Sequence Transformation. To conceal

its private sequence, a user, e.g., Alice or Bob, �rst replaces its se-

quence’s characters with integers, and then conceals them through

modular multiplications with random numbers. Speci�cally, let

s = [s1, s2, . . . , sm ] be a private sequence with characters taken

from an alphabet T = {t1, t2, . . . , tp }. �en, the user conceals s as

follows:

ŝ = Vss̄. (2)

�e elements of vector s̄ = [M(s1),M(s2), . . . ,M(sm )] are given

by a function M : T → G1 that uniquely maps characters in T

to integers in the multiplicative cyclic group G1 of prime order q.

�e matrix Vs ∈ G
m×m
1 is diagonal with non-zero elements given

by the vector vs = [hσ1 , . . . ,hσm ], where h is a generator of G1,

and σi is a randomly chosen element from the set of integers less

than q, which we denote by Zq (for all i ∈ [1,m]).

Consequently, the elements of ŝ in (2) are given by ŝi = s̄ih
σi

mod q (for all i ∈ [1,m]), where q is a large prime number. Besides,

the user calculates a vector of concealed random numbers

v̂s = [e(h,h)ν1 , . . . , e(h,h)νm ], where νi = q−σi mod q, and e(·, ·)

is the bilinear map de�ned in Section 2.

Privacy-Preserving Substitution Cost Transformation. To

allow the cloud to securely formulate the substitution costs in the

PSA based on the concealed sequences, Alice and Bob need to up-

load a concealed version of the substitution costs to the cloud.

Speci�cally, to �nd integers that represent all possible charac-

ter pairs in alphabet T , Alice builds a matrix Z ∈ G
p×p
2 with el-

ements given by zi, j = e(t̄i · t̄j ,h) (for all i, j ∈ [1,p]), where

h is a generator of G1, t̄i and t̄j are the integer representations

of ti and tj given by M as described in (2), respectively, and e

is the bilinear map described in Section 2. Besides, we denote a

function that maps elements in Z to substitution costs in G, i.e.,

ψ (zi, j ) = дi, j = wsub ([ti , tj ]) (for all i, j ∈ [1,p]).

Alice then forms buckets of elements zi, j ’s that aremapped byψ

to the same substitution cost inG, that is, Bl = {zi, j |ψ (zi, j ) = д
′
l
}

for all l ∈ [1,p′], where д′
l
is the lth unique substitution cost in G,

and p′ is the total number of unique substitution costs. We denote

a second function ψ̃ that maps zi, j to its corresponding bucket’s

index l .

Now, a�er Alice uploads the concealed sequence ŝ ∈ Gm×1
1 to

the cloud as described in Section 3, she uploads the set of concealed

costs for every element si which is given by

ĝsi = β
1
2γsi g

′ 12 (3)

for all i ∈ [1,m], where g′ is the vector of unique substitution costs

inG, and β andγsi are random positive integers inZ. Alice uploads

ĝsi (for all i ∈ [1,m]) to the cloud.

Similarly, Bob can follow the same procedure to �nd its con-

cealed sequence, and upload his concealed substitution costs, i.e,.

ĝfi = β
1
2γfi g

′ 12 , where f is Bob’s private sequence. In Section 5, we

explain how the cloud can employ the outsourced sequences, and

the results of (3) to �nd the PSA’s concealed substitution costs.

Note that the size of vectors ĝsi is determined by the number of

unique costs p′. In practice, this quantity is small, e.g., 18 for the

BLOSUM50matrix, and thus it only adds a small constant overhead

to the user’s memory and communication complexities.

4 A LINEAR PROGRAM FOR PAIRWISE
SEQUENCE ALIGNMENT

In this section, we reformulate the PSA in (1) as a linear program

(LP), i.e., an optimization problem with a linear objective, and

a�ne constraints, that can be e�ciently solved by the cloud us-

ing the Simplex algorithm. We also show that the solution to the

PSA is readily available from the solution of the LP.

We �rst express (1) as a shortest-path problem on a directed

acyclic graph (DAG) G = {V, E}, where the node setV and edge

set E are based on the cost of edit operations between sequences x

and y. Speci�cally, we �rst store the cost of substituting elements

in x for elements in y in a matrix T ∈ Zm×n as follows:

ti, j = wsub ([xi ,yj ]) (4)

for all i ∈ [1,m] and j ∈ [1,n], where wsub (·) is as de�ned in

Section 2.

