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Physically Based Modeling and Simulation for

Virtual Environment based Surgical Training

Abstract

by

SURIYA NATSUPAKPONG

Traditional medical education has relied on training with real patients in actual

clinical setting under the supervision of an experienced surgeon. Novice surgeons

can make mistakes that result in risks to patient safety. Computer simulation-based

training has been proposed to complement traditional training to improve patient

safety and surgeon efficiency and reduce cost and time. Surgical simulation allows

surgeons to learn, practice and repeat surgical procedures to gain experience in a

realistic and safe environment.

This dissertation focuses on the development of computer-based surgical simu-

lations. Physically based modeling is used to model deformable objects to mimic

human organs in simulation. Such a simulation is composed of many simulation

objects whose behaviors are represented by differential equations. The system of

differential equations can be solved by using numerical integration algorithms. More-

over, physical intersections between the objects require the computation of collision

detection and response between objects. This dissertation studies the determination

of elasticity parameters in lumped element models, the trade-offs in numerical inte-

gration algorithms for finding the suitable numerical integration algorithms and time

step size of simulation objects, and the collision detection and response algorithms

for deformable objects. Improvements and extensions of the open source/open archi-

tecture GiPSi surgical simulation framework are also presented. An endoscopic third

ventriculostomy simulator is constructed using the GiPSi framework as a test bed of

the specific tools and methods developed.



Chapter 1

Introduction

Traditional medical education has relied on training with real patients in actual

clinical setting under the supervision of an experienced surgeon. Novice surgeons

can make mistakes that result in risks to patient safety. Moreover, the traditional

apprenticeship-based training is time consuming and costly. Simulation-based train-

ing has been proposed to complement traditional apprenticeship-based training in

surgery to improve patient safety, reduce cost and improve efficiency. Surgical sim-

ulation allows surgeons to learn, practice and repeat surgical procedures to gain ex-

perience in a realistic and safe environment. Moreover, surgical simulation provides

an opportunity to practice technical and problem-solving skills in a short period of

time.

Surgical simulation can be classified into three groups [5], which are model-based

simulation, computer-based simulation, and hybrid simulation. In model-based sim-

ulation, special materials, such as latex and silicon, are used to reproduce a part

of human body to simulate the specific surgical procedure. This kind of simulation

is used in many hospitals for practicing simple surgical procedures. The drawback

of model-based simulation is that it is not interactive and hence does not give the

surgeon feedback like real procedures. In computer-based simulation, virtual envi-

1



Figure 1.1: Computer-based surgical simulator concept.

ronments that mimic human organ behavior, along with the force feedback from the

haptic devices, are used. Computer-based simulation is an active research area, e.g.

[6, 7, 8, 9, 10, 11]. Hybrid simulation uses a combination of physical model-based and

computer-based to make a complete simulation with look and feel like a real surgery.

The example of hybrid simulation is the ProMIS system [12].

This study focuses on a development of computer-based surgical simulations,

which are physically based modeling to model deformable objects used in simula-

tion to mimic human organs. Such a simulation is composed of many simulation

objects whose behaviors are represented by differential equations. The system of

differential equations can be solved by using numerical integration. Moreover, the

intersection between the objects in the virtual environment requires modeling and

computation of collision detection and response between objects. This work is based

on GiPSi framework and extends the functionality into GiPSi as well as developing

the endoscopic surgical simulator as the test bed.

1.1 Surgical Simulator Concept

The objective of a computer-based surgical simulator is to help novice surgeons to

practice surgical procedures to improve their skills (Figure 1.1). This means that the

computer-based surgical simulator should have the following requirements:

2



(a) The simulator should give the realistic behaviors. The simulation contains

many simulation objects and their interactions. Therefore, each simulation ob-

ject should mimic the natural behaviors of real biological tissue. Physically

based models use the laws of physics to model and simulate deformable object

behaviors. It is also necessary to efficiently and realistically simulate the phys-

ical interactions between objects by employing suitable collision detection and

response algorithms.

(b) The simulator should give the tactile feedback. By using a haptic technology,

the simulator can calculate a force feedback from simulation object interaction.

And then, send a result to haptic device to render force to a surgeon to sense

the tool-tissue forces.

(c) The simulator should give the realistic visualization. By using computer graphic

technology, the simulator can create a realistic environment in simulation.

(d) The simulator should maintain the numerical stability. The simulation uses

numerical integration methods to simulate the behavior of physical models.

Ensuring numerical stability of the integration methods employed is an essen-

tial requirement as numerical instability is a common problem encountered in

practice.

1.2 Simulator Architecture

The presented research extensively uses the GiPSi (General Interactive Physical Simu-

lation Interface) [8] framework, which is an open source/open architecture framework

for developing surgical simulations (Figure 1.2). The general simulator architecture

contains five main components, which are simulation objects, numerical integration
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Figure 1.2: GiPSi: an open source/open architecture framework.

tools, collision detection and response tools, input/output modules, and simulation

kernel.

Simulation objects. A scenario of surgical simulation contains many human or-

gans, which are represented by simulation objects. Each simulation object has two

main components: geometric model and physical model. The geometric model rep-

resents the information related to visualizing of the object to user via the display

output, where as the physical model represents the dynamic behavior of the simula-

tion object. High fidelity computer-based surgical simulations are made possible by

creating simulation of physical models which capture the dynamic behavior of biolog-

ical tissues. To achieve an accurate physical model, the study of biological properties

is required (e.g. [13]). Biological tissues are anisotropic, inhomogeneous, nonlinear

materials, and large deformations. Realistic simulation of biological behavior is one of

the most challenging research areas. As surgical simulations need to run at interactive

speeds, computationally efficient approximation is commonly employed. There are

many approaches used to model the deformation object; for example, finite element

4



models, and lumped element models.

Numerical integration tools. The physical model representing a biological tissue

is governed by the fundamental laws of physics and the relationship between these

laws which apply universally to the simulation. Combining the laws of physics and

their relations produce complex systems of mathematical equations, which usually

are partial differential equations. Because the system of equations is complex and

cannot be solved by using analytical methods, numerical methods are used instead,

which require discretization and computation of the physical values at precise points

in space and time.

Collision detection and response. A surgical simulation scene is composed of many

simulation objects representing human organs and virtual surgical instruments. They

need to interact with each other when their boundaries are in contact, otherwise

the simulation objects could go through other simulation objects. To produce the

interaction between simulation objects with realistic behaviors, collision detection

algorithms need to compute the overlapping space and collision response algorithms

need to separate the simulation objects by specific some constrain to that overlapped

simulation objects.

Input/output modules. A user interfaces interacts with a user via the input/output

subsystems which are haptic and visualization tools. The haptic tool is an input/out-

put module that can retrieve positions of the surgical instrument (haptic device) from

the user into the simulation and render force feedback to user to feel the interaction.

The visualization tool is an output module that provides the graphic representation

of simulation objects and the scenario of the simulation in three-dimensional space.

Simulation Kernel. A simulation kernel is a heart of simulator to manage simula-

tion objects, communicate between the components, specific order of execution, and

control simulator state.
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1.3 Contributions

This thesis has five primary contributions. We proposed a novel method to determine

elasticity parameters in lumped element models by using a finite element model as a

reference model and using optimization techniques to determine the parameters. We

studied in depth several numerical integration methods used in simulation to identify

underlying trade-offs as a function of material properties. Third, we designed and

implemented a novel collision detection and response method that is specifically suit-

able to be integrated into the GiPSi framework as an auxiliary function component.

We extended the functionality of the GiPSi open source/open architecture surgical

simulation framework to introduce networked simulation functionality. Finally, we

developed an endoscopic third ventriculostomy simulator as a test bed platform.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, the determination

of elasticity parameters is presented. The in depth study and comparison of numer-

ical integration algorithms used in simulation to identify underlying trade-offs as a

function of material properties are presented in Chapter 3. In Chapter 4, the presen-

tation of the algorithms for collision detection and response in deformable objects is

presented. The improvement the design of the GiPSi framework architecture and the

extension of the GiPSi framework to networked operation are presented in Chapter 5.

Followed by the endoscopic third ventriculostomy simulator as a test bed is presented

in Chapter 6. Finally, Chapter 7 discusses the conclusions and the future research

direction.
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Chapter 2

Elasticity Parameters

Determination in Lumped Element

Models

2.1 Introduction

Dynamic simulation of deformable objects in real-time for interactive virtual envi-

ronments is an active area of research. The application that motivates this study is

the virtual environment-based surgical training simulator, where real-time deformable

tissue simulation is one of the enabling technologies. Virtual environments provide

a complementary approach to the traditional method of training in surgery, which

is primarily done through apprenticeship. The idea behind using surgical training

simulators is similar to using flight simulators to train pilots. Virtual environments

provide an environment where there is no risk to a patient and therefore less stress-

ful. They are interactive and three-dimensional in contrast to study from textbooks,

and they are relatively inexpensive compared to training in the operating room or

animal labs. Virtual environments also give a unique advantage, as it is possible to
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generate arbitrary anatomies and pathologies with which the surgeons can be trained

for cases that they will encounter only a few times during their whole career but

nonetheless must be trained for. However, effective virtual surgical environments re-

quire an interactive three-dimensional simulation environment, where the surgeons,

using a haptic interface, can manipulate, cut, or suture dynamically and geometrically

correct models of organs and tissues simulated on a computer.

The deformable tissue modeling approaches in the literature can be grouped in

the following four broad categories: lumped element models (also known as mass-

spring-damper models), finite element models (linear and nonlinear), particle based

models, and parametric models.

Lumped element models (LEM) are meshes of mass, spring and damper elements

[13, 14, 15]. Lumped element models are the most popular models for real time

surgical simulators, because they are natural extensions of other deformable models

used in computer animation. Lumped element models are conceptually simple, and

possible to construct models, which can be simulated at interactive speeds. There are

many applications used lumped element model, for example, Provot [16] used a mass

and spring system to model a deformable cloth. Bourguignon and Cani [17] presented

a method to controlling anisotropy of mass spring system in volumetric deformable

models, such as human organs.

Finite element models (FEM) are used as a step to get closer to using models with

physically based parameters [18, 19, 20]. Linear finite element models are computa-

tionally attractive as superposition can be used, and possible to perform extensive

off-line calculations to significantly reduce the real-time computational burden. How-

ever, linear models are based on the assumption of small deformation, typically less

than 1%, which is not valid for much of the soft tissue manipulation during surgery.

These models cannot handle rigid motions either [21]. Linear models lose their com-

putational advantage under topology changes, e.g., as a result of cutting, as the
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off-line calculations cannot be used. To address this last problem, Delingette et al.

[22] proposed to use lumped element models locally where there is topological change

(such as cutting) and use a linear finite element model for the rest. Nonlinear fi-

nite element models are highly accurate models, which take into account nonlinear

constitutive behavior of the materials as well as large deformation effects. They are

generally regarded as the gold standard for high accuracy computation. However,

these models are computationally very intensive and therefore not suitable for real-

time simulation in their basic form [23, 24, 21]. Recently, a lot of research effort has

been focusing on improving computational performance of these models. For exam-

ple, Wu et al. proposed to use mass lumping and adaptive mesh refinement [25], and

multigrid simulation [26] to achieve higher performance with nonlinear FEM. Müller

et al. [27, 28] proposed a corotation-based approach for finite element models to im-

prove the artifacts from large deformation. Nesme et al. [29] presented a FEM-based

physically plausible modeling method. As well as, Irving et al. [30] presented an

invertible finite element algorithm for simulating large deformations.

Particle based models model the deformable object continuum as a collection of

loosely coupled finite volume particles, such as simulating a deformable object as a

collection of elastic spheres (for example, as proposed by Conti [31]). The interaction

of these particles between themselves and with the external forces determine the

behavior of the deformable object. These models are not really intended to accurately

model real tissue behavior, but to have a plausible looking tissue behavior achieved

through minimal computation.

Parametric models include commonly used free form [32] and spline based [33]

deformable models where location of some control points determines locally the shape

of the deformable object. Another method for parametric modeling of deformable

objects was proposed by Metaxas [15] where a very small number of parameters

characterized globally the shape of a large geometric model of a deformable body,
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e.g. using the semi-axis lengths and principal-axes directions to parameterize an

ellipsoid. Parametric models are not physically based, and like particle based models,

not intended to accurately model with real tissue behavior, but to have fast and

plausible looking at interactive responses.

The two most commonly used deformable object models are finite element mod-

els and lumped element models. As mentioned earlier, lumped element models are

conceptually simple and computationally more efficient compared to finite element

models. A common problem with the lumped parameter models used in literature

is the selection of component parameters: spring constants, damper constants, and

nodal mass values. There is no general physically based or systematic method in the

literature to determine the element types or parameters from physical data or known

constitutive behavior. The typical practice in the literature is somewhat ad hoc, the

element types and connectivities are empirically assumed, usually based on the struc-

ture of the geometric model, and the element parameters are either hand tuned to

get a reasonable looking behavior or estimated by a parameter optimization method

to fit the model response to an experimentally measured response. For example,

Joukhadar et al. [34, 35] used a predefined mesh topology and then determined the

element parameters with a genetic algorithm search technique. Bianchi et al. [36, 37]

used a genetic algorithm based method to determine the mesh topology and stiffness

of mass-spring models by using finite element models as reference. Deussen et al. [38]

used a search method based on simulated annealing algorithm to determine optimum

mass-spring parameters in two dimensions.

There are several studies in the literature which determine lumped element model

parameters by using continuum mechanics, elasticity and finite element theory. Van

Gelder [39] proposed a formulation to approximate the spring constants in triangular

mesh of isotropic, linearly elastic materials. He also extended to three dimensions.

The experimental results showed that his model can approximate the deformation of
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an isotropic elastic membrane with limit condition of Poisson’s ratio of zero. Ma-

ciel et al. [40] proposed techniques to model a soft tissue from real biological tissue

properties by using a generalized mass spring model (molecular model) with four

different methods; however, none of these methods worked unconditionally. Baudet

et al. [41, 42] proposed an approach similar to Van Gelder but for rectangular and

hexahedral elements. They also introduced a correction force orthogonal to the elon-

gation force to correct the effects of non-zero Poisson’s ratio and compared results

with finite element model simulations. In 2000, Cavusoglu [43], proposed a method to

determine elasticity parameters of a lumped element (mass-spring) model by approx-

imating the stiffness matrix of the finite element model with the stiffness matrix of

the lumped element model. More recently, Lloyd et al. [44] introduced a method for

identification of spring constants of lumped element models from the finite element

models in triangular, rectangular, and tetrahedral meshes. Their method produced

the better approximative results when the spring constants had been calculated for

the specific value of Poisson’s ratio with pre-strained springs in two-dimensional el-

ement (rectangular meshes), and with volume preserving forces in three-dimensional

element (tetrahedral meshes). Wang and Devarajan [45, 46] presented mass-spring

models for one and two dimensions derived from explicit continuum expressions with

a preloaded spring model to improve the accuracy.

In this chapter, a method to determine the mass and spring constants of lumped

element models is presented. The proposed method to determine component param-

eters is based on approximating the input-output relations of finite element model

“elements” with lumped element model “elements.” The spring constants are deter-

mined through an optimization that minimizes the matrix norm of the error between

the stiffness matrices of the lumped element model and a corresponding finite element

model of the same object. Our method uses an approach similar to the methods of

[43] and [44]. However, the method proposed in this study is uses an optimization
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to find the lumped element model parameters that best fit the finite element model

response, while the method presented in [44] calculated the lumped element model

parameters from equating the stiffness matrices from lumped element and finite ele-

ment model. Furthermore, in the present study, the method has also been developed

for tetrahedral and hexahedral elements, whereas [44] is limited only to tetrahedral

elements.

The proposed method is developed for two dimensions with triangular and quadri-

lateral elements and for three-dimensional volumetric objects with tetrahedral and

hexahedral (brick) elements. In the next section, the basic continuum theory of elas-

tic bodies and the finite element and lumped element models are summarized in order

to formulate the problem and introduce the notations. The formulation of the soft

object deformation using these two models are also compared to make some basic

observations in section 2.2. Then, the proposed method is presented in detail in sec-

tion 2.3. After that, the experimental results are presented in section 2.4, followed

by concluding remarks in section 2.5.

2.2 Background and Formulation

2.2.1 Continuum Equations for Elastic Bodies

In order to be able to systematically study the methods mentioned above, we first

formulate the underlying physical problem. Consider the deformable body B, which

is a regular region in <3. B is also called the reference configuration. p ∈ B are the

body coordinates of the material points. A deformation f : B → <3 of a body is a

one-to-one smooth mapping that maps each material point p to a point x = f(p) in

a spatial frame. A motion x : B × < → <3 of a body is a C3 function where for each

t, x(p, t) is a deformation. (Figure 2.1)

The total Lagrangian form of the field equations that govern the dynamic behavior
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Figure 2.1: Motion of a body.

of elastic bodies are given by [47, 48, 49]:

S = FS̄(C),

C = FTF , F = ∇x, (2.1)

Div S + b0 = ρ0ẍ in B,

where F is the deformation gradient, S is the first Piola-Kirchhoff stress tensor,

S̄ is the second Piola-Kirchhoff stress tensor, C is the right Cauchy-Green strain

tensor, b0 is the body force, ρ0 is the mass density at the reference configuration, ẍ

is an acceleration of x, and ∇ and Div are respectively the gradient and divergence

operators in body coordinates. These field equations are derived from the empirical

physical laws, such as conservation of mass and momentum, and the independence of

the response from observer. The first equation is where the material properties are

included.

The boundary value problems in finite elasticity are obtained by combining the ba-

sic system of field equations given by equation (2.1) with suitable initial and boundary

conditions. Initial conditions are usually specified by the initial motion and veloc-

ity. The type of boundary value problem typically encountered in our application is

specified with:

x(p, 0) = x0(p) , ẋ(p, 0) = v0(p), (2.2)

where x0 and v0 are prescribed functions on B. For boundary conditions, two
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complimentary regular subsets S1 and S2 of ∂B, and interior So of B, with ∂B =

S1 ∪S2 , So1 ∩So2 = ∅ are given, where the motion is prescribed on S1 and the surface

traction is prescribed on S2:

x = x̄ on S1 × [0,∞) , Sn = s̄ on S2 × [0,∞). (2.3)

The boundary value problem that needs to be solved or simulated in real time in

order to model the deformation of elastic tissue is given by the system of equations

(2.1, 2.2, 2.3). For the solution of the boundary value problem specified by (2.1, 2.2,

2.3), the partial differential equation (PDE) needs to be spatially and temporally

discretized. Typically, the PDE is first discretized in space, using a method such as

finite element [50, 51] or finite difference [52] to construct a large system of ordinary

differential equations, in the form of an initial value problem. The resulting ordinary

differential equation is then approximately solved in time by numerical integration

methods [53, 51].

2.2.2 Linear Elastic Material Properties

If the displacement gradient is small and the residual stress in reference configuration

vanishes, then the system of field equations gives by (2.1) can be approximated by

linearization. Specifically, if we define displacement

u(p, t) = x(p, t)− p. (2.4)

Then (2.1) can be linearized as [47]

S = C[E],

E =
1

2
(∇u +∇uT), (2.5)

Div S + b0 = ρ0ü,
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where E is the infinitesimal strain, and C is the elasticity tensor. When the material

is isotropic, then (2.5) can be further simplified by

S = S̄ = 2µE + λ(trE)I, (2.6)

where λ and µ are the Lame’s constants. In matrix notation

S =

[
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

]
(2.7)

and

E =

[
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
(2.8)

which are symmetric matrices.

The elastic properties of linear homogeneous isotropic material are more com-

monly represented by two constants, namely Young’s modulus (E) and Poisson’s

ratio (ν). The strain is the change of dimension divided by the dimension itself;

ε = ∆L
L

. The stress is the force divided by the area on which it acts; σ = F
A

. The

Poisson’s ratio is the ratio of transverse contraction strain to longitudinal extension

strain in the direction of stretching force; ν = − εtransverse

εlongitudinal
. The modulus is the ra-

tio of stress to strain, which is a constant depending on the material. The Young’s

modulus is the ratio of tensile stress to tensile strain; E = σ
ε

= F/A
∆L/L

= FL
∆LA

. The

shear modulus which is a commonly used parameter is the ratio of shear stress to

shear strain. The deformation occurs when a force is applied parallel to one face of

the object while the opposite face is fixed; G = σ
τ

= F/A
∆x/L

= FL
∆xA

= E
2(1+ν)

. The bulk

modulus which is another commonly used parameter is the ratio of stress to change

in volume of object; K = P
∆V/V

= PV
∆V

= E
3(1−2ν)

. The Lame’s constants are directly

related to the modulus of elasticity and Poisson’s ratio as: λ = Eν
(1+ν)(1−2ν)

, µ = E
2(1+ν)

.

Two-dimensional elasticity is categorized into two cases: plane strain and plane

stress. Plane strain is used when the thickness of an object is large, while plane stress

is used when the thickness of an object is small compared to its overall dimensions.

Both cases are subset of general three-dimensional elasticity problems. The stress
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strain relation in plane stress case is given by:

[
σxx

σyy

σxy

]
=

 4µ(λ+µ)
λ+2µ

2λµ
λ+2µ

0
2λµ
λ+2µ

4µ(λ+µ)
λ+2µ

0
0 0 µ

[ εxx

εyy

2εxy

]
, (2.9)

and for the plane strain case, it is given by:[
σxx

σyy

σxy

]
=

[
λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

][
εxx

εyy

2εxy

]
. (2.10)

For three-dimensional elasticity, six components of stress and strain exist and the

stresses are related to the strains by Hooke’s law as follows:
σxx

σyy

σzz

σxy

σxz

σyz

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




εxx

εyy

εzz

2εxy

2εxz

2εyz

 . (2.11)

2.2.3 Finite Element Models (FEM)

Finite element method is a systematic technique for obtaining the spatial discretiza-

tion of the PDE describing the continuum behavior of deformable objects. In this

section, we introduce the basic formulation of the finite elements method. Please re-

fer to [50] and [51] for detailed treatments of the finite elements method. Variational

form of the PDE (2.1, 2.2, 2.3) is∫
B
ξ · (ρ0ẍ− b0 −DivS)dV +

∫
S2
ξ · (Sn− s̄)dA = 0, (2.12)

where ξ is the variation of deformation. Divergence theorem gives∫
B
ξ · (DivS)dV =

∫
S
ξ · SndA−

∫
B
S · ∇ξdV

=

∫
S2
ξ · SndA−

∫
B
S · ∇ξdV. (2.13)

Substituting this in the variational form, we get∫
B
ξ · ρ0ẍdV +

∫
B
S · ∇ξdV =

∫
B
ξ · b0dV +

∫
S2
ξ · s̄dA, (2.14)

16



for the weak form of the PDE over the whole body.

Now consider the following finite element approximation on each element

x(p, t) =
n∑
i=1

N e
i x

e
i (t), (2.15)

ξ(p, t) =
n∑
i=1

N e
i ξ

e
i (t), (2.16)

where N e
i , i = 1..n, is the isoparametric set of approximation functions (shape func-

tions), and n is the number of node in element. We can write these in the matrix

form as

xe = [ N e
1 N e

2 · · · N e
n ]


xe1
xe2
...

xen


= N ex̂e, (2.17)

ξe = N eξ̂e, (2.18)

∇ξ →



ξe1,1
ξe2,2
ξe3,3
ξe1,2
ξe2,3
ξe3,1
ξe1,3
ξe2,1
ξe3,2


= Beξ̂e, (2.19)

Be = [ Be
1 Be

2 · · · Be
n ] , (2.20)

Be
i =



N e
i,1 0 0
0 N e

i,2 0
0 0 N e

i,3
N e
i,2 0 0
0 N e

i,3 0
0 0 N e

i,1
N e
i,3 0 0
0 N e

i,1 0
0 0 N e

i,2


, (2.21)

where Be is the strain-displacement matrix. Here we have used the subscript notation,

for example, ξe3,1 is the partial derivative of the third component of ξe with respect
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to its first variable. Substituting all of the above in the weak form, we obtain

ξ̂e T

[∫
Ωe

0

N e Tρ0N
edV

]
¨̂xe + ξ̂e T

[∫
Ωe

0

Be TS(N ex̂e)dV

]

= ξ̂e T

[∫
Ωe

0

N e Tb0dV

]
+ ξ̂e T

[∫
∂Ωe

0

N e T s̄dA

]
, (2.22)

which can be written compactly as

ξ̂e T
[
M e ¨̂xe +Re(x̂e)− F e

]
= ξ̂e T

∫
∂Ωe

0−S20

N e T s̄dA, (2.23)

where

M e =
∫

Ωe
0
N e Tρ0N

edV is the element mass matrix,

Re =
∫

Ωe
0
Be TS(N ex̂e)dV is the stress divergence term,

F e =
∫

Ωe
0
N e Tb0dV +

∫
∂Ωe

0∩S20
N e T s̄dA is the external force vector.

(2.24)

As ξ̂e is arbitrary, at the element level we have

M e ¨̂xe +Re(x̂e) = F e +

∫
∂Ωe

0−S20

N e T s̄dA. (2.25)

After the element level equations are assembled, the resulting system is in the form

M ¨̂x +R(x̂) = F, (2.26)

which is a system of ordinary differential equations.

For the topology of FEM equations, the matrix M e is dense since the element

shape functions N e
I are not typically mutually orthogonal. The matrix M e is some-

times approximated with a diagonal matrix by using nodal quadrature to decrease

computational cost, but this is by no means inherent to the finite element method.

The same is true for the function Re, i.e. the “force” on any node depends on the

nodal variables of all the other nodes within the element, as given above in (2.24) and

(2.25). Therefore, in FEM formulation, the degrees of freedom are fully connected

within an element.

For the assembled set of equations, the variables for the elements are connected

only by the degrees of freedom shared between elements. This results in a typical

banded structure for the matrix M and a similar dependence in the function R.
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2.2.4 Lumped Element Models (LEM)

Lumped element models are meshes of mass, spring and damper elements. Lumped

masses at the nodes of the mesh are interconnected by spring and damper elements.

The equations of motion are the collection of the Newton’s equations written for the

individual nodal masses.

For each nodal mass, the equation of motion is in the form

miẍi +Ki(x) = Fi (2.27)

with Fi being the external force on the node, such as gravity, and

Ki(x) =
∑

{i,j connected}

f(xi,xj) +
∑

{i,j,k connected}

g(xi,xj,xk), (2.28)

where f(·, ·) is the force from a linear spring and the g(·, ·, ·) is the force from an

angular spring. A typical expression used for linear springs is

f(x1,x2) = k(‖x1 − x2‖ − L0)
x1 − x2

‖x1 − x2‖
. (2.29)

For the angular springs, the force expression is in the form

g(x1,x2,x3) = k(θ − θ0)

(
x1 − x2

‖x1 − x2‖
× x2 − x3

‖x2 − x3‖

)
× x1 − x2

‖x1 − x2‖
. (2.30)

These expressions are for negative force acting on node x1, due to a spring between

x1,x2 and an angular spring between x1,x2,x3. L0 is the rest length of the linear

spring and θ0 is the rest angle of the angular spring. The angular springs are typically

used to enforce C1 continuity in the mesh. In this work, we use only linear spring for

simplicity.

For the topology of LEM equations, the connectivity in LEM depends on the types

of the springs used. The force on any node depends on the nodes that connected to

through springs. This results in a sparse system of equations, similar to the finite

element models.
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2.2.5 Boundary Conditions

Consider a single deformable body placed on a rigid surface, being manipulated by a

position controlled instrument, as seen in Figure 2.2. The typical boundary conditions

for this case are as follows: At the interface between the deformable body and a

position controlled object (such as ground, which has fixed location, or the instrument,

whose position is specified through the haptic interface), normal displacement of the

nodes is specified as boundary condition. In the tangent directions, the traction is

specified as zero for the frictionless case or proportional to normal force when there

is friction. For the parts of the body that are glued to a location or grabbed by

the instrument, the displacement is specified in all directions. All other boundary

conditions are given as s̄ = 0 (zero traction).

Position boundary conditions can easily be prescribed in all of the modeling meth-

ods previously presented, through the nodal variables in lumped element models, and

through the positional degrees of freedom of the elements in finite element models.

Enforcement of traction boundary conditions is more difficult. In the finite element

method, the traction boundary conditions enter through the
∫
∂Ωe

0∩S2 0
N e T s̄dA term

of F e. In the lumped element method, the traction boundary conditions need to be

somehow converted into nodal forces. However, there is no systematic way to do this.

As there is no counterpart of the approximation functions of FEM in LEM, the way

F e term is systematically calculated in (2.24) cannot be transferred to LEM. When

the type of traction boundary conditions is simple, i.e. zero if there is no friction, it

is possible to get away with this important deficiency of the LEM.

2.3 Determination of Parameters

In finite element models, the parameters of the elements are determined from the

constitutive properties of the material of the object being simulated. For the lumped
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Figure 2.2: Typical boundary conditions of a deformable body being manipulated.

element models, there is no intrinsic method to determine the element parameters

since the models are not actually motivated from approximating the physical behavior

of the object.

As mentioned in the discussion above, one of the main problems of LEM is the

lack of a systematic way to determine element parameters. In the literature, the

parameters of the LEM models are determined through parameter estimation, to fit

the response of the model to an experimentally measured response. If the structure

allows, it may be possible to isolate effects of some parameters or do some approxi-

mations to isolate these parameters and therefore simplify parameter estimation [54].

Otherwise, this can be a very complex optimization problem depending on the number

of parameters used.

Here, we establish a parallelism between the elements in FEM and LEM, and

explore methods for setting up of the LEM mesh and selection of its parameters as

a way to approximate FEM. In the discussion below, without loss of generality, we

look at the two-dimensional case (plane strain∗) in the absence of external forces as

an illustrative example, in order to simplify the notation and equations.

Consider a planar 4 node with C0 continuous isoparametric element for the FEM,

and a 4 mass configuration for the LEM (Figure 2.3). The masses of the LEM mesh

∗Plane strain analysis is used to solve deformation in infinitely long structures, which are uniform
in the third dimension.
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Figure 2.3: 4 node FEM (a) and LEM (b) elements.

are located at the same spatial locations as the nodes of the FEM element. This

configuration of the LEM masses, with the interconnection springs and dampers, is

used as the building block elements of the LEM mesh. At this point, we are not yet

specifying the spring connections between the nodes.

The equations of motion for the FEM and LEM elements are respectively

M e ¨̂xe +Re(x̂e) = 0, m1 0
. . .

0 m4

 ¨̂x +K(x̂) = 0. (2.31)

The matrix M e is dense, but if we use nodal quadrature, it is possible to get a diagonal

approximation for the M e in FEM. This is a commonly used approximation in FEM

to improve computational efficiency (e.g [25]). For the LEM, we can choose

mi = me
ii, (2.32)

therefore getting a physically based value for the nodal mass. Then, if we can ap-

proximate Re(x̂e) with K(x̂), we can use the LEM for approximating FEM, avoiding

the parameter determination problem. If we observe at the structure of the function

Re(x̂e),

Re(x̂e) =

 Re
1(xe1,x

e
2,x

e
3,x

e
4)

Re
2(xe1,x

e
2,x

e
3,x

e
4)

Re
3(xe1,x

e
2,x

e
3,x

e
4)

Re
4(xe1,x

e
2,x

e
3,x

e
4)

 , (2.33)
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and comparing the FEM equations with the LEM equations,

Re
i (x̂

e) =

∫
Ωe

0

Be T
i S(x̂e)dV,

Ki(x̂) =
∑

{i,j connected}

f(xi,xj), (2.34)

we observe that the nonlinear functions Re
i (x̂

e) needs to be approximated by the

function Ki(x̂), which is the sum of the spring forces on node i. Performing an

optimization over the nonlinear functions Re
i (x̂

e) and Ki(x̂) would be computationally

complex. Instead, we linearize the two models, and perform an optimization to

identify the LEM parameters that most closely match the linearization. This actually

has the effect of matching the tangent behavior of the two original nonlinear models.

Also, the linear case enables us to make some basic observation, which gives us

important insights.

For the LEM element, we need to linearize expression for the spring forces by

using Taylor series expansion. The result is[
∆fi
∆fj

]
=
[

∂f(xi,xj)

∂xi

∂f(xi,xj)

∂xj

] [
ui
uj

]
, (2.35)

where u = x− x(0) is the displacement,

∂f(xi,xj)

∂xi
= −∂f(xi,xj)

∂xj
=

[
A

ui,uj

1 B
ui,uj

1,2

B
ui,uj

2,1 A
ui,uj

2

]
, (2.36)

Aui,uj
p = ki,j

(
1− L0

‖xj − xi‖
‖xj − xi‖2 − (xjp − xip)

2

‖xj − xi‖2

)
, (2.37)

Bui,uj
p,q = ki,j

(
L0

‖xj − xi‖
(xjp − xip)(xjq − xiq)

‖xj − xi‖2

)
. (2.38)

Define

Ki,j = −
[
A

ui,uj

1 B
ui,uj

1,2

B
ui,uj

2,1 A
ui,uj

2

]
(2.39)

to simplify the notation. Note that Ki,j = Kj,i. Then, the linearized equations for

LEM is

K(x̂) ≈ Kû (2.40)
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Figure 2.4: A fully connected 4 node LEM element.
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Figure 2.5: 4 node master FEM element.

and the K matrix has entries for each of the springs. For example, if we consider the

LEM element of Figure 2.4 we get

Ke =

K1,1 K1,2 K1,3 K1,4

K2,1 K2,2 K2,3 K2,4

K3,1 K3,2 K3,3 K3,4

K4,1 K4,2 K4,3 K4,4

 , (2.41)

where Ki,i = −
∑4

j=1,j 6=iKi,j.

For the FEM element

Re(x̂e) ≈ Reû, (2.42)

Re =

∫
Ωe

0

Be TDBedV, (2.43)

where D is the matrix which transforms strain vector to stress vector (σ = Dε). For

brevity, we are using the same symbol for the nonlinear function and matrix for the

linear case, since they are distinguishable from the context.