We then form the node setV by adding a node for each element

in T, that is, V = {vp | p = i +m(j − 1) ∀i ∈ [1,m], ∀j ∈ [1,n]},

where the node vp corresponds to the element ti, j . To form the

edge set E, we arrange V’s nodes on a two-dimensional grid

according to their positions in T, and add a directed edge from

each node to its bo�om, right, and bo�om-right neighbors, that is,

E = Edel ∪Eins∪Esub ,where Edel = {(vp ,vq ) |q = p+1}, Eins =

{(vp ,vq ) | q = p+m}, Esub = {(vp ,vq ) | q = p+m+1}, and (vp ,vq )

is an ordered pair denoting a directed edge from start node vp to

end node vq .

�e weights for edges corresponding to substitutions are given

by the elements of T, i.e., wl = tπ (vl ), if el ∈ Esub , where el is the

lth element of E, andvl is el ’s end node. �e function π (vl ) returns

vl ’s two-dimensional index in T, i.e., π (vl ) = (i, j), where i = (l − 1

mod m) + 1, and j = ⌈l/m⌉ . Weights for edges corresponding to

deletion and insertion operations are given by wdel , if el ∈ Edel
and by wins , if el ∈ Eins , where wdel and wins are the deletion

and insertion costs de�ned in Section 2, respectively.
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Consequently, the shortest-path between v1 and vmn on G can

be de�ned by an integer LP as follows:

min
z

ϕ(z) = wT z subject to Az = b, z ≥ 0, z ∈ Z, (5)

where z ∈ Z |E | is the optimization variable. We form the node-

edge incidence matrix A ∈ Z |V |×|E | by placing ai,l = 1 if node i

is a start node of edge el , and ai,l = −1, if node i is the end node of

el . �e rest of the elements are set to zero. We set the element that

corresponds to the source node in the vector b ∈ Z |V | equal to 1,

i.e., b1 = 1, and the element that corresponds to the destination

node equal to −1, that is, bmn = −1. We denote the solution of (5)

by z∗. Note that due to the particular de�nitions of A, b, and c, the

elements of z can only take binary integer values, i.e,. {0, 1}, even

though z is constrained as a non-negative integer in (5).

Since the shortest-path between v1 and vmn on G can be inter-

preted as the least-cost set of edit operations that transforms x into

y, the solution to (1) based on z∗ is given by: D∗
= {[x ′i ,y

′
j ] | z

∗
l
>

0 ∧ π (vl ) = (i, j)}, where [x ′i ,y
′
j ] has a one-to-one mapping to a

deletion, insertion, or substitution operation according to whether

edge el belongs to Edel , Eins or Esub , respectively.

A Relaxed Optimization Problem for PSA. In general, in-

teger LPs such as (5) are very di�cult to solve because they are

NP-hard. However, since (5) is de�ned by integers, i.e., A, b, and

c all have integer values, we can relax (5) to form a continuous LP

that can be e�ciently solved by the Simplex algorithm in polyno-

mial time, and yields the solution to (5). Speci�cally, by removing

the integrality constraint in (5), we get the following continuous

LP, i.e.,

min
u

ϕ(u) = wT u subject to Au = b, u ≥ 0, (6)

where u is the optimization variable. We denote the optimal solu-

tion of the relaxed problem by u∗.

Since the values in A, w and b in the relaxed problem in (6) are

all integers, the Simplex algorithm’s computations result in inte-

ger values, including the solution u∗ [3]. �erefore, the optimal

solution of the LP in (6) found by the Simplex algorithm, is also

the optimal solution of the integer LP in (5), and ultimately to the

PSA in (1). In the following, we describe how the cloud can use the

Simplex algorithm to solve a secure version of (6).

5 SECURE OUTSOURCING OF PAIRWISE
SEQUENCE ALIGNMENT

In this section, we describe our secure PSA solver (SPSA), which

e�ciently and securely solves the PSA in (1) in parallel at the cloud.

Speci�cally, Alice and Bob conceal their private sequences and sub-

stitution cost matrix with the transformations in Section 3, and col-

laborate with the cloud to securely formulate the LP in (6). �en,

by applying the Simplex algorithm, the cloud solves the secure LP

and returns the results to Alice and Bob, who e�ciently �nd the

solution to the original PSA.

Secure Computation of the Similarity Matrix. To securely

outsource the computation of the similarity matrix T in Section

4, Alice and Bob conceal sequences y and x in (1), respectively,

compute the secure substitution costs, and then the cloud employs

these outsourced data to securely �nd the edit operation costs.