At this point, to simplify the calculations, we further assume that the element in

the reference configuration is the same as the master element Ω̂ (Figure 2.5) and the
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deformable object is a homogeneous linear isotropic material. Then,

Re =

∫
Ωe

0

Be TDBedxdy

=

∫
Ω̂

Be TDBe|J |dξdη (2.44)

=

∫ 1

−1

∫ 1

−1

Be TDBe|J |dξdη,

Re
i,j =

∫ 1

−1

∫ 1

−1

Be T
i DBe

j |J |dξdη, (2.45)

where J is the Jacobian operator relating the natural coordinate derivatives to the

local coordinate derivatives. For an isoparametric element, the shape functions in the

natural coordinate are

N e
1 =

(1− ξ)(1 + η)

4
,

N e
2 =

(1 + ξ)(1 + η)

4
,

N e
3 =

(1 + ξ)(1− η)

4
, (2.46)

N e
4 =

(1− ξ)(1− η)

4
,

and for an isotropic plane strain

D =

[
λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

]
, (2.47)

Be
i =

[
N e
i,1 0
0 N e

i,2
N e
i,2 N e

i,1

]
, (2.48)

where λ and µ are the Lame’s constants of the material. If we evaluate the equation

(2.45), we get
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(2.49)

We can make one observation here, on how to determine the required connectivity

of the LEM elements. The matrix Re does not have a zero block. This is because

the degrees-of-freedom in this FEM element are all coupled. Therefore, for the LEM

element to be able to have a behavior similar to the FEM element, it needs to be

fully connected, as shown in Figure 2.4.

Since the material is assumed to be isotropic, the LEM element has to be sym-

metric and Ke has only two independent parameters, kedge and kdiag, as the following

kedge = k1,2 = k2,3 = k3,4 = k4,1, (2.50)

kdiag = k1,3 = k2,4. (2.51)

If we evaluate (2.39), we get

Ke =



kaa −kdd

2
−kee 0 −kdd

2
kdd

2
0 0

−kdd

2
kaa 0 0 kdd

2
−kdd

2
0 −kee

−kee 0 kaa kdd

2
0 0 −kdd

2
−kdd

2

0 0 kdd

2
kaa 0 −kee −kdd

2
−kdd

2

−kdd

2
kdd

2
0 0 kaa −kdd

2
−kee 0

kdd

2
−kdd

2
0 −kee −kdd

2
kaa 0 0

0 0 −kdd

2
−kdd

2
−kee 0 kaa kdd

2

0 −kee −kdd

2
−kdd

2
0 0 kdd

2
kaa


, (2.52)

where kee = kedge, kdd = kdiag, and kaa = kdiag

2
+ kedge. Re for the FEM element also

has two independent parameters, namely, Lame’s constants, λ and µ. Then, at first

we may think that it should be possible to construct the LEM element which has

the same input-output behavior as the FEM element. However, it is not too difficult

26



to see that this is not true, if we look at the individual terms of the matrices Ke

and Re. Each subblock Re
i,j depends on both of the parameters (λ, µ), but this is

not the case for Ke
i,j, which depends only on single parameter (ki,j). Therefore, in

block by block sense, the LEM element cannot represent the Poisson’s ratio and bulk

modulus simultaneously. It is also informative to note that there are some structural

differences between these blocks as well, which can be observed from (2.49). Ke
i,j is

always symmetric (see (2.39)), but same is not true for Re
i,j, whose corresponding

off-diagonal terms may or may not have the same sign. Also, the diagonal terms of

Ke
i,j are always positive, but the diagonal terms of Re

i,j may be positive or negative.

The difference between the behavior of the FEM and LEM elements comes from

the fact that the interaction between the nodes is restricted to be some form of spring-

like behavior in LEM, whereas there is freedom in FEM. This restricts the physical

material behavior that LEM models can represent.

It is also possible to consider adding angular springs within the LEM element.

This would enrich the behavior of the LEM element. However, addition of angular

springs would decrease the computational attractiveness of the LEM because of the

increased computational complexity. We leave this for future work.

To approximate FEM element behavior with an LEM element, at least for the

linear case, we need to perform the following optimization

(kedge, kdiag) = arg inf
kedge,kdiag

∥∥Re(λ, µ)−Ke(kedge, kdiag)
∥∥ (2.53)

in some norm. There are two different norms used in this study, which are the

Frobenius norm and induced 2-norm. The Frobenius norm is the square root of

the sum of the absolute squares of its elements, which the elastic parameters can

determine by using algebra solver. The induce 2-norm is the square root of the

maximum eigenvalue of the matrix conjugate transpose and matrix itself, which the

elastic parameters can determine by using optimization technique. The most natural

choice would be the induced 2-norm, which looks at the input-output behavior of the
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two matrices.

For this particular example, if we use the Frobenius norm, the blocks will be

decoupled, and we can get a simple closed form solution for the kedge and kdiag values

that minimize the error:

Re
1,2 =

[
−λ

3
− µ

2
−λ

4
+ µ

4
λ
4
− µ

4
λ
6

]
Ke

1,2 =

[
−kedge 0

0 0

]
(2.54)

gives

kedge =
λ

3
+
µ

2
(2.55)

and

Re
1,3 =

[
−λ

6
− µ

2
λ
4

+ µ
4

λ
4

+ µ
4
−λ

6
− µ

2

]
Ke

1,3 = 1
2

[
−kdiag kdiag

kdiag −kdiag
]

(2.56)

gives

kdiag =

(
λ

6
+
µ

2

)
+

(
λ

4
+
µ

4

)
=

5λ

12
+

3µ

4
(2.57)

for the element configurations we assumed.

At this point, it is important to observe that, even though it is possible to find

a unique (kedge, kdiag) pair for every (λ, µ), it is impossible to make the error equal

to zero. This is because of the fact that the stiffness matrices of FEM “elements”

and LEM “elements” are structurally different. Therefore, it is not possible to select

LEM parameter to exactly match the FEM behavior even though they may have

same number of parameters.

If we use the 2-norm or consider different element geometries, the unknown pa-

rameters will not be decoupled, and we cannot get a closed form solution; therefore,

optimization techniques need to be used to find the best solution. This optimiza-

tion to determine LEM parameters need to be performed for every different element

configuration, since the linearization depends on the geometry of the elements.

We can summarize the proposed method as follows:

(1) We construct the LEM of the deformable object as composed of “elements” or

building blocks that are fully connected, rather than having an arbitrarily con-
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nected mass-spring mesh. These building block LEM “elements” are used to

approximate the stiffness characteristic of FEM “elements” of same size and ge-

ometry.

(2) For each of the LEM “elements”:

a) A linearized LEM “element” stiffness matrix Ke is calculated using (2.35)-

(2.40). This stiffness matrix is parameterized by the (unknown) spring con-

stants of the LEM, and gives the tangent behavior of the LEM.

b) A FEM element with same geometry as the LEM “element” is constructed.

The stiffness matrix Re for the FEM element is calculated with (2.24), using

a linear elastic model (e.g. (2.11)). This FEM stiffness matrix is parameter-

ized by the (known) constitutive parameters of the material, and gives the

tangent behavior of the FEM.

c) An optimization is performed to identify the LEM element parameters that

minimize the error ‖Re −Ke‖, similar to (2.53), using a suitable matrix

norm.

d) The nodal mass values of the elements are calculated using (2.32), where

me
ii are given by (2.24).

(3) The LEM is “assembled” by adding the nodal mass values and spring constants

for overlapping lumped masses and springs from neighboring “elements”.

As these optimizations to identify LEM component parameters are conducted off-

line when the object model is constructed, it is not impact the on-line computational

efficiency of the LEM. This optimization can also be performed at the whole object

level instead of per element. However, this would not be practical as its computation

cost will be prohibitively large and it will be prone to local minima problems. Fi-

nally, the optimization in step 2(c) can also be performed using the nonlinear forms of
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Re(x̂e) and Ke(x̂) by evaluating these at a collection of p values, x̂ei = x̂i, i = 1, ..., p,

and minimizing a cost function
∑p

i=1 ‖Re(x̂ei )−Ke(x̂)‖2, defined with a suitable vec-

tor norm. However, this optimization would also be computationally intensive, and

therefore has not been pursued in this study.

2.4 Simulation Results

In this section, the simulation results were presented to validate and demonstrate our

proposed method. The simulation experiments were implemented by using Mathe-

matica, MATLAB, and C++ with GiPSi framework [8] environments. In our simu-

lation, the simulated objects had the Young’s modulus of 10 kPa and the Poisson’s

ratio of 0.3, unless otherwise stated. In two-dimensional examples, a plane stress case

was used. Four different configurations of LEM “element” meshes were considered.

In the planar examples, triangular and quadrilateral meshes were used and for three-

dimensional volumetric object examples, tetrahedral and hexahedral meshes were

used. In order to provide quantitative results, the percentage of root mean square

error, %erms, and the percentage of maximum error, %emax, of Euclidean distance

between FEM and LEM nodes were calculated by %erms = erms

omax
∗ 100 and %emax =

emax

omax
∗ 100, where erms =

√
1
n

∑n
i=1(xFEMi − xLEMi )2, emax = max |xFEMi − xLEMi |,

omax is the maximum Euclidean distance between the undeformed configuration and

the deformed configuration of FEM, n is the number of nodes in the models, and

xFEMi and xLEMi denote the positions of corresponding nodes of the FEM and LEM.

In the figures showing simulation results, the color and type of line identify the ob-

ject configuration. The original configuration of object is shown with dotted gray

lines, the deformed configuration of the FEM is shown with dashed blue lines and

the deformed configuration of the LEM is shown with solid red lines. Simulation

results which compared the deformation of various two and three-dimensional test
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objects were reported in section 2.4.1. The use of two different matrix norms during

the optimization in step 2(c) of the algorithm were also compared in this section.

The norms used in experiments were the Frobenius norm and the induced 2-norm.

The elastic parameters were calculated symbolically in the Frobenius norm case using

Mathematica and numerically in the induced 2-norm case using MATLAB. In section

2.4.2, specially designed specimen were used to determine the mechanical properties

of object using the proposed method. In section 2.4.3, if the Young’s modulus and

Poisson’s ratio can be independently set was explored. In section 2.4.4, the compari-

son of the torsion loading effect in linear elastic and nonlinear lumped element models

was observed. In section 2.4.5 and 2.4.6, the effect of resolutions and dimensions in

LEM were observed. Finally in section 2.4.7, simulation results which compared our

method to other similar methods in the literature by using tension, shearing, and

torsion tests were presented.

2.4.1 Test Objects

We demonstrated our proposed method with variety of test objects. In the two-

dimensional case, we used the object shown in Figure 2.6, which represented an

arbitrarily shaped soft tissue approximately 2x6 cm2 in size. In the three-dimensional

case, three objects were used. The first object was a cylindrical object with a radius

of 1 cm and a height of 2 cm shown in Figures 2.7a and 2.7b. This object was

discretized with tetrahedral (Figure 2.7a) and hexahedral (Figure 2.7b) elements. The

second object was a cylinder with the same dimension as the first object but with an

empty spherical hole of radius 0.6 cm inside (Figure 2.7c), which was discretized with

tetrahedral elements. The third object was a cube with dimensions of 2x2x2 cm3

(Figure 2.8), which was discretized with tetrahedral (Figure 2.8a) and hexahedral

(Figure 2.8b) elements. In each object, the boundary was kept fixed on one side and

the tension force was applied in opposite side to make the object deformed at least
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Figure 2.6: Two-dimensional test object results: (a) Mesh with triangular elements
calculated using 2-norm; and (b) Mesh with quadrilateral elements calculated using
with F-norm.

10% of original configuration. The simulation results were shown in Figures 2.6, 2.7

and 2.8 and quantitative results were summarized in Table 2.1. When we compared

the effect of the matrix norm used in the optimization, we observed that the 2-norm

had yielded better results in triangular and hexahedral elements, whereas the F-norm

had yielded better results in quadrilateral and tetrahedral elements.

Table 2.1: Simulation results of test objects.

test cases elements norm %erms %emax #node #element

Tissue tri 2-norm 2.26 4.99 210 366
F-norm 3.46 6.42

qua 2-norm 5.55 9.65 445 405
F-norm 5.14 8.44

Cylinder tet 2-norm 22.89 43.73 124 381
F-norm 11.00 24.29

hex 2-norm 5.63 18.49 675 496
F-norm 6.15 18.00

Cylinder with hole tet 2-norm 20.53 38.96 404 1,559
F-norm 5.91 13.77

Cube tet 2-norm 22.52 53.51 170 592
F-norm 8.28 25.29

hex 2-norm 2.91 6.92 729 512
F-norm 14.98 25.19

In order to illustrate the time complexity of our proposed parameter estimation

method, the computation time for each element type and matrix norm was recorded.

The experiment was conducted by using Mathematica 7.0 and MATLAB R2007b and

tested on the Microsoft Windows Server 2008TM 64-bit based workstation with the
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(a) (b) (c)

Figure 2.7: Three-dimensional test object results: (a) Cylindrical object with tetra-
hedral elements calculated using F-norm; (b) Cylindrical object with hexahedral ele-
ments calculated using 2-norm; and (c) Cylindrical object with a hole with tetrahedral
elements calculated using F-norm.

(a) (b)

Figure 2.8: Three-dimensional test object results: (a) Cube object with tetrahedral
elements calculated using F-norm; and (b) Cube object with hexahedral elements
calculated using 2-norm.

Intel Pentium Dual-Core E5200 2.50 GHz, 3.24 GB of RAM to collect computation

time benchmarks. The computation time was calculated by averaging the time used

in finding the solution for 100 randomly constructed elements. Both 2-norm and

F-norm used Mathematica to build the element. However, 2-norm used the Mathe-

matica solver whereas F-norm used the MATLAB solver called from Mathematica.

The results were shown in Table 2.2. The computation time of F-norm was sig-
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nificantly less than the computation time of 2-norm. Because the computation for

determination by using F-norm can be solved with algebra solver (as illustrated in

section 2.3), whereas the computation for determination by using 2-norm is performed

numerically to find the best solution. The number of spring constants that have to

be determined also effects the computational time.

Table 2.2: Time complexity of each element type with F-norm and 2-norm.

time used/element(s)

element #spring constant F-norm 2-norm

Triangular 3 0.08 1.73
Quadrilateral 6 0.32 2.26

Tetrahedral 6 0.32 2.33
Hexahedral 28 3.04 29.01

2.4.2 Mechanical Tests on Specimens

It was also valuable to measure the resulting Young’s modulus and Poisson’s ratio of

the constructed simulation models of objects to evaluate how well they approximated

the original values used. In order to accurately measure these parameters, we had

conducted mechanical tests on specially designed specimens, following the experimen-

tal material characteristic literature. Specifically, the specimen shape chosen was an

optimal shape of thin tensile test specimen from [1]. The specimen shape shown in

Figure 2.9 with B=1 cm. The thickness of the three-dimensional specimen was 1 cm.

The boundary on the left side was kept fixed and the tension force for loading was

applied on the right side. The experiment procedure was as follows: First, Young’s

modulus of 10 kPa and Poisson’s ratio of 0.3 were selected. Then, the spring con-

stants of the specimens were determined using the proposed method. The boundary

conditions and the loading forces were applied to the lumped element model and the

displacements of the straight-sided section Ls were collected. These values were then

used to calculate the corresponding Young’s modulus and Poisson’s ratio of specimen.
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Figure 2.9: Specimen shape [1] with Ls = 2B, Lt = 4B, L0 = B0, and B0 = 3B.

The experimental results shown in Table 2.3. The results shown that the proposed

method can represent the Young’s modulus close to the desired value in meshes with

triangular (2D) and hexahedral (3D) elements with both F-norm and 2-norm and in

meshes with quadrilateral and tetrahedral elements with F-norm. The quadrilateral

and tetrahedral elements with 2-norm resulted in error in the Young’s modulus more

than 10%.

Table 2.3: Tension tests on specimen.

element norm Eout νout #node #element

Triangular 2-norm 10,300.70 0.25 125 192
F-norm 9,461.44 0.26

Quadrilateral 2-norm 11,169.70 0.45 329 266
F-norm 9,839.55 0.43

Tetrahedral 2-norm 12,165.80 0.09 538 1,500
F-norm 9,697.49 0.09

Hexahedral 2-norm 9,804.64 0.29 1,396 843
F-norm 10,228.00 0.29

2.4.3 Control of Young’s Modulus and Poisson’s Ratio

In order to explore the relationship between the Young’s modulus and Poisson’s

ratio of lumped element models and how independently they can be controlled, we

conducted another set of tests. Specifically, we used a lumped element model with

only one quadrilateral element (with size of 2x2 cm2) and varied the desired elastic

properties (Ein = 1 Pa–10 kPa, νin = 0–0.5). Then, the elastic properties (Eout, νout)

of the resulting model were compared with the desired values. The results, shown in
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Figure 2.10: Tension test on specimens: (a) Triangular element; (b) Quadrilateral
element; (c) Tetrahedral element; and (d) Hexahedral element.

10 100 1000 104
Ein

10

100

1000

104

Eout

(a)
0.0 0.1 0.2 0.3 0.4 0.5

Νin0.0

0.1

0.2

0.3

0.4

0.5
Νout

(b)

Figure 2.11: Young’s modulus (a) and Poisson’s ratio (b) of lumped element model
with quadrilateral element.

Figure 2.11, revealed that, although it was possible to accurately control the Young’s

modulus value of the model, it was not possible to independently control the Poisson’s

ratio. Such a behavior was also observed by other researchers [41, 42, 44].