In particular, Alice and Bob conceal their sequences as follows:

ŷ = Vyȳ, x̂ = Vxx̄, where Vy and Vx are computed as in (2),

and ȳ ∈ Gm×1
1 , and x̄ ∈ Gn×11 are the integer representations of x

and y as described in Section 3, respectively. In this step, Alice and

Bob also �nd the vectors of concealed random numbers v̂y and v̂x.

�en, Alice forms the buckets Bi for every unique substitution

cost as in Section 3, and securely shares themwith Bob using public

key cryptography techniques, e.g., RSA cryptosystem. Similarly,

Alice and Bob generate the random numbers α and β , respectively,

and securely share them with each other.

Next, Alice and Bob generate their concealed cost vectors for x

and y, respectively, that is, ĝyi = β
1
2γyi g

′
1
2 , ĝx j = β

1
2γx j g

′
1
2 (for

all i ∈ [1,m] and j ∈ [1,n]), where γyi and γx j are computed as in

(3). We denote the vectors of random numbers used to conceal the

substitution costs by γy and γx, respectively. Alice and Bob keep

γy, γx, β , and α secret.

Alice also conceals the insertion and deletion operation costs as

follows: ŵins = βγinswins , ŵdel = βγdelwdel , where γins ∈ Z

and γdel ∈ Z are random positive numbers. Besides, both Al-

ice and Bob conceal their respective random numbers, i.e., γ̂y =

α
1
2γy, γ̂x = α

1
2γx, γ̂α = αγα , γ̂ins = αγins , γ̂del = αγdel .

Once Alice completes her computations, she uploads ŷ, ĝyi (for all

i ∈ [1,m]), ŵins , ŵdel , γ̂y, γ̂α ,γ̂ins = αγins , γ̂del = αγdel , and the

buckets Bl (for all l ∈ [1,p′]). Similarly, Bob uploads x̂, ĝx j (for all

j ∈ [1,n]), and γ̂x.

A�er receiving the concealed values, the cloud securely �nds

the elements of the similarity matrix in (4) by �rst computing the

product of bilinear mappings between characters in x̂ and ŷ, and

then mapping them to their corresponding buckets. In particular,

the cloud �rst forms the matrix T̄ ∈ Gm×n
2 with values de�ned

by: t̄i, j = e(ŷi x̂ j ,h) · v̂yi · v̂x j . We show the correctness of t̄i, j as

follows:

t̄i, j = e(ŷi x̂ j ,h) · v̂yi · v̂x j

= e(ȳih
σyi · x̄ jh

σxj ,h) · e(h,h)νyi · e(h,h)
νxj

= e(ȳi x̄ j ,h) · e(h
σyi +σxj ,h) · e(h,h)

νyi +νxj

= e(ȳi x̄ j ,h).

where νyi = q − σyi mod q, and νx j = q − σx j mod q.

Based on the mapping ψ̃ between elements in T̄ and bucket

indexes, the cloud computes the secure substitution cost matrix

T̂ ∈ Zm×n as follows: t̂i, j = д̂′
yi ,l

д̂′
x j ,l

= (βγyjγx j )дl , (for all

i ∈ [1,m] and j ∈ [1,n]), where l is the index of bucket Bl that

contains t̄i, j , and д̂
′
yi ,l

and д̂′
x j ,l

are the lth elements of ĝ′xi and

ĝ′yj , respectively. Due to the properties of the bilinear map and the

�nite groups used to conceal the private sequences, the cloud is

unable to compute x and y based on T̄, T̂, x̂ and ŷ.

Secure Formulation of the Linear Program. To securely

formulate the LP described in (6), the cloud needs to form the

secure weight vector ŵ ∈ Z |E | and the secure constraint ma-

trix Â ∈ Z
|V |×|E |
∗ . To this end, the cloud �rst forms the se-

cure weight vector ŵ by assigning elements of T̂ to substitution

edges, i.e., wl = t̂π (l ), if el ∈ Esub , and by assigning the se-

cure insertions and deletion costs to the corresponding edges, i.e.,

ŵl = ŵdel , if el ∈ Edel and ŵl = ŵins , if el ∈ Eins .
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To form Â, the cloud computes the following matrix of con-

cealed random numbers: P̂ = (γ̂⊤
y γ̂x) and then forms Â′’s

columns vectors by multiplying columns corresponding to substi-

tution edges by elements in P̂, that is, â′j = p̂π (j)aj if ej ∈ Esub ,

and columns corresponding to insertion and deletion edges by

the concealed weights, that is, â′j = γ̂del aj , if ej ∈ Edel , â
′
j =

γ̂insaj , if ej ∈ Eins , where aj is the jth column of A in (6), p̂π (j) is

the element in the ith row and jth column of P̂ as de�ned by π (·) in

Section 4. Besides, the cloud multiplies the rows of Â′ by γ̂α , that

is Â = KÂ′ where K = γ̂α I and I ∈ Z
|V |×|E |
∗ is the identity matrix.