2.4.4 Torsion Loading Effect

In order to explore the torsion loading effect between the linear elastic model and

lumped element model, we also did another experiment by applying the torsion force

on top surface of cube object with fixed boundary at the bottom of object. The
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(a) (b)

Figure 2.12: The top view of cube with torsion loading: (a) linear elastic model; and
(b) nonlinear lumped element method.

cube object used in this experiment was the same as cube object in test case with

hexahedral element. The experiment result shown that the linear elastic model was

not suitable for torsion loading but it was not the problem of nonlinear lumped

element models (Figure 2.12). When the torsion loading applied to model to make

the large deformation by rotating on top surface and fixed position of base. The

result of elastic linear model behaved unnatural behavior. While lumped element

model behaved like nonlinear model because of the nonlinearity of lumped element

model. Therefore, we can use lumped element model to imitate the nonlinear object

to produce the natural behavior.

2.4.5 Resolution Effect

To test the consistency and accuracy of our method when the resolutions of object

were varied, the objects were discretized at different resolutions of 1x1, 2x2, 4x4, 8x8

in two-dimensional square object with dimension of 2x2 cm2 and different resolutions
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of 1x1x1, 2x2x2, 4x4x4, 8x8x8 in three-dimensional cube object with dimension of

2x2x2 cm3. The experimental results shown in Table 2.4. The results shown that the

more detail resolution, the closer behavior of lumped element model to finite element

model. Another advantage of using identical element was the reduction of time used

for determination the spring constants of the object.

Table 2.4: Resolution effect.

%erms

objects resolutions 2-norm F-norm

Square 1x1 11.64 16.35
2x2 10.27 14.48
4x4 9.36 13.44
8x8 9.08 12.92

Cube 1x1x1 8.68 18.00
2x2x2 7.13 16.38
4x4x4 3.14 15.50
8x8x8 2.90 15.03

2.4.6 Element Shape Effect

To test the ability to represent the elastic properties at different dimensions by using

our method to determine the spring constants, the experiment used only one quadri-

lateral element with fixed height of 2.0 cm and varied length of element from 0.5 cm

to 6.0 cm with the same desired elastic properties (E=10 kPa, ν=0.3). The elastics

properties were compared the desired values and output values to see the effect of

dimensions. The boundary condition was fixed on left side and the tension loading

force was applied on right side to deform the object about 10%. After applied loading,

the Young’s modulus and Poisson’s ratio were calculated from the deformed object.

The results in Figure 2.13 shown that the Young’s modulus was closed to 10 kPa

when the dimension ratio (l/h) of element was about 1.0, and Poisson’s ratio output

was about 0.3 when the dimension ratio (l/h) of element was about 0.6. In another

word, a square element was the best for representing the Young’s modulus, while a
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Figure 2.13: Young’s modulus and Poisson’s ratio output from element shape effect
experiment.

rectangle element of dimension ratio 0.6 was the best for representing the Poisson’s

ratio.

2.4.7 Comparison with Other Methods

As discussed in section 2.1, there were several other studies in the literature that

proposed methods to determine elasticity parameters in lumped element models. In

the two-dimensional case, we compared our proposed method with the methods pro-

posed by Van Gelder [39] and Lloyd et al. [44] for meshes with triangular elements

(test object shown in Figure 2.10a), and the methods proposed by Baudet et al. [41]

and Lloyd et al. [44] for the meshes with rectangular elements (test object shown

in Figure 2.10b). We also compared our proposed method in three-dimensional case

with the method proposed by Lloyd et al. [44] for meshes with tetrahedral elements

(test object shown in Figure 2.10c), and with the method proposed by Baudet et al.

[42] for meshes with hexahedral elements (test object shown in Figure 2.8b) †. The

comparison results were shown in Table 2.5. The proposed method gave the best

result except for the case with quadrilateral elements in two dimensions, when it gave

†In the case for meshes with hexahedral elements, the object in Figure 2.8b was used instead
of the test specimen in Figure 2.10d, since the method by Baudet et al., was only for uniform (i.e.
cubic) shaped elements
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the second best result, and the case with tetrahedral element in three dimensions. For

the quadrilateral mesh case, it should be noted that the method proposed by Baudet

et al. introduced a correction force which was not from a spring, and hence it was not

a pure lumped element model, and it was applicable only for “cubic” elements. Also,

for the tetrahedral mesh case our proposed method resulted in an effective Young’s

modulus value which was close to the desired value than the method by Lloyd et al.,

even though the actual %erms value was slightly higher.

Table 2.5: Comparison with other methods.

element method E ν %erms %emax
Triangular Van Gelder 15,010.80 0.27 20.08 34.58

Lloyd et al. 10,855.80 0.29 5.61 10.88
Our (2-norm) 10,300.70 0.25 3.02 5.65

Quadrilateral Baudet et al. 10,330.50 0.34 1.06 2.07
Lloyd et al. 13,097.10 0.44 4.84 8.20

Our (2-norm) 11,169.70 0.45 3.36 5.50
Tetrahedral Lloyd et al. 8,671.48 0.03 7.75 14.65

Our (f-norm) 9,697.49 0.09 9.37 15.72
Hexahedral Baudet et al. 10,712.50 0.12 3.67 6.99

Our (2-norm) 10242.00 0.14 2.88 6.05

We also did the experiments on shearing and torsion tests and comparison with

other methods. In the two-dimensional case, we used a 2x2 cm2 square object with

triangular elements (101 nodes, 168 elements) and with quadrilateral element (121

nodes, 100 elements). In the three-dimensional case, we used a 2x2x2 cm3 cube object

with tetrahedral elements (170 nodes, 592 elements) and with hexahedral elements

(729 nodes, 512 elements). The results of these test were given in Table 2.6. Our

proposed method in shearing test gave the best result in triangular and tetrahedral

elements, and comparable results in hexahedral element. In torsion test, the linear

FEM reference did not work well with torsion test, whereas the LEM can handle the

torsion test better. The result when compares with FEM gave the large error on all

methods.
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Table 2.6: Shearing and torsion tests in comparison with other methods.

Shearing Torsion

element method %erms %emax %erms %emax
Tri Van Gelder 17.25 34.17 - -

Lloyd et al. 5.04 10.73 - -
Our 2-Norm 3.68 8.60 - -

Qua Baudet et al. 3.60 8.28 - -
Lloyd et al. 3.64 8.85 - -

Our 2-Norm 3.82 11.28 - -
Tet Lloyd et al. 5.68 15.16 7.80 26.40

Our F-Norm 5.30 14.55 8.59 34.69
Hex Baudet et al. 3.86 9.36 8.58 44.61

Our 2-Norm 3.96 9.37 8.36 43.91

2.5 Conclusion

A systematic method to determine mass and spring constants of lumped element

models of deformable objects was presented. The lumped element model parameters

were determined using a finite element model as a reference model by minimizing the

error the stiffness matrices of the finite element and lumped element models through

an optimization. The proposed method was demonstrated by several test objects in

two and three dimensions with triangular, quadrilateral, tetrahedral, and hexahedral

elements. Using 2-norm yielded better results in triangular and hexahedral elements,

whereas using F-norm yielded better results in quadrilateral and tetrahedral elements.

The time complexity by using F-norm was shown to be an order-of-magnitude less

than using 2-norm. It was also shown that, with the proposed method, the Young’s

modulus of the objects was well approximated. However, it was impossible to control

the Poisson’s ratio of the lumped element model independently as it was also observed

by other researchers [41, 42] and [44]. Moreover, the proposed method was also

compared with existing methods in the literature [39, 41, 42, 44].
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Chapter 3

Numerical Integration Methods for

Deformable Object Models

3.1 Introduction

A surgical simulation contains many simulation objects, which mimic the human

body organs or living tissues. Most simulation objects are deformable objects, which

can change the internal structure by the external forces. The deformable objects are

modeled by using the physically based models which define the behavior of the objects

using mathematical equations and the laws of physics. These models are expressed

in the form of differential equations. During simulation, numerical integration is used

to find the positions and velocities of the deformable object from the system of equa-

tions defining the model. There are many numerical integration methods for solving

differential equations. These algorithms can be broadly divided into two categories:

the explicit and implicit numerical integration methods. Each method has advantages

and disadvantages depending on the model and the simulated system. Therefore, the

comparison of the stability and efficiency of numerical integration methods is use-

ful for the user to select an efficient numerical method and suitable simulation time
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step to guarantee the stability of physically based model of the deformable object in

simulation.

In this chapter, we present the comparison of the numerical integration methods

in a lumped element based model as a physically based deformable object model.

However, the results are generalizable to simulation of other types of physically based

deformable object model. The remainder of this chapter is organized as follows:

In the next section, the related studies in the literature on numerical integration

methods for deformable object simulation are discussed in section 3.2. The physically

based deformable object model is presented in section 3.3. The numerical integration

methods, which include both explicit and implicit numerical integration methods, are

presented in detail in section 3.4. Then, the implementations of implicit numerical

integration methods are presented in section 3.5. After that, the experimental results

are presented in section 3.6, followed by concluding remarks in section 3.7.

3.2 Related Works

Terzopoulos et al. [14] pioneered using elasticity properties to model deformable

objects and used an implicit integration method to solve the resultly system of equa-

tions. Later many researchers used explicit integration methods to create real-time

simulations because the explicit integration method is easy to implement and re-

sults in less computation per simulation time step. For example, Provot [16] used

an explicit Euler integration method, Volino et al. [55] used an explicit Midpoint

integration method, and Eberhardt et al. [56] used the forth order of Runge-Kutta

integration method. Implicit integration method became popular again after the

work of Baraff and Witkin [57] which used mass-spring models and implicit integra-

tion in cloth simulation to avoid instability of explicit integration method. Implicit

integration methods require significant computation for each time step and a large
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storage space. In order to address this issue, Eberhardt et al. [58] developed the

implicit-explicit (IMEX) integration method. The idea of this method is to separate

the stiff parts of the system of equations for implicit method and the non stiff part for

explicit method. Volino and Magnenat-Thalmann [59] compared different numerical

integration methods in cloth simulation. Hauth [60] reviewed numerical integration

techniques for cloth simulation and compared different numerical integration methods

in three simple examples.

In surgical simulations, deformable objects are modeled by using physical prop-

erties, which is called the physically based modeling. There are many physically

based models, such as lumped element models, finite difference models, finite element

models, and mesh free models. Nealen et al. [61] provided a recent review of the

physically based deformable model used in computer graphics. The lumped element

models (LEM) or mass spring damper models (MSD) are popular because they are

easy to implement. However, the lumped element models cannot represent the real

physical properties of real deformable objects. The finite different, finite element,

and mesh free models are used to simulate the physical properties of real deformable

objects but their time complexity is higher than the lumped element models.

3.3 Physically Based Deformable Object Model

The physically based deformable object model used in this study is a lumped element

model. A lumped element model is a system of masses connected with springs. Each

spring has physical properties, which are stiffness constant (k), and damping constant

(b). For two masses connected with one spring (Figure 3.1), the spring force of node

p is

fs(p,q) = k (‖p− q‖ − L0)
(q− p)

‖p− q‖
, (3.1)
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where k is the spring constant, p and q are the position of nodes p and q, and L0 is

the rest length of spring. The damping force of node p is

fd(p,q,v,w) = b

(
(w − v)T

(q− p)

‖p− q‖

)
(q− p)

‖p− p‖
, (3.2)

where b is the damping constant, p and q are the position of nodes p and q, and v

and w are the velocity of nodes p and q. We define x as the position vector of all

nodes in the lumped element model, and ẋ as the corresponding velocity vector. If

we consider a simple one-dimensional mass spring damper system with a single mass,

the equation of motion is in the form

mẍ+ bẋ+ kx = fext, (3.3)

where m is the mass, b is the damping constant, k is the spring constant, and fext is

an external force, such as the gravity force or pushing force from user. The equation

of motion can be simplified by defining the natural frequency: ω0 =
√
k/m, the

damping coefficient: ζ = b/2
√
km. When no external force applies, the equation of

motion becomes:

ẍ+ 2ζω0ẋ+ ω2
0x = 0, (3.4)

and the solution assumes in the form x = eγt, where γ = ω0(−ζ ±
√
ζ2 − 1). The

behavior of the system is depended on the natural frequency (ω0) and the damping

coefficient (ζ). When ζ = 1, the system is critical damped and the solution is in the

form x = (C1 + C2t)e
−ω0t. When ζ > 1, the system is over damped and the solution

is in the form x = C1e
γ1t +C2e

γ2t. And when ζ < 1, the system is under damped and

the solution is in the form x = e−ω0ζt(C1cos(ωdt) +C2sin(ωdt)) and ωd = ω0

√
1− ζ2.

The deformable object is modeled by using masses connected with springs (Fig-

ure 3.1). The input parameters of lumped element model are the density (ρ) with

unit g·cm−3, Young’s modulus (E) with unit g·cm−1·s−2, and damping coefficient (ζ)

without unit. In the analysis and experiments presented in section 3.6, the mass

(m) with unit g, stiffness constant (k) with unit g·s−2 and damping constant (b)
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Figure 3.1: Lumped element models: (a) One dimension; (b) Two dimensions; and
(c) Three dimensions.

with unit g·s−1 are calculated by assuming that the object is an isotropic material

as follows. The dimensions of object are dx, dy and dz. For two-dimensional model,

the thickness is 0.1 cm. The resolutions of object are ex, ey, and ez. The mass of

object is m = ρ · dx · dy · dz. The Young’s modulus equals to the stress over the

strain. If the force is applied in z direction, the stiffness constant is k = E dx·dy
dz

. The

damping constant is b = 2ζ
√
km. After all of physical properties are known, the

mass is distributed to each node and spring properties are set equally for every spring

element.

3.4 Numerical Integration

The system state contains positions and velocities. The system state is defined as the

following:

y(t) =

[
ẋ(t)

x(t)

]
, (3.5)

where y(t) is the system state at time t, which contains the velocity ẋ(t) and position

x(t). The second derivative of position, ẍ(t) is acceleration. The dynamics in the

simulation usually use the fundamental laws of mechanics to describe the behavior of

the simulation objects. The Newton’s second law is stated as follows:

f(t) = mẍ(t) = ma(t), (3.6)
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where x, ẋ, ẍ are the vector of position, velocity and acceleration of mass nodes and

f is the sum of the forces applied to the mass nodes.

Combining the equations from all node masses yields a system of differential equa-

tions. The implementation of efficient numerical integration methods to solve these

differential equations is a key for efficient simulation systems. The issue of numerical

integration is the numerical error which accumulates in each simulation time step.

These numerical errors may instability for large time steps. The following sections are

the detail and comparison of each numerical integration method used in this study.

3.4.1 Explicit Integration Methods

Explicit integration methods are the simple methods to solve the differential equa-

tions. Explicit integration methods calculate the next system state information from

the current system state information. The examples of explicit integration meth-

ods are Euler, Midpoint, Heun and Runge-Kutta methods. The explicit integration

method can be derived from Taylor series,

y(t+ h) = y(t) + h · y(1)(t) +
h2

2!
· y(2)(t) +

h3

3!
· y(3)(t) +

h4

4!
· y(4)(t) + . . . , (3.7)

where y is the system state, y(i) is the derivative order i of system state, and h is

time step size.

Explicit Euler Method

Explicit Euler method or forward Euler method is simplest and easiest numerical inte-

gration method to numerically solve the ordinary differential equation. This method

is derived from Taylor series expansion (3.7) through the term O(h2) which are

yn+1 = yn + h · f(tn, yn), (3.8)

where y is the system state which consists of positions and velocities of the system, h

is time step size, and f(tn, yn) is the derivative of the system state which is velocities
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and accelerations. O(h2) is the simulation error which is proportional to h2. The

explicit Euler method is an explicit one-step formula because it uses the system

state at current time step to calculate the next system state. To reduce the error

and maintain the stability of this method, the step size should be decreased, which

proportionally increases the computation time.

Explicit Midpoint Method

Explicit midpoint method is an explicit two-step formula because it uses the system

state in two past time steps to calculate the next system state. This method uses

a centered difference estimation between n and n + 1. This method is derived from

Taylor series expansion (3.7) through the term O(h3) which are

k1 = yn +
h

2
· f(tn, yn),

yn+1 = yn + h · f(tn +
h

2
, k1), (3.9)

where k1 is an estimation of the state by using an explicit Euler step with a half of

time step size.

Heun Method

Heun method is an explicit three-step formula. The error per step is O(h4). The

equations for computing the next system state are

k1 = yn +
h

3
· f(tn, yn),

k2 = yn +
2h

3
· f(tn +

h

3
, k1),

yn+1 = yn +
h

4

(
f(tn, yn) + 3f(tn +

2h

3
, k2)

)
. (3.10)

Runge-Kutta Method

The forth order of Runge-Kutta method is an explicit four-step formula. It is a

popular method for integration to achieve a high accuracy. The error per step is
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O(h5). The equations for computing are

k1 = h · f(yn, tn),

k2 = h · f(tn +
h

2
, yn +

k1

2
),

k3 = h · f(tn +
h

2
, yn +

k2

2
),

k4 = h · f(tn + h, yn + k3),

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4). (3.11)

Semi-Explicit Euler Method

Semi-explicit Euler method is an integration method that updates the velocity by

using the acceleration at current time step and updating the position by using the

velocity at the next time step. The equations are

vn+1 = vn + h · f(xn),

xn+1 = xn + h · vn+1. (3.12)

3.4.2 Implicit Integration Methods

In explicit integration methods, a small time step is typically required to maintain

numerical stability. To avoid this problem, implicit integration methods are used.

The implicit integration method calculates the next system state information from

the current and the next system state information. Therefore, implicit integration

methods require to solve the system of nonlinear algebraic equations to find the value

of the system state in the next time step.

Implicit Euler Method

Implicit Euler or backward Euler integration method can use the larger time steps

than the explicit integration methods. However, the space and time complexity of
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implicit Euler methods are very intensive because it requires to solve a system of

nonlinear algebraic equations. The implicit Euler equation is

yn+1 = yn + h · f(tn+1, yn+1), (3.13)

where y is the system state, h is time step size, and f(tn+1, yn+1) is the derivative

of the system state at the next time step. The function in the next time step can

be approximated by linearizing the nonlinear system of algebraic equations by using

Taylor series expansion,

f(tn+1, yn+1) ∼= f(tn, yn) +
∂f(tn, yn)

∂y
4y, (3.14)

where 4y is the difference of system states between next and current time step,

yn+1 − yn. Replacing Eq. (3.14) with Eq. (3.13), the resulting linearized system of

equation is (
I− h · ∂f(tn, yn)

∂y

)
4y = h · f(tn, yn), (3.15)

which is in the form A4y = b. This linear equation can be solved using, such as

the conjugate gradient method, to find the solution of 4y = yn+1 − yn. The system

state at the next time step is then calculated as yn+1 = 4y + yn. If the state vector

is defined as in (3.5), the linearized system of equations becomeI− h

m

∂f

∂ẋ
− h
m

∂f

∂x
−hI I

[4ẋ

4x

]
= h

 f0

m
ẋ0

 , (3.16)

where ∂f
∂ẋ

is Jacobian respect to velocity (ẋ), ∂f
∂x

is Jacobian respect to position (x),

h is step size, m is mass, I is an identity matrix. Instead of solving the linearized

system, it is also possible to improve the accuracy of the solution by iteratively solving

the original nonlinear system of equation using the Newton’s method. The algorithm

for an implicit Euler integration using the Newton’s method is as follows:
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Algorithm 1 Implicit Euler integration algorithm with Newton’s method

1: λ← 1
2: while (‖~b‖ ≥ ε) or (‖~x‖ ≥ ε) do

3: ~x← A−1~b . by using conjugate gradient
4: ~x← ~x+ λ~x
5: ~b← ~b− λ~x
6: if ‖~b‖ ≥ ε then
7: λ← 0.5λ
8: end if
9: end while

Implicit Midpoint Method

The implicit Midpoint method is a second order accurate implicit numerical integra-

tion method. The implicit Midpoint equations are,

k1 = h · f(tn +
h

2
, yn +

k1

2
),

yn+1 = yn + k1. (3.17)

The resulting linearized system of equation is given by(
I− h

2
· ∂f(tn, yn)

∂y

)
(yn+1/2 − yn) =

h

2
· f(tn, yn), (3.18)(

I− h

2
· ∂f(tn, yn)

∂y

)
(4yn −4yn−1/2) =

h

2
· f(tn+1/2, yn+1/2)−4yn−1/2, (3.19)

where 4yn−1/2 = yn+1/2 − yn and 4yn = yn+1 − yn+1/2.

3.5 Implementation

Numerical integration algorithms have been implemented and integrated into GiPSi

[8] since the first release in 2002. However, the original version of GiPSi (version

1.0) only included explicit numerical integration methods (Figure 3.2), which were

Euler, Midpoint, Heun, and forth order of Runge-Kutta methods. As part of this

research, several new numerical integration methods are added into GiPSi, including

semi-explicit Euler, implicit Euler, implicit Euler with Newton’s method, and implicit
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Midpoint methods (Figure 3.3). The implementations of explicit numerical integra-

tion methods are straightforward, which calculate the system state from the previous

system state as shown in section 3.4. The semi-explicit Euler integration method is

also implemented in the same way as explicit integration method, but using the new

velocity instead of the previous velocity to calculate the new position. The imple-

mentation of implicit numerical integration is more involved because the next system

state is calculated from the current system state and the next system state itself.

This, after linearization, creates the system of linear algebraic equations that need

to be solved by a matrix solver. We use the conjugate gradient algorithm to solve

the system of linear equations in each simulation time step of implicit integration

method.

Integrator provided in GiPSi version 1.0 is the based integrator class using

S as a class template for any simulation object. Each simulation object provides

the specific functions to allocate system state memory, calculate the system state

derivative, and calculate the system state accumulation. The Integrator based class

has a virtual Integrate() function for integrating the system state in one simulation

time step. Every derived Integrator class needs to implement this function. Using

the provided API, the implementation of Integrate() function in each integration

method is simple as the formula provided in section 3.4 because they use these generic

functions to perform the integration for any simulation object. The difficult part is the

implementation of the generic functions in each simulation object. Specifically, the

simulation object needs to provide AllocState() function for allocating the memory

for the system state, GetState() function for getting the system state, DerivState()

function for computing the derivative of the system state, and AccumState() function

for computing the accumulation of the system state.

In GiPSi version 2.0, we add ImplicitIntegrator as a derived integrator class for

implicit integration methods by adding more specific functions, which is necessary for
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#f4 : State

#tmp_state : State
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Figure 3.2: Original integrator class diagram.

solving the system of linear equations in implicit integration algorithms. The auxiliary

functions for manipulating the system state are inherited from the based Integrator

class. The ImplicitIntegrator introduces the auxiliary function related to implicit

integration, namely AllocJacobian() function for allocating the memory for Ja-

cobian matrix, IdentityMinusJacobian() function for computing identity matrix

minus the simulation time step multiplied with the Jacobian matrix, ScaleState()

function for scaling the system state, and AddState() function for adding the system

state. The ImplicitEuler, ImplicitEulerNT, and ImplicitMidPoint are derived

from the ImplicitIntegrator class.

In IdentityMinusJacobian() function, the matrix in (3.16) is computed. This

matrix contains the Jacobian matrix with respect to velocity and position, which are

computed as the follows. From the spring force equation given in (3.1), a linearization

is calculated as:

fs ≈ fs0 +
∂fs
∂p
4p +

∂fs
∂q
4q, (3.20)

where fs is a spring force, p and q are the position of nodes p and q. This equation
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+Integrate(in system : S &, in h : Real)

Integrator

S

+ImplicitIntegrator()

+Integrate(in system : S &, in h : Real)

+SetError(in num : Real)

#Solver(in system : S &, in state : State &, in h : Real)

#CG(in system : S &, in x : State &, in A : Jacobian, in b : State, in max : int, in error : Real)

#error : Real

#max : int

ImplicitIntegrator

S

+Integrate(in system : S &, in h : Real)

#Solver(in system : S &, in state : State &, in h : Real)

+ImplicitEuler(in system : S &)

#J : Jacobian

#f : State

#dstate : State

#B : State

ImplicitEuler

S

+Integrate(in system : S &, in h : Real)

#Solver(in system : S &, in state : State &, in h : Real)

+ImplicitEulerNT(in system : S &)

#J : Jacobian

#f : State

#dstate : State

#oldstate : State

#B : State

ImplicitEulerNT

S

+Integrate(in system : S &, in h : Real)

#Solver(in system : S &, in state : State &, in h : Real)

+ImplicitMidPoint(in system : S &)

#J : Jacobian

#f1 : State

#f2 : State

#dstate1 : State

#dstate2 : State

#B : State

#tmp_state : State

ImplicitMidPoint

S

+SemiEuler(in system : S &)

+Integrate(in system : S &, in h : Real)

#f : State

SemiEuler

S

Figure 3.3: New integrator class diagram which were added implicit Euler, implicit
Midpoint and semi-explicit Euler methods into the original integrator class.

can be represented in matrix form as:

fs ≈ fs0 +

[
∂fs
∂p

∂fs
∂q

] [4p

4q

]
. (3.21)

Consider the derivative fs respect to p, which can be represented in each component

as:

∂fs
∂p

=



∂fs1
∂p1

∂fs1
∂p2

∂fs1
∂p3

∂fs2
∂p1

∂fs2
∂p2

∂fs2
∂p3

∂fs3
∂p1

∂fs3
∂p2

∂fs3
∂p3

 . (3.22)
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Define

Apqi = −∂fsi
∂pi

= k

[
1− L0

‖p− q‖
‖p− q‖2 − (qi − pi)2

‖p− q‖2

]
, (3.23)

Bpq
i,j = −∂fsi

∂pj
= k

[
L0

‖p− q‖
(qi − pi)(qj − pj)
‖p− q‖2

]
, (3.24)

and

Kpq =


−Apq1 −Bpq

1,2 −B
pq
1,3

−Bpq
2,1 −Apq2 −Bpq

2,3

−Bpq
3,1 −B

pq
3,2 −Apq3

 . (3.25)

Now, consider the derivative fs respect to q, which can also be represented in each

component as:

∂fs
∂q

=



∂fs1
∂q1

∂fs1
∂q2

∂fs1
∂q3

∂fs2
∂q1

∂fs2
∂q2

∂fs2
∂q3

∂fs3
∂q1

∂fs3
∂q2

∂fs3
∂q3

 . (3.26)

Define

Aqpi = −∂fsi
∂qi

= −k
[
1− L0

‖p− q‖
‖p− q‖2 − (qi − pi)2

‖p− q‖2

]
, (3.27)

Bqp
i,j = −∂fsi

∂qj
= −k

[
L0

‖p− q‖
(qi − pi)(qj − pj)
‖p− q‖2

]
. (3.28)

We can see that Aqpi = −Apqi and Bqp
i,j = −Bqp

i,j. Therefore, Kqp = −Kpq. Then (3.21)

becomes

fs ≈ fs0 + [Kpq −Kpq]

[4p

4q

]
. (3.29)

The damper force in (3.2) can also be linearized similar to the spring force. The

linearization of the damper force in the matrix form is given by

fd ≈ fd0 +

[
∂fd
∂p

∂fd
∂q

] [4p

4q

]
+

[
∂fd
∂v

∂fd
∂w

] [4v

4w

]
, (3.30)
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where fd is a damper force, v and w are the velocity of nodes p and q. Consider the

derivative fd respect to p, which can be represented in each component as,

∂fd
∂p

=



∂fd1

∂p1

∂fd1

∂p2

∂fd1

∂p3

∂fd2

∂p1

∂fd2

∂p2

∂fd2

∂p3

∂fd3

∂p1

∂fd3

∂p2

∂fd3

∂p3

 . (3.31)

Define

Cpq
i = −∂fdi

∂pi

= −b
[
(wi − vi)

(qi − pi)
‖p− q‖2

+ ((w − v) · (q− p)
‖p− q‖2 + 2(qi − pi)2

‖p− q‖4

]
, (3.32)

Dpq
i,j = −∂fdi

∂pj

= −b
[
(wj − vj)

(qi − pi)
‖p− q‖2

+ ((w − v) · (q− p))
2(qi − pi)(qj − pj)
‖p− q‖4

]
, (3.33)

and

V pq =


−Cpq

1 −Dpq
1,2 −D

pq
1,3

−Dpq
2,1 −Cpq

2 −Dpq
2,3

−Dpq
3,1 −D

pq
3,2 −Cpq

3

 . (3.34)

Now, consider the derivative fd respect to v, which can be represented in each com-

ponent as:

∂fd
∂v

=



∂fd1

∂v1

∂fd1

∂v2

∂fd1

∂v3

∂fd2

∂v1

∂fd2

∂v2

∂fd2

∂v3

∂fd3

∂v1

∂fd3

∂v2

∂fd3

∂v3

 . (3.35)

Define,

Epq
i = −∂fdi

∂vi
= −b(qi − pi)2

‖p− q‖2
, (3.36)

F pq
i,j = −∂fdi

∂vj
= −b(qi − pi)(qj − pj)

‖p− q‖2
, (3.37)

and

Bpq =


−Epq

1 −F pq
1,2 −F

pq
1,3

−F pq
2,1 −E

pq
2 −F pq

2,3

−F pq
3,1 −F

pq
3,2 −E

pq
3

 . (3.38)
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The derivative fd respect to q and w are constructed in the same way as the derivative

fd with respect to p and v, respectively. But, the results have the opposite sign.

Finally, (3.30) becomes

fd ≈ fd0 + [Kpq + V pq −Kpq − V pq]

[4p

4q

]
+ [Bpq −Bpq]

[4v

4w

]
. (3.39)

We calculate the matrix Kpq+V pq and Bpq for all pairs of mass nodes connected with

springs, and then fill in the Jacobian matrix with respect to position and velocity,

respectively. And finally, the Jacobian matrix is used to fill the matrix in (3.16).

Each of the Kpq + V pq and Bpq matrices calculated is used to fill out four locations

according to the symmetry of the lumped element model. For example, when the

matrix Kpq + V pq is computed, we place it at locations (p,p) and (q,q). And then

put the negative of this matrix at locations (p,q) and (q,p). This completes the

IdentityMinusJacobian() function.

3.6 Experiment and Discussion

The implicit integration algorithms were implemented and integrated into GiPSi.

The experiments had been performed on the Microsoft Windows XPTM 32-bit based

workstation with the Intel Pentium 4 2.53 GHz, 512 MB of RAM and a PCI Ex-

press RADEON 9500 Pro Graphics Card with 128 MB of memory. The experiments

compared the maximum time step and total time used of the numerical integration

algorithms that still maintained the stability of simulation by varying the Young’s

modulus and damping coefficient. The experiments objective was finding the best

numerical integration algorithm and time step used for specific Young’s modulus and

damping coefficient values of deformable object.

The experiments to compare the numerical integration methods were conducted

in two- and three-dimensional lumped element models as shown in Figure 3.5. The

procedure to find the maximum simulation time step for specific numerical integra-

57



tion method, Young’s modulus and damping coefficient was shown in Figure 3.4.

The lumped element model was loaded with specific numerical integration method,

Young’s modulus and damping coefficient. The procedure started with simulation

time step; h of 1, and the system was simulated from t = 0 to t = 10 second. If the

system was stable, the new simulation time step was set to double value of current

simulation time step. Otherwise, the new simulation time step was set to half value

of current simulation time step. Then, the system was simulated again with the new

simulation time step. If the simulation time step was less than 0.1 and the total en-

ergy was stable, then recorded that simulation time step as the maximum time step

of stable system. The system stability was calculated from the total energy of lumped

element model which included the kinetic and potential energies. If the system was

stable, the total energy should be in steady state and total energy should converge

and trend to be zero. Therefore, the system stability was determined by comparing

the previous total energy and the current total energy with ratio of current and pre-

vious total energies was less than the specific error from the script file provided by

the user. The system stability was also determined by comparing the initial total

energy and the current total energy.

The experiment for two-dimensional lumped element model was conducted with

a deformable object which had dimension of 5.0x5.0x0.1 cm3 with a discretization of

5x5 elements. The model had the density of 1.1415 g·cm−3, the Young’s modulus from

1 to 1,000 g·cm−1·s−2, the damping coefficient from 0.1 to 1.0. The simulation model

was fixed at one side and a tension force was applied the opposite side starting at

initial time (t = 0). For each stiffness and damping coefficient values, the maximum

simulation time step that maintained numerical stability, time used per simulation

time step and total running time were collected for 10 seconds of simulation time. The

goal was to find the optimal simulation time step at each value of Young’s modulus

and damping coefficient. The experimental results of two-dimensional LEM were
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Set Young’s modulus 
and damping coefficient

Load LEM model

h = 1

Run simulation 
with time step, h

Is system stable?

h = h/2

No

h = 2*h

Set numerical 
integration method

t = 0

t = t+h

t < 10 Yes

No

Yes

Is timecheck 
less than error?

No

Record h as maximum time step 
of stable system

Yes

Figure 3.4: Flow chart of the procedure to find the maximum simulation time step
for specific integration method, Young’s modulus and damping coefficient.

shown in Figure 3.6.

In three-dimensional lumped element model, the experiment was conducted with

a deformable object which had dimension of 5.0x5.0x5.0 cm3 with a discretization of

5x5x5 elements. The physical properties of lumped element model in three dimensions

were the same configuration as in two dimensions. The model was fixed at the bottom

surface and a normal tension force was applied at the top surface starting at initial

time (t = 0). The experimental results of three-dimensional LEM were shown in
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(a) (b)

Figure 3.5: Experimental configurations of lumped element model: (a) In two dimen-
sions; and (b) In three dimensions.

Figure 3.7.

The trend of the experimental results was the same for both two- and three-

dimensional LEM experiments. The total time used in simulation for the explicit

integration methods ordering from minimum to maximum were Euler, semi-explicit

Euler, Midpoint, Heun, and forth order of Runge-Kutta corresponding to the order

of simulation error in each numerical integration method. The total time used in

simulation for the implicit integration methods ordering from minimum to maximum

were implicit Euler, implicit Euler with Newton’s method, and implicit Midpoint.

Because the implicit Euler solved a linear system of equations in one conjugate gradi-

ent step, but the implicit Euler with Newton’s method employed several of conjugate

gradient steps until the error of solution was less than the error criteria. Whereas

the implicit Midpoint solved two systems of equations, the maximum time step of

stabilized system in implicit Midpoint method was highest. The total time used in

implicit Midpoint depended on the size of simulation object. If the simulation object

had a lot of elements, the size of system of equation increased in polynomial time.
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The time to solve the system of equation also increased as well.