To compute the concealed constraint vector, the cloud computes

the following: b̂ = γ̂α b, where b is the constant vector in (6). Note

that the cloud can computeA and b based on the LP formulation in

Section 4 and the length of sequences x̂ and ŷ that Alice and Bob

upload.

Secure solution of the Linear Program. Before the cloud

can apply the Simplex algorithm to solve the secure LP, it needs to

�nd an initial solution. Speci�cally, the Simplex algorithm requires

a basic feasible starting point u such that a matrix B ∈ Z |V |×|V |

is invertible, and uB > 0 and uN = 0. Matrix B is formed with |V|

columns of A, and uB ∈ Z |V |×1 with the elements of u that corre-

spond to these columns. Vector uN ∈ Z( |E |−|V |)×1 is formed with

the remaining values of u. Since we are dealing with a shortest-

path problem on a DAG, we can form a feasible solution for (6)

based on any path between the source node and the sink node.

However, since such a path contains less than |V| edges, its cor-

responding initial solution is not basic. To obtain an initial basic

feasible solution, we �nd an arbitrary path between all nodes and

the destination node, and rede�ne the constraint vector b in (6) as

bi = 1 (for all i ∈ [1,mn− 1]) and bmn =
∑mn−1
i=1 −bi . Note that the

solution to our original problem is still readily available from the

solution to the LP with this choice of b.

�e cloud can �nd the initial basic feasible solution for the se-

cure LP by computing the following: û = B̂−1b̂, where B̂ is the set

of basic feasible columns of Â based on a path between the source

and destination nodes.

A�er the cloud �nds the concealed starting basic feasible so-

lution û, it executes the revised Simplex algorithm’s main itera-

tion with the secure LP’s matrices until convergence [3]. Once the

cloud �nds the solution to the secure LP, i.e., û∗, it calculates a

concealed optimal objective value as follows: ϕ(û∗) = ŵ⊤û∗, and

transmits it to the users. Finally, both Alice and Bob can recover

the original objective value by computing ϕ(u∗) = αβ−1ϕ(û∗).

Note that since we are dealing with a shortest path problem on

a DAG, the revised Simplex algorithm is guaranteed to converge.

Since Alice and Bob only perform operations with their own se-

quences, their overall computational complexity in the SPSA algo-

rithm is O(n) and O(m), respectively, which is lower than O(mn),

i.e., the complexity for users solving PSAs by themselves.

Also note that the cloud is unable to learn private information

about the users because it only has access to the securely trans-

formed sequences, and the securely transformed edit operation

costs. In particular, the cloud would need to �nd the σyi ’s and

σxi ’s used to transform x and y based on the elements of x̂ and

ŷ. However, �nding σyi ’s or σxi ’s requires the cloud to break the

PBC encryption in Section 2 by solving a discrete logarithm under

a multiplicative cyclic group G1 of order q, which has no known

polynomial time solution.

A Parallel Implementation for the SPSA. Since Alice and

Bob are interested in solving (1) repeatedly many times as de-

scribed in Section 2, we propose an scheme for them to solve a

large amount of PSAs at the cloud in parallel. Speci�cally, suppose

Alice and Bob hold the private sequence sets Y = {y1, y2, . . . , yN }

and X = {x1, x2, . . . , xN }, respectively, and outsource to the cloud

the following PSAs: Φ̂i = (ŷi , x̂i ) (for all i ∈ [1,N ]), where (ŷi , x̂i )

is a tuple that denotes the alignment problem in (1) with the con-

cealed sequences as inputs, and N is the number of sequence pairs

held by Alice and Bob.

Since the sequence transformation and concealed PSAs Φ̂i ’s are

independent from each other, they can be computed in parallel. In

particular, to conceal their sequences, Alice �rst �nds the buckets

Bi
l
’s, and random numbers α i as described in Section (3) for all

i ∈ [1,N ], and securely shares them with Bob. Similarly, Bob �nds

βi for all i ∈ [1,N ] and securely sends them to Alice. �en, Alice

and Bob compute Ŷ and X̂, i.e., the concealed sequences in Y and

X, and the concealed substitution costs ĝ’s for all characters and

for all sequences, and upload them to the cloud. A�er the cloud

receives the concealed values, it can solve Φ̂
i for all i ∈ [1,N ]

in parallel, without interacting with neither Alice or Bob. A�er

solving the PSAs, the cloud returns the results to Alice and Bob,

who then retrieve the solution to the original PSA by computing:

ϕ(u∗(i)) = α iβ−1(i)ϕ(û∗(i)). Note that �nding the buckets Bl ’s and

generating random scalars α i and βi for a large number of PSAs

are one-time operations and can be done e�ciently. Besides, the

cloud can begin to solve the PSAs as soon as a pair of concealed

sequences becomes available, without the need to wait for Alice

and Bob to �nish concealing their sequences.

6 EXPERIMENT RESULTS

To closely replicate a practical cloud computing scenario, we run

Alice and Bob’s part of the SPSA algorithm on a laptop with a dual-

core 2.6GHz CPU, 8GB RAM memory, and a 150GB solid state

drive, and the cloud part on an Amazon Elastic Compute Cloud

(EC2) cluster using m4.large instances, which each have 2 CPUs

and 8GB RAM. We implement the linear algebra computations on

Matlab 2015b, the pairing-based cryptography operations in C us-

ing the Pairing-Based Cryptography (PBC) Library, and the Sim-

plex algorithm with IBM’s CPLEX. We test the performance of our

algorithmwith beta protein sequences taken from the Protein Data

Bank [2] of the same size, that is n =m. We also employ randomly

generated sequences to compare the SPSA with previous works.

We �rst analyze the computing time of our secure outsourcing

algorithm SPSA at both the user and at the cloud. In Fig. 2(a),

we observe that a user, i.e., Alice or Bob, can transform sequences

very quickly, even for large n andm. For example, the computing

time of the user when the length of its sequence is 1000 characters

is only 9.3s. Besides, in Fig. 2(b), we observe that the computing

time of the cloud increases with the length of the sequences.

We also investigate the scalability of our SPSA algorithm by

comparing its overall computing time with di�erent cloud cluster

sizes with the least computing time that we can expect. To �nd

this theoretical lower bound on the computing time of the cloud,

we take the overall computing time with a one-node cluster and
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divide it by the number of nodes in the cluster. Fig. 2(c) shows

both the SPSA’s computing time and the lower bound on the com-

puting time for solving 100 PSAs under di�erent cluster sizes. We

observe that our algorithm is very close to the lower bound on

the computing time. �is is due to the ability of the SPSA to inde-

pendently solve linear programs at di�erent nodes. �erefore, our

secure outsourcing algorithm is scalable, which is a crucial require-

ment to solve a large number of PSAs within a feasible amount of

time.

Next, we compare the overall computing time of the SPSA al-

gorithm with di�erent cluster sizes with that of [12] in Fig. 2(d).

We observe that our algorithm o�ers signi�cant time savings com-

pared to [12] with only a modest amount of computing nodes at

the cloud. For example, in Fig. 2(d), we observe that for 500 PSAs

with input sequences of length n =m = 200 the algorithm by [12]

takes 183 minutes, while the SPSA algorithm with a 5-node clus-

ter only takes 83 minutes. �is is due to the ability of the SPSA to

solve many linear programs at the cloud in parallel without hav-

ing to interact with the users. In contrast, the garbled circuits in

[12] require the users to participate in circuit evaluation, which

prevents them from solving PSAs in parallel1.
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(a) Computing time at the users for
problems with sequences of di�erent
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Figure 2: Performance evaluation of the proposed secure pairwise

sequence alignment (SPSA) algorithm.

7 CONCLUSIONS

In this paper, we have investigated the problem of two users,

each holding a private sequence, securely outsourcing pairwise se-

quence alignments (PSAs) to the cloud. To protect the users’ pri-

vate data, we develop a sequence transformation scheme that has

low computational complexity. �en, based on the Simplex algo-

rithm, the cloud solves the PSA under the transformed sequences,

1�e authors in [12] implemented their algorithm on a PC with similar characteristics
to the EC2 m4.large instance used in our simulations

and sends the results to the users, who can �nd the solution to

their original PSA with minimal computing resources. Di�erent

from previous works, our algorithm can solve an arbitrary num-

ber of PSAs at the cloud in parallel, which signi�cantly reduces the

computing time. Our results show that the proposed algorithm is

scalable and can reduce computing time of a large number of PSAs

by more than 50% with as few as 5 computing nodes at the cloud.
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