It was important to observe the cross-over between the explicit and implicit meth-

ods. For example, at damping coefficient 0.1, the intersection was at the Young’s

modulus value of about 30.0 - 250.0 g·cm−1·s−2 in two dimensions (Figure 3.6e) and

about 0.8 - 3.0 g·cm−1·s−2 in three dimensions (Figure 3.7e). These cross-over points

indicated the set of parameters where integration algorithm became more efficient

compared to the other algorithms. The intersection lines between explicit and im-

plicit moved to the lower Young’s modulus values in three-dimensional object model

compared to two-dimensional object model because the stiffness in three-dimensional

object had the thickness 5.0 cm while the thickness in two-dimensional object was 0.1

cm. The stiffness was calculated from k = EA/x. Therefore, the three-dimensional

object had higher stiffness than the two-dimensional object for the same Young’s

modulus value. These results indicated that the explicit method was unsuitable for

the stiff equation, as the results shown the lowest step size and the highest total time

used to complete simulation. It was also important to note that although the implicit

methods were stable for all simulation time steps, but the accuracy still decreased as

simulation time step increased because the implicit methods had a strongly damped

when the simulation time step was increased.

3.7 Conclusion

In this chapter, the implicit numerical integration algorithms, which were implicit Eu-

ler, implicit Euler with Newton’s method, and implicit Midpoint, were implemented

and integrated in GiPSi framework. The comparisons of the numerical integration

algorithms were presented, which were explicit Euler, explicit Midpoint, Heun, forth

order of Runge-Kutta, semi-explicit Euler, implicit Euler, implicit Euler with New-

ton’s method, and implicit Midpoint. This study helped a model developer choose
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the best numerical integration method with suitable simulation time step for specific

simulation object model. The maximum simulation time step and the total time

used per simulation time step depended on the physical properties of lumped element

model. The higher damping coefficient, the lower maximum simulation time step and

the higher total time used. The same situation occurred, when the spring stiffness was

increased. The decreasing of simulation time step made the system more stable. The

time used per simulation time step in each numerical integration method depended

on the complexity of lumped element model and the integration algorithm itself. The

Young’s modulus of lumped element models used in this study about 1 - 1,000 Pa

was significantly lower than the real physical properties of deformable object, such as

soft tissue, which had the Young’s modulus approximately in order of 10 kPa to 1,000

kPa [62]. The Young’s modulus of soft tissues was higher than the Young’s modulus

used in this study. It meant that if the lumped element model had the exact physical

properties of soft tissue, the implicit integration algorithms were needed for the sta-

bility of the system. There are also other popular numerical integration algorithms,

such as the Newmark and Simplectic algorithms, which have not been included in

this study and may have advantage over the numerical integration algorithms used

in this study.
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Figure 3.6: The experimental results of two-dimensional LEM: (a) The maximum
time step of each method that still maintain numerical stability; (b) The total time
used per time step; (c) - (f) The cross-over points between explicit and implicit
integration methods.
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Figure 3.7: The experimental results of three-dimensional LEM: (a) The maximum
time step of each method that still maintain numerical stability; (b) The total time
used per time step; (c) - (f) The cross-over points between explicit and implicit
integration methods.
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Chapter 4

Collision Detection and Response

for Deformable Object Models

4.1 Introduction

A surgical simulator deals with simulation objects which are interacting with each

other. Collision detection and collision response play an important role in producing

realistic behaviors in interactive simulations when simulation objects collided.

Collision is a configuration of two objects occupying the same space at the same

time. Collision detection is the procedure to find the overlapping parts of objects,

and collision response is the procedure to resolves the overlapped parts between the

objects. In the simulation, the collision detection checks intersections between all

pairs of objects at each simulation time step and provides collision information for

collision response function to separate collided objects by specified reaction effects

to them. In surgery simulation, the most simulation objects are deformable objects,

which may change internal structure, in contrast to rigid bodies, which have no change

in internal structure. Therefore, collision detection and response algorithms for rigid

objects are not fully compatible with simulations involving deformable objects. Rigid
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object collision detection algorithms need to be modified with additional geometric

refitting at each simulation time step in order to be able to handle object deforma-

tions. The collision response algorithm needs to apply the reaction effects locally, on

the overlapped parts of the collided objects.

In this chapter, a collision method integrated into GiPSi [8] is presented. As

such, the method complies with the requirement of the GiPSi API. Specifically, the

GiPSi API requires the collision detection and response to be through simulation

object boundaries. The geometric representation of simulation object boundaries in

GiPSi is triangular surface. Therefore, the collision detection method needs to be

suitable for GiPSi geometric primitive structure. Furthermore, the collision response

for the simulation objects also needs to be applied through boundary conditions of

the simulation objects.

The proposed collision detection method is a two-phase algorithm which employs

a hierarchical axis aligned bounding box algorithm in the board phase, and a triangle-

triangle intersection test algorithm in the narrow phase for finding exact overlapped

part of collided objects. The proposed collision response method is based on a pene-

tration depth estimation algorithm for separating overlapped parts of collided objects.

The remainder of this chapter is organized as follows: In the next section, the

related studies in the literature on collision detection and response methods are dis-

cussed (section 4.2). The proposed algorithm including the data structures used and

the details of collision detection and response algorithms are presented in section 4.3.

Experimental results to verify and validate algorithms are presented in section 4.4,

followed by concluding remarks in section 4.5.
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4.2 Related Works

A collision contains two different problems: collision detection and collision response.

The former is basically related to objects’ geometry and how to find overlapping

objects in space, whereas the latter is related to the mechanical modeling and how

to separate the collided parts of objects. In collision detection the main problem is

computation complexity, whereas in collision response the main problem is how to

generate and apply the mechanical effects (force, displacement, acceleration, impulse)

to simulation objects to produce the realistic result.

Collision detection algorithms for deformable objects were reviewed by Teschner

et al.[63]. A naive collision detection algorithm checks all simulation objects in the

simulation scene. If the simulation scene has n simulation objects, the collision de-

tection is performed in n(n−1)
2

times. The complexity of this situation is in O(n2).

Moreover, the naive collision detection procedure needs to do an intersection test

between geometrical primitives of two simulation objects. If each simulation object

contains m geometrical primitives, which usually is triangle or rectangle, the time

complexity is multiplied with O(m2). This results in an overall complexity of order

O(n2m2). Many research groups have proposed collision detection algorithms to re-

duce this complexity. There are many approaches of collision detection algorithms.

Most of them depend on the geometrical attributes. Therefore, collision detection

algorithms can be classified into four groups [64]:

(a) In bounding volumes methods, complex objects or object groups are enclosed

within simple volumes that can be easily tested for collisions;

(b) In projection methods, possible collisions are evaluated by considering the pro-

jections of the scene separately along several axes or surfaces;

(c) In subdivision methods, complex objects decompose into smaller space volumes

or object regions based either on the scene space or on the objects to be evalu-
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ated through bounding volume technique;

(d) In proximity methods, the scene objects are arranged according to their ge-

ometrical neighborhoods and the collision between these objects are detected

based on the neighborhood structure.

The collision detection algorithm proposed here is based on the (well-known)

hierarchical bounding volume method. In hierarchical bounding volumes, the collision

detection complexity is reduced by representing the objects using a hierarchy of simple

bounding volumes. The collision detection starts by performing the overlap test at the

root of bounding volume tree which represents the whole object. If they overlap, the

collision tests are performed at the child nodes recursively until the leaf nodes, which

contain a geometrical primitive of the object, are reached. The examples of bounding

volume methods are bounding spheres [65], axis aligned bounding boxes (AABBs)

[66], oriented bounding boxes (OBBs) [67], and discrete orientation polytopes (k-

DOPs) [68]. Example of different types of bounding volumes are shown in Figure

4.1.

The bounding spheres are represented by centers and radii of spheres that bound

an entire object. The overlap test of bounding spheres compares the distance between

their centers and the sum of their radii. This overlap test is very fast and easy to

implement. The AABBs are rectangular bounding boxes that align to the axes of the

object’s local coordinate system and all boxes in a tree have the same orientation.

The AABBs can fit an object more tightly than the bounding spheres. However, a

drawback of AABBs is a fitting problem when object rotates after building a bound-

ing box. The OBBs are rectangular bounding boxes at an arbitrary orientation in

three-dimensional space. The OBBs are oriented to enclose an object as tightly as

possible. The OBBs generally allow geometries to be bounded more tightly with a

few numbers of boxes. However, the expense of overlap computations is more costly,

when compared with AABBs. The k-DOPs are convex polytope bounding volumes
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Figure 4.1: Example of bounding volumes from left to right: Sphere, AABB, OBB,
and k-DOPs.

whose facets are defined by k
2

orientations (where k is even). The AABBs in three

dimensions are 6-DOPs. The larger value of k can make the bounding volume close

to the object, but it increases the time complexity. In three dimensions, 14-DOPs

are defined by 7 axes and use the 6 half spaces of the AABBs facets and 8 additional

diagonal half spaces that cut off 8 corners of AABBs. Therefore, the k-DOPs can

bound objects tighter than AABBs. Klosowski et al. [68] experimentally found that

k = 18 yields the best execution times for several different test cases. OOBs provide

the best fit for object follow by k-DOPs, AABBs, and bounding spheres. Building

an AABBs tree of a given object is faster than building an OBBs tree. Van Den

Bergen [66] found that building an OBBs tree takes about three times as much time

as building an AABBs tree. The OBBs are represented using 15 scalars (9 scalars

for 3x3 matrix representing the orientation, 3 scalars for position, and 3 for extent),

whereas the AABBs only requires 6 scalars (3 scalars for position and 3 for extent).

Therefore, an AABB tree requires roughly half of the storage required by an OBB

tree of the same object. AABBs provide a fast overlap test while OBBs and k-DOPs

provide slower overlap test. The comparison of the intersection testing performance

between the AABBs and OBBs by using separating axis theorem (SAT) has shown

that the OBBs perform faster than the AABBs [66, 69].

There are many collision detection libraries publicly available. Examples include,

RAPID (using OBBs), SOLID (using AABBs), and QuickCD (using k-DOPs). Van
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Den Berger [69] claims that the AABBs can be used with deformable objects by re-

fitting the AABBs, which is about ten times faster than recalculating the AABBs.

For real-time geometric refitting to deformation objects, James and Pai [70] uses

a bounding sphere hierarchy called a bounded deformation tree or BD-Tree. This

method does not update the bounding spheres from the deformed geometric object,

but instead, uses the average motions associated with the displacement fields to up-

date the bounding spheres.

The proposed collision detection methods for use in GiPSi employs hierarchical

axis aligned bounding boxes (AABBs) for broad phase and the triangle-triangle in-

tersection test for narrow phase collision detection.

The collision response specifies how the collided objects are separated by applying

reaction effects, such as forces, displacements, velocities or impulses. The collision

response methods can be classified into four groups:

(a) Analytical methods, use analytical constrains in the equations of motion of

colliding objects and produces differential-algebraic equations to find the exact

solutions.

(b) Impulse-based methods, use collision impulses computed from the new center

of mass and angular velocities for each object.

(c) Penalty force methods, compute response forces based on penetration depths of

colliding objects, and then apply those penalty forces back to colliding objects.

(d) Penetration depth methods, compute penetration depths of colliding objects,

and then apply those displacements back to colliding objects

Moore and Wilhelms [71] initiated an algorithm to calculate the forces between

collided rigid bodies at a single contact point. After that Baraff [72] proposed an

analytical method for finding forces between contacting objects based on linear pro-

gramming techniques, and later they also proposed an analytical method for finding
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the contact forces between curved surfaces [73]. Analytical methods are difficult to

implement and time consuming as they require solving equations during simulation.

Therefore, Mirtich [74] introduced an impulse-based method as the new approach

for solving collision response in dynamic simulation. The impulse-based method is

simpler and faster than analytical constrains. However, both analytical and impulse-

based methods are only work for rigid body objects. In the case of deformable ob-

jects, the collision response occurs at the area of collided parts, which are suitable for

penalty force and penetration depth methods. Moore and Wilhelms [71] introduced

a penalty force method based on spring forces to prevent objects in resting contact

from penetrating. The penalty force method is easy to implement and computa-

tionally efficient. However, the penalty force method approximates the collision and

allows some interpenetration between objects. This also yields stiff equations, which

can result in numerical stability problems and requires small time step. Penetration

depth method works well on deformable object by only applying the displacement on

the collied parts which prevents the cause of stiff equation from spring force approx-

imation in the penalty force method.

The collision response algorithm used in this work employs a penetration depth

technique. The proposed method computes the minimal translation displacement

of the collided objects to separate them. There are many algorithms to calculate

the penetration depth of collided objects. An exact penetration depth algorithm

is based on Minkowski sums [75], whereas an approximate penetration depth algo-

rithm is based on the Gilbert-Johnson-Keerthi (GJK) algorithm [76]. Kim et al. [77]

proposed the fast penetration depth algorithm using object-space and image-space

techniques. These approaches did not address the inconsistency problem in large

penetration depth (Figure 4.2). In the left of Figure 4.2, the non-plausible pene-

tration depth occurs when the approximation strictly computing a minimal distance

from object surface, whereas our proposed method computes consistent penetration
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Figure 4.2: Problem of non-plausible penetration depth estimation by using mini-
mal penetration distance (left figure), by using consistent penetration distance (right
figure).

distance as in the right of Figure 4.2. Heidelberger at el. [78] proposed a consis-

tent penetration depth estimation algorithm for volumetric models to eliminate the

inconsistency artifact inherent in existing penetration depth algorithm.

The collision response algorithm developed in this study is based on the consistent

penetration depth estimation originated by Heidelberger at el. [78]. The algorithm

of Heidelberger at el. is designed to work with tetrahedral meshes and a collision

detection based on hash function [79]. In the present study, this algorithm has been

extended to work with the triangle surface geometry representation of objects, and

linked list data structure type of collision information from collision detection algo-

rithms as required by GiPSi API.

4.3 Algorithm

This section provides an overview of the proposed algorithm followed by a detailed

of each step. Figure 4.3 shows the flow diagram of the proposed algorithm. First,

the algorithm checks the value of the changing flag of simulation object geometry to

determine the bounding box of the objects should be updated or not. The adjustment

of the bounding box could be necessary as a deformable object can change internal

structure at every simulation time step when an external force is applied. The collision
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detection step is then divided into two phases: broad phase and narrow phase. The

broad phase is executed to find the collided bounding volumes by using an overlap

test. The narrow phase uses a primitive intersection test for each pair of collided

bounding volumes from the board phase. After that the collision information result

feeds into the collision response algorithm. The collision response algorithm is based

on a penetration depth approximation method, which contains four steps. In step 1,

collision vertex identification identifies all colliding vertices that are adjacent to one

or more non-colliding vertices as border vertices. The intersection points and surface

normal vectors are computed for border vertices. In step 2, the penetration depth

approximation calculates the penetration depth and direction for each border vertex

based on the adjacent intersection points and the surface normal vectors from step 1.

In step 3, the penetration depth propagation propagates the penetration depth and

direction from border vertices to all colliding vertices that are not border vertices.

In step 4, the artificial border investigation finds vertices in intersecting faces that

do not contain any border vertices. This step is a correction step for the case that

a face is identified as intersecting with the other object, but none of its vertices

are identified as border vertices. Following this the penetration depth and direction

for those vertices are calculated until no more colliding vertices remain. Finally,

the geometries of the collided objects are updated using a penetration depth-based

collision response method and the changing flag is set to false.

4.3.1 Data Structures

The data structures used in collision algorithm is shown in Figure 4.4. Collision

information is stored in a list of CollisionInfo structures. The collision informa-

tion list contains an entry of CollisionInfo for each pair of colliding objects. The

CollisionInfo stores, for a pair of boundary of colliding objects, a pair of face col-

lision information arrays, a pair of vertex collision information lists. Moreover, the
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Figure 4.3: Flow diagram of collision detection and response.

sets of current and next face to be processed for each of the colliding objects are also

stored in the collision information structure to keep track of the faces, which have

intersect state, are currently being processed, and the faces that will be processed

in the next iteration. The face collision information contains face state, vertex in-

dices, and array of collided faces of other object. There are four face states, which

are: ‘unknown’, ‘intersect’, ‘inside’, and ‘outside’. The face state is initially

‘unknown’. If a face is determined to intersect other faces during narrow phase of the

collision detection, then the state of the face is set ‘intersect’. A face is assigned

the ‘inside’ state if it is determined to be inside the colliding object. And, a face

is assigned the ‘outside’ state if it is determined to be outside the colliding objects.

The vertex collision information contains vertex position, vertex index, vertex state,

penetration depth, penetration direction, penetration force, array of normal vectors,

and array of intersection points. There are five vertex states, which are: ‘unknown’,

‘non-colliding’, ‘border’, ‘processing’, and ‘artificial border’. The ‘unknown’

state is an initial vertex state. A vertex is assigned the ‘non-colliding’ state if it is

outside other object. A vertex is assigned the ‘border’ state if it is adjacent to one

or more ‘non-colliding’ vertices. A vertex is assigned the ‘processing’ state if it is
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Figure 4.4: Data structure in collision detection and response algorithm.

being propagated. A vertex is assigned the ‘artificial border’ state if it belongs

to the face with ‘intersect’ state and no other vertices with ‘border’ state exist in

that face.

4.3.2 Collision Detection

The basic collision detection is an algorithm to test intersections for all possible pairs

of objects in a virtual environment. The collision detection algorithm implemented

has two phases: broad phase and narrow phase. The broad phase is an overlap test

between two bounding volume hierarchies. If an overlap is found, the narrow phase

will be performed by using a primitive intersection test algorithm to retrieve the exact

collision information.

Broad Phase

The broad phase is a bounding volume overlap test, which uses the bounding vol-

ume hierarchy to reduce the time complexity by testing collisions only for the pair of

intersected bounding volumes. The bounding volume hierarchy is a model partition-

ing which subdivides an object into geometrically coherent subsets and computes a

tight-fitting bounding volume for each subset of object. When the intersection tests

are performed on the bounding volumes, subsets of objects can be quickly excluded

from intersection testing depending on whether their bounding volumes overlap. A
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bounding volume of a model is a primitive shape that encloses the model such that

it fits the model as tightly as possible, it is cheap to test overlap between bounding

boxes, it requires a small amount of memory storage, and it is fast to calculate the

bounding box of a given model. The broad phase is based on the OPCODE [80]

collision detection library. The OPCODE is a small collision detection library which

is fast and memory efficient. The OPCODE library uses hierarchical axis aligned

bounding boxes. A bounding volume hierarchy is calculated for each object by using

binary tree, top-down construction approach. In the resulting bounding volume hier-

archy, the bounding volumes may overlap but each leaf node contains primitive data

(face list) with no duplication of primitives in the leaf nodes. The procedure for the

intersection test in the broad phase is as follows: Bounding volume overlap test is per-

formed for each pair of objects in the collision object pool using the binary trees that

represent their bounding volume hierarchies. If the bounding volumes of the nodes

do not intersect, then the next pair of simulation objects are tested. If both nodes

are leaves, then primitive intersection test is executed and the result is returned. If

one of the nodes is a leaf and the other is an internal node, then leaf node is tested for

primitive intersection with each of the children of the internal node. If both nodes are

internal nodes, then the node with smaller volume is tested for primitive intersection

with the children of the node with the larger volume.

Narrow Phase

The narrow phase is a primitive intersection test, which uses a triangle-triangle inter-

section test algorithm developed by Möller [81]. The algorithm is adapted to provide

more information on the collision results which is necessary for the collision response

algorithm used in GiPSi. Our modified algorithm adds three more vertex information

after testing triangle-triangle intersections. The first additional collision information

is codeT1 and codeT2 to classify which vertices are inside or outside referenced by the
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Figure 4.5: Triangle-triangle intersection test with vertex information codeT1 and
codeT2 to classify inside or outside vertex referenced by the triangle plane of other
colliding object.

triangle plane of other colliding object, as shown in Figure 4.5. The output represents

the vertices in triangle in binary format, u2u1u0. Each bit has a value of 1 for inside

other object and a value if 0 for outside other object, where the normal vector of each

face points the outward direction of an object.

The second additional collision information is collidedCode to classify where

intersection points x1,x2 are located. Consider the example shown in the left side of

Figure 4.6, when two triangles, T1(u0,u1,u2) and T2(v0,v1,v2), are intersecting at

points x1,x2. The intersection line x1x2 is extended and intersects with the edges

of each triangle named as eT11, eT12 for triangle T1, and eT21, eT22 for triangle T2.

The intersection line between two triangles can be classified into 9 cases, shown in

the right side of Figure 4.6, based on where the end points of the intersection line

x1x2, the end points of the line eT11eT12 of triangle T1, and the end points of the line

eT21eT22 of triangle T2 are located. The points, x1,x2, eT11, eT12, eT21, eT22 are on the

extended intersection line. Consider the location of the intersection point x1. The

first three cases are the intersection points x1 are equal to eT11 and less than eT21.

Another three cases are the intersection points x1 are equal to eT21 and greater than
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Figure 4.6: Triangle-triangle intersection test with collision information. Example of
triangle-triangle intersection (left figure), and 9 cases of collidedCode (right figure)

eT11. The last three cases are the intersection points x1 are equal to eT11 and eT21.

Each of three cases has sub three cases by considering the intersection point x2. First,

the intersection point x2 is equal to eT22 and less than eT12. Second, the intersection

point x2 is equal to eT12 and less than eT22. Third, the intersection point x2 is equal

to eT12 and eT22. The states of the collided faces are set to the ‘intersect’.

The last additional collision information is codeTT1 and codeTT2 to classify which

vertices of triangle are neither ‘border’ nor ‘non-colliding’ vertices in intersecting

triangles T1 and T2. The vertices are identified by finding the vertices that are belong

to the edges of triangle and these edges do not intersect with intersection line x1x2.

At the end of collision detection algorithm, the collision detection provides collision

information for collision response algorithm, which consists of the intersection line

defined by the points x1 and x2, ‘codeT1’, ‘codeT2’, ‘collidedCode’, ‘codeTT1’,

‘codeTT2’, the vertices of each colliding face, normal vectors of the colliding faces,

face states, and vertex states.
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4.3.3 Collision Response

After collision detection is performed, the collision information list is sent to the

collision response function. The collision response contains four steps: collision vertex

identification, penetration depth approximation, penetration depth propagation, and

artificial border investigation. After all four steps are executed, the approximate

penetration depth of each vertex in the list of vertex collision information structure,

VertexCollisionInfo, are applied back to the simulation object boundaries. The

details of each step are explained below.

Collision Vertex Identification

The collision information structure for each pair of colliding objects consists of the

list of face and vertex collision information structures of both objects. At the end of

narrow phase collision detection, the vertices of the two colliding object are classified

into ‘unknown’, ‘non-colliding’ or ‘border’ states in the vertex collision informa-

tion structure. The initial state of each vertex is ‘unknown’. The intersection points

of colliding objects, x1 and x2, are located on the surface of colliding faces, T1 and

T2. The vertices of these faces are identified as ‘border’ or ‘non-colliding’. The

vertices which are inside the other colliding object are identified as ‘border’ ver-

tices p. Other vertices are outside the other colliding object and are identified as

‘non-colliding’ vertices. The inside/outside test is performed by the checking the

dot product between p− xi and the unit normal vector of other colliding object face,

n̂. It is assumed that the face unit normal vector n̂ points outward. Then, a vertex

p is inside when n̂ · (p− xi) < 0. At this step, the list of vertex collision information

structure is filled with the vertices from the collided faces.
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Penetration Depth Approximation

The penetration depths and directions are calculated for all vertices which are marked

as ‘border’ in the list of vertex collision information structure. The weight function

ω(xi,p), the penetration depth d(p), the penetration direction r(p), and the normal-

ized penetration direction r̂(p) are calculated as the follows:

ω(xi,p) =
1

‖xi − p‖2
, (4.1)

d(p) =

∑k
i=1 ω(xi,p) · (xi − p) · ni∑k

i=1 ω(xi,p)
, (4.2)

r(p) =

∑k
i=1 ω(xi,p) · ni∑k
i=1 ω(xi,p)

, (4.3)

r̂(p) =
r(p)

‖r(p)‖
, (4.4)

where xi is the list of intersection points of vertex p in the vertex collision information

structure, and ni is the list of other object’s face normal corresponding to intersection

point of vertex p in the vertex collision information structure.

Penetration Depth Propagation

In this step, the penetration depths and penetration directions are propagated to all

the other colliding vertices that are not ‘border’ vertices. The idea of the propa-

gation is to avoid non-plausible penetration depth in case of large penetrations as

shown in Figure 4.2. The propagation (Figure 4.7) is an iterative process including

of two steps. In the first step, the vertices which are marked as ‘border’ vertices

are set to the ‘processing’ state. In the second step, the vertices which neighbor

the ‘processing’ vertices are set to ‘border’ state. The penetration depths and di-

rections of new ‘border’ vertices then are calculated based on the information from

all adjacent ‘processing’ vertices. If there are no more colliding vertices, the iter-

ation is terminated. The vertices that connect to ‘border’ vertices are identified as

‘processing’ vertices by retrieving vertices from a set of current processing faces.
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Then, the faces that are connected to the ‘processing’ vertices are identified, then

face is set to ‘inside’ state, and added to the next processing faces. Following this,

the vertices are assigned to ‘border’ state if the vertices are not ‘processing’ vertex

and in the ‘inside’ face. Then, the ‘processing’ vertices are added to the list of

intersection points and the normalized penetration directions are added to the list of

face normals.

The calculations of penetration depths and directions of ‘border’ vertices in pen-

etration depth propagation step are similar to the calculations of penetration depth

and direction of ‘border’ vertices. The weight function ω(qi,p) is calculated from

the adjacent ‘processing’ vertices qj of the current ‘border’ vertex p,

ω(qj,p) =
1

‖qj − p‖2
. (4.5)

The penetration depth d(p) of the current ‘border’ vertex p is calculated as,

d(p) =

∑l
j=1 ω(qj,p) · ((qj − p) · r̂(qj) + d(qj))∑l

j=1 ω(qj,p)
, (4.6)

where r̂(qj) is the normalized penetration direction of the ‘processing’ vertex qj and

d(qj) is the penetration depth of the ‘processing’ vertex qj and l is the number of

the ‘processing’ vertices adjacent to the current ‘border’ vertex p. The penetration

direction r(p) is calculated as a weighted average of the penetration direction of the

‘processing’ vertices adjacent to the current ‘border’ vertex, p,

r(p) =

∑l
j=1 ω(qj,p) · r̂(qj)∑l

j=1 ω(qj,p)
, (4.7)

r̂(p) =
r(p)

‖r(p)‖
, (4.8)

where r̂(p) is the normalized penetration direction.

Artificial Border Investigation

In some cases, it is possible to have faces which are in the ‘intersect’ state, but do not

have any ‘border’ state vertices. These cases are handled separately. Specifically, the
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Figure 4.7: Penetration depth propagation step.

vertices of such faces are identified as ‘artificial border’ state. An ‘artificial

border’ vertex a has no collision information. Therefore, the penetration depths

and directions are computed from the other colliding object as follows: The ‘border’

vertices in ‘intersect’ faces of other colliding object are retrieved and add those

vertices to the list of intersection vertices bi in a. Then the penetration depth of

those vertices also add to the list of the face normal ni in a.

In the artificial border investigation, the calculations of penetration depths and

directions in ‘artificial border’ vertices are similar to the calculations of penetra-

tion depths and directions in penetration depth approximation step. For a specific

‘artificial border’ vertex a:

ω(bi, a) =
1

‖bi − a‖2
, (4.9)

r(a) =

∑
i=I ω(bi, a) · ni∑
i=I ω(bi, a)

, (4.10)

r̂(a) =
r(a)

‖r(a)‖
, (4.11)

where I are the indices of the intersection vertices, bi, that (bi − a) · ni > 0.

After all vertices are identified, the penetration depths and directions are calcu-

lated for all collided vertices, and all artificial borders are investigated. The displace-

ments are then applied to the current position of all collided vertices of simulation
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object boundaries:

pnew = pold + d(p) · r̂(p) (4.12)

4.4 Experiments and Discussion

The described collision detection and response algorithms were implemented and inte-

grated into GiPSi framework [8]. Various test cases and experiments were performed

to validate the collision detection and response algorithms. All experimental scenar-

ios were performed on the Microsoft Windows XPTM 32-bit based workstation with

the Intel Pentium D 2.80 GHz, 1 GB of RAM and a PCI Express NVidia GeForce

6800 Graphics Card. Six static and two dynamic test cases were used. The static

test cases included objects that overlapped with each other (Figures 4.8 - 4.13). Two

dynamic test cases contained dynamic objects falling down to a membrane (Figures

4.14 - 4.15).

In the static test cases 1a and 1b, a sphere object (114 vertices, 224 faces) was

overlapped with a prism object in low resolution (18 vertices, 32 faces), as shown in

Figure 4.8a, and in high resolution (431 vertices, 794 faces), as shown in Figure 4.8b.

These static cases were used to test the functionality of the collision response steps.

The high resolution case verified that the algorithm can handle intersection of two

objects which had comparable resolutions (i.e., constructed with primitives of similar

sizes), whereas the low resolution case verified that the algorithm can handle a low

resolution object intersecting with a high resolution object.

In the static test cases 2a and 2b, a sphere object (114 vertices, 224 faces) was over-

lapped with a concave object at two separate locations in low resolution (36 vertices,

68 faces), as shown in Figure 4.8a and high resolution (583 vertices, 1,094 faces), as

shown in Figure 4.9b. These cases verified that the proposed method can handle the

collision response when there were two separated collision areas between two over-
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(a)

(b)

Figure 4.8: Static test case 1: (a) low resolution; (b) high resolution.

lapping objects. The low and high resolution cases verified that the algorithm can

handle colliding objects with similar and different primitive sizes.

In the static test case 3, a sphere object (114 vertices, 224 faces) was overlapped

with the corner of box (152 vertices, 300 faces), as shown in Figure 4.10. In this

test case, there was one overlapped area but part of the box, which was inside the

sphere, had three orthogonal surface normals resulted in three different penetration

directions of the box inside the sphere. This case verified that collision configuration

resulted in discontinuous penetration depths and directions worked correctly.

In the static test case 4, a sphere object (114 vertices, 224 faces) was overlapped
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Figure 4.9: Static test case 2: (a) low resolution; (b) high resolution.

with two boxes (each with 152 vertices, 300 faces), as shown in Figure 4.11. In this

test case, there were several overlapped areas. This case verified the correctness of

the penetration depth and direction calculation when there were multiple collision

areas.

In the static test case 5, a small bar (152 vertices, 300 faces) was overlapped with one

triangular surface of a large sphere (114 vertices, 224 faces), as shown in Figure 4.12.

This case verified the correctness of the artificial border investigation step. When

the small bar intersected at the center of triangular surface, the vertices of collided

triangle should be identified as artificial border states. Otherwise, the vertices would
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Figure 4.10: Static test case 3.

Figure 4.11: Static test case 4.

be identified as non collided vertex state and would not be used in penetration depth

calculations.

In the static test case 6, an arbitrary object (686 vertices, 1368 faces) was over-

lapped with a long bar (152 vertices, 300 faces), as shown in Figure 4.13. There were

three overlapped areas between the two objects. This case verified that our proposed

algorithm can detect and resolve multiply collided areas correctly.

The experimental results of static test cases were shown in Figures 4.8 to 4.13

and the average computational times of the collision algorithm in each of the static

test cases were shown in Table 4.1. The left side of all static test case figures shown
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Figure 4.12: Static test case 5.

Figure 4.13: Static test case 6.

the initial configuration of objects in wireframe view and the right side of the figures

shown the final configuration of objects drawn with texture. The experimental results

of all static test cases shown that our proposed algorithm can detect the collisions and

correctly separate the overlapping areas. Most of the time in the collision algorithms

was spent on the collision detection procedure. The average time used in collision

response procedure per vertex was about 0.24 ms. The penetration depth calcula-

tion from our proposed algorithm resulted in gaps between collided objects. Those

gaps came from the calculation of the penetration depth approximation of collided

vertices and distribution of the penetration depths among the collided vertices. It

was necessary to adjust the parameter to select how much the displacement or force
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of collided vertices should be applied.

Table 4.1: Average computational time of collision algorithm in static test cases.

Static Collision time (ms) Total number of

test cases Detection Response collided vertices

1a 15.69 8.05 23
1b 21.18 6.75 27
2a 15.91 8.71 36
2b 25.86 7.04 37
3 8.41 2.99 26
4 23.05 8.86 45
5 16.63 8.88 24
6 25.04 9.44 51

Two dynamic test cases were also performed. The lumped element model (LEM)

was used in all simulation objects with simulation time step of 0.001 second and using

the 4th order Runge-Kutta numerical integration method. The first dynamic test case

simulated five boxes falling down on the membrane under gravitational force (Figure

4.14). Each box was 2x2x2 elements in three dimensions. The boxs had physical

models of 27 nodes and 158 springs with elasticity of 78.1 kPa. The surface geometry

of each box has 26 vertices and 48 faces. The membrane has a physical model with

155 nodes and 422 springs with elasticity of 21.3 kPa. The spring constants were

determined from the procedure provided in Chapter 2. The surface geometry of the

membrane had 155 vertices and 268 faces.

The second dynamic test case simulated five boxes falling down to a membrane with a

hole under gravitational force (Figure 4.15). The boxes had the same configuration as

the boxes in the first dynamic test case with different initial positions. The membrane

with hole had a physical model with 88 nodes and 217 springs with elasticity of 21.3

kPa. The spring constants were determined from the procedure provided in Chapter

2. The surface geometry of the membrane had 88 vertices and 129 faces.

The experimental results of dynamic test cases were shown in Figures 4.14 and

4.15. The average computation times in the collision detection and response algo-

rithms in each dynamic test case were shown in the Table 4.2. The left side of all
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Figure 4.14: The first dynamic test case: Boxes falling down on a membrane. The
initial configuration (upper figures), and a snapshot configuration (lower figures).

dynamic test case figures shown the simulation objects in wireframe view and the

right figures shown the scene rendered with texture. The upper figures shown the

initial configuration of simulation objects and the lower figures shown a snapshot con-

figuration of the simulation. The experimental results of all dynamic test cases shown

that our proposed algorithm can detect the collisions and separate the overlapping

areas in the dynamic situation. However, it was necessary to maintain stability by

adjusting the simulation time step and selecting an appropriate numerical integration

method that were suitable for the parameters of physical model (LEM) to maintain

numerical stability of the simulation. In dynamic scenario, the mapping function be-

tween the surface object and the physical model was needed to transfer the positions,
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Figure 4.15: The second dynamic test case: Boxes falling down on a membrane with
a hole. The initial configuration (upper figures), and a snapshot configuration (lower
figure) are shown.

velocities, and forces from the boundary surface to the physical model and vice versa.

The experimental results shown that our proposed algorithm was suitable for surface

geometric objects. However, it was easy to adapt our proposed algorithm to handle

the volume geometric objects by providing connectivity of volume elements.

Table 4.2: Average computational time of collision algorithm in dynamic test cases.

Dynamic Collision time (ms)

test cases Detection Response

1 8.92 4.34
2 4.30 2.14
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4.5 Conclusions

The proposed collision detection and response algorithms were developed and inte-

grated into GiPSi. The collision detection algorithm used a hierarchical axis aligned

bounding boxes (AABB) method for board phase and a triangle-triangle intersection

test for narrow phase, while the collision response algorithm used the penetration

depth approximation method. Scenarios when one object completely crosses or com-

pletely penetrates a second object within a single time step cannot be handled by

the proposed algorithm. The penetration depth approximation can be improved by

adding more step with bisection search for finding the closet position between collid-

ing objects at final step to minimum the gap between colliding objects. Moreover,

checking the penetration force before applying back to the colliding object boundaries

is helpful to maintain the stability of simulation. The collision algorithm can speed

up by using a graphics processing unit (GPU) to test the collision and leave the CPU

to do other tasks in the simulation.
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Chapter 5

Improvements to the Design of the

GiPSi Simulation Framework

Architecture

5.1 Introduction

GiPSi (General Interactive Physical Simulation Interface) is an open source/open

architecture framework for developing open-level surgical simulations, such as in-

teractive surgical training and planning system. The GiPSi has been initiated by

Çavuşoğlu et al.[8]. The main goal of the GiPSi framework is to facilitate shared

development of reusable models and simulations among multiple research groups. To

this end, GiPSi framework provides an application programming interface (API) for

interfacing dynamic models defined over spatial domains, and input/output (I/O)

interfaces for visualization and haptics for real-time interactive applications. The

framework focuses on addressing the technical issues in accommodating different lev-

els and types of model abstractions, supporting heterogeneous models of computation,

and providing mechanisms for interfacing multiple heterogeneous models. GiPSi is
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specifically designed to be independent of the specifics of the modeling methods used,

and therefore facilitates seamless integration of heterogeneous models and processes.

In this chapter, we present the GiPSi and improvement to the design of GiPSi

beyond the first release. In the next section, the GiPSi architecture is introduced in

section 5.2. Following by the design improvements of the GiPSi in section 5.3. The

network extension to the GiPSi framework called GiPSiNet are presented in section

5.4. The experimental evaluations for GiPSiNet are presented in section 5.5, followed

by concluding remarks in section 5.6.

5.2 GiPSi Architecture

The overall system architecture of GiPSi [8] is shown in Figure 5.1. The models of

physical processes, such as muscle mechanics of the heart are represented as “Sim-

ulation Objects”. Each simulation object can be derived from a specific computa-

tional model contained in “Modeling Tools”, such as finite elements, finite differences,

lumped elements, etc. The “Computational Tools” provide a library of numerical

methods for low-level computation of the simulation objects dynamics. These tools

include explicit/implicit ordinary differential equation (ODE) solvers, linear and non-

linear algebraic system solvers, and linear algebra support. The simulation objects

are created and maintained by the “Simulation Kernel” which arbitrates their com-

munication to other simulation objects and components of the system. One such

component is the “Input/Output” (I/O) subsystem which provides basic user input

provided through the haptic interface tools and basic output through the visualiza-

tion tools. There are also “Auxiliary Functions” that provides application-dependent

support to the system, such as collision detection and collision response tools that

are widely used in interactive applications.

An important difference of GiPSi from earlier efforts at developing open simula-
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Figure 5.1: The architecture of a GiPSi-based simulation system.

tion toolkits for surgical simulations (e.g., SPRING [6], AlaDyn-3D [35], CAML [20],

VRASS [82]) is that the APIs in GiPSi were designed with a special emphasis on be-

ing general and independent of the specifics of the implemented modeling methods.

In earlier dynamic modeling frameworks, such as SPRING [6] or AlaDyn-3D [35],

the underlying models used were woven into the specifications of the overall frame-

works developed. This allows GiPSi to seamlessly integrate heterogeneous models

and processes, which is not possible with the earlier dynamic modeling frameworks

[20]. SOFA is a recent open source framework being developed, primarily targeted at

real-time simulation with an emphasis on medical simulation [10]. SOFA provides a

modular and flexible software framework, and aims to allow independently developed

algorithms to interact together within a common simulation while minimizing the

development time required for integration.
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5.3 Design Improvements

The first release of GiPSi version 1.0 (2002) provided the basic functionality to verify

the concepts of GiPSi. As part of the research presented here, the design of GiPSi

has been significantly extended and partially revised to add more functionality that

is suitable with our research objectives. The following of design improvements and

extensions have been made to the first release of GiPSi framework.

Real-time Simulation Kernel

A simulation kernel acts as the central core to connect the GiPSi components together.

The simulation kernel represents the application itself which is constructed by the

application developer. The GiPSi only provides the simulation kernel for a typical

interactive simulator. The simulation kernel is the running loop to execute simulation

objects, connectors, collision detection and collision response, display functions, and

user interface command execution. Each of the simulation objects needs to evaluate

its system state at the next simulation time step by using numerical integration

methods. Each of the simulation objects may also use different simulation time

step values depending on the physical properties of the object. Moreover, collision

detection and collision response procedures require some processing time to find and

resolve overlapping objects. The simulation kernel also records the time stamp for all

simulation processes, namely, the time spent on each of the simulation objects and

connectors, and time spent in the collision detection and response, display function,

user interface command execution, and time step adjustment.

The simulation object has two time steps; simTimestep and clockTimestep

which are corresponding to the simulation time step and the exact time spending

on computational time used in simulation step. The total time used in each simula-

tion step is the sum of all computation times in the individual functions which may

be over or under the real-time system. However, a real-time simulator requires the
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simulation time step to match the clock time step. Therefor, for every simulation

object, the simulation time step needs to be adjusted by increasing or decreasing

simulation time step to match the clock time step.

An interactive simulation can be classified into three categories based on the

relative values of the simulation and clock time steps. These categories are supra

real-time, real-time, and sub real-time (Figure 5.2). A supra real-time system is a

system where the clock time step is less than the simulation time step. A real-time

system is a system where the clock time step is equal to the simulation time step.

A sub real-time system is a system where the clock time step is greater than the

simulation time step. For example, if the clockTimestep in simulation object is

0.05 ms and the simTimestep is set up to 0.05 ms, then the simulation runs in the

real-time, i.e., the simulation time and actual clock time go at the same speed. If the

clockTimestep is less than the simTimestep, then the simulation runs faster than

the actual clock time. If the clockTimestep is greater than the simTimestep, then

the simulation runs slower than the actual clock time. The supra real-time case is the

ideal case for interactive simulation because the difference between the simTimestep

and the clockTimestep can be used for other simulation tasks. A sub real-time sys-

tem needs to be adjusted so that the simTimestep matches the clockTimestep by

increasing the simTimestep or changing the numerical integration method to reduce

the necessary computation time, and therefore the clockTimestep. Increasing the

simTimestep may introduce instability to the simulation object, and changing the

numerical integration method to an algorithm which allows longer stable simTimeste

increases computation time and therefore clockTimestep. In this operation condi-

tion, the numerical stability of the simulation object would be maintained if the

minimum simulation time step required for every simulation object is longer than the

total processing time required for a single kernel execution, i.e. clock time step. The

stability of numerical integration methods in deformable object is discussed in detail
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Figure 5.2: Supra real-time, real-time, and sub real-time systems

in Chapter 3.

Simulation Order

The main tasks of simulation kernel are the management of object interactions and the

communication between the components. These involve establishing the execution

order of simulation objects and other components, which include connectors, collision

detection and response, display function, and user interface command execution.

Different execution orders produce the different simulation results depending on the

model and connector semantics. The execution order of simulation objects and other

components inside simulation kernel is left to the application developer because the

simulation order is not explicitly specified as part of GiPSi. However, the design,

integration and implementation of generic simulation order into GiPSi is helpful for

application developer to speed up the application development process.

The simulation order is divided into two parts, which are in project file and in the

simulation kernel. This helps the application developer to order the execution of sim-

ulation object and other components in project file with no need to change the code

in the simulation kernel. The GiPSi project file uses the XML (Extensible Markup

Language) format as the description information about simulation objects, connec-

tors, visualization, and collision detection and response. Adding the simulation order
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element in project file speeds up the application developer to build the simulator.

The new element node <simulationorder> is added into the project file. The con-

tents inside this element node are the list of <object> in the execution order. The

<object> element has two elements inside which are <name> for the name of simula-

tion object or connector, and <type> for identification of what type of simObject or

connector is presented. If the simulation object or connector is not provided in this

list, the simulation kernel automatically adds the simulation objects and connectors

into the list in the order of appearance in project file. Assuming the project file has

simulation objects: S1, S2, S3 and connectors: C12, C23 in order of appearance in

project file. The example of <simulationorder> that produces the execution order:

S3, S1, C23, S2, C12 is the following:

<simulationorder>

<object>

<name>S3</name>

<type>simObject</type>

</object>

<object>

<name>S1</name>

<type>simObject</type>

</object>

<object>

<name>C23</name>

<type>connector</type>

</object>

</simulationorder>

The pseudo codes for the CreateSimulationOrder() and Simulate() are give in

algorithm 2 and 3.

Implicit Numerical Integration

The physically based deformable model results in a system of equations which cannot

be solved analytically; therefore, a numerical integration method needs to be used.
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Algorithm 2 Create simulation order procedure

1: procedure SimulationKernel::CreateSimulationOrder(XMLNode)
2: numSimOrder = numSimObject + numConnector
3: create normalSimOrder[numSimOrder] . order from project file
4: index = 0
5: for all object ∈ <simobject> do
6: normalSimOrder[index] = <simobject>

7: normalSimOrder[index].type = 1
8: normalSimOrder[index].flag = false
9: index = index + 1

10: end for
11: for all object ∈ <connector> do
12: normalSimOrder[index] = <connector>

13: normalSimOrder[index].type = 2
14: normalSimOrder[index].flag = false
15: index = index + 1
16: end for
17: create simOrder[numSimOrder] . order from <simulationorder>

18: index = 0
19: for all object ∈ <simulationorder> do
20: object.name = <name>

21: object.type = <type>

22: if object.name ∈ normalSimOrder then
23: simOrder[index] = object
24: set object.flag in normalSimOrder to true
25: index = index + 1
26: end if
27: end for
28: for all object ∈ normalSimOrder do
29: if ¬ object.flag then
30: simOrder[index] = object
31: set object.flag in normalSimOrder to true
32: index = index +1
33: end if
34: end for
35: end procedure
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Algorithm 3 Simulate procedure

1: procedure SimulationKernel::Simulate
2: for all object ∈ simOrder do
3: if object.type=1 then . object is simulation object
4: (SimObject*)simOrder.simulate()
5: else . object is connector
6: (Connector*)simOrder.process()
7: end if
8: end for
9: collision.detection()

10: collision.response()
11: time = time + timestep
12: end procedure

The key issue of numerical integration is the numerical error which accumulates in

each time step, and causes the instability after several time steps. The first release

of the GiPSi implementation only supported the explicit numerical integration algo-

rithms. As part of the research, several implicit numerical integration algorithms are

implemented and added into GiPSi. The details of the algorithms are discussed is in

Chapter 3.

Simulation Object

The simulation objects represent organs and the physical processes associated with

them. The SIMObject class diagram of GiPSi has been revised to categorize the type

of simulation objects. Figure 5.3 shows the class diagram of SIMObject and derived

classes. The main derived class is SolidObject for solid simulation object. The

SolidObject also has two derived classes, which are DeformableSolidObject and

RigidSolidObject. The DeformableSolidObject is a deformable solid simulation

object which contains finite element object (FEM 3LMObject), lumped element object

(MSDObject), quasi-static decoupled spring object (QSDSObject), and balloon object

(BalloonObject). The RigidSolidObject is a rigid solid simulation object which

is an object related to surgery instrument. In the simulator, the surgery instrument
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Figure 5.3: Class diagram of SIMObject and derived classes.

is represented by haptic device and captured by HapticInterfaceObject which is

derived from RigidSolidObject. SimpleTestObject is a simple simulation object

which does not do anything other than displaying itself. The SimpleTestObject is

suitable for test objects or static simulation objects. CollisionTestObject is a sim-

ulation object for testing the collision detection and response. LumpedFluidObject

is a lumped fluid model and CardiacBioEObject is a simple cardiac bioelectricity

model.

Extended Geometric Data Structure

The SIMObject is composed of Geometry class for display the simulation object ge-

ometry. The Geometry is the geometry based class and the derived class of Geometry

class is used for storing information related to visualization of simulation object. As

part of research, an extended geometric data structure is implemented and added

into GiPSi.

The class diagram of Geometry and its derived classes shows in Figure 5.4. The

new derived classes are VectorField and ExtendedTriSurface. The VectorField

geometry uses for display the vector field of each vertex in simulation object, which

represent the normal of vertex or the force feedback applied to vertex. It is useful
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Figure 5.4: Class diagram of Geometry and derived classes.

in debugging process for checking collision detection and response algorithms when

the developer wants to visualize the forces feedback acted on collided vertices. The

current implementation of TriSurface geometric data structure in the GiPSi stores

only vertices and face-to-vertex table which does not support the geometric manipu-

lation primitives in effective way, such as adding and deleting vertices or faces. The

ExtendedTriSurface is created to solve this issue by storing the adjacency informa-

tion. In order to manipulate geometry in efficiency, the reverse table of face-to-vertex

or vertex-to-face table should be stored which can retrieve neighboring faces of vertex

quickly. Moreover, the edge-to-face table is also stored to keep track of relationship

between the edge and faces that belong to this edge.

The vertex-to-face and edge-to-face tables are dynamic, growable data structure

associated with each vertex, and each edge, respectively. The linked list of indices of

faces in TriList and EdgeList are maintained for each vertex and edge in geometry,

respectively. In ExtendedTriSurface, the linked list TriList and EdgeList are

added. When the geometry is loaded, the vertex array, face-to-vertex table, and

edge-to-face table are created from file. The vertex-to-face table is created by looping

all faces and inserting a face index into the linked list TriList of those vertices. The

edge-to-face table is created by looping all faces and their three edges. If the edge

does not exist in the linked list EdgeList, then adds this edge into the linked list

with storing the vertices and faces of this edge.
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Memory management for resizing allocation memory of vertices and faces is also

implemented in ExtendedTriSurface. When the size of vertices or faces is changed,

the memory management allocates the new memory size of vertices or faces by double

in the size of original and then copies the data to the new location. After that the old

data location is deleted. The functionality of memory management is a useful utility

for ExtendedTriSurface to provide the efficiently functions of adding new vertex or

face.

Multi-Display Manager

The original GiPSi display manager handles only one geometry at a time. As part

of research in some situation one geometry per display manager is not enough to

display the simulation object. For example, in collision debugging environment, the

developer needs to see the visualize of the overlapping area of collided object. The

multi-display manager can handle this situation by adding another geometry for only

collided faces and display them on top of original geometry. Another situation when

the developer needs the detail in some part of simulation object, such as the hole

from the poking action. The multi-display manager handles the issue by replace the

specific area of interest with high resolution geometry on top of the original location.

The MultiTriSurfaceDisplayManager is derived from DisplayManager based class

and uses dynamic array to store multi-geometry. The idea of multi-display manager is

using only one big display array and index array to storing all geometries by expansion

the arrays to fit the need at run-time. When the Display() function is called, all

geometries in display manager write the information to display array and index array

by topping up the size of display array and index array of each geometry to make

array continuer. This display manager can also use as the normal display manager

with only one geometry per simulation object. The extended geometry also supports

the original mechanism for display the simulation object with OpenGL can handle
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the same way as the original display manager.

Collision Detection and Response

In the first release of the GiPSi, the collision detection and response as the auxil-

iary functions were not implemented. As the part of research the collision detection

and response algorithms are implemented and integrated into GiPSi, as presented in

Chapter 4. The collision rule is also designed and integrated into GiPSi. The colli-

sion rule allows the application developer to select which simulation objects should

perform the collision detection and response.

Haptic Interaction

Haptic interaction is a common interaction interface in virtual environment simula-

tion. Haptic device interfaces a user with the sense of touch by capturing movements

of the user and rendering force, vibration, and motion to user depending on appropri-

ate situation. Haptic interaction with deformable objects is an increasingly used in

many simulations, such as virtual clay [83], cloth design system [84], and especially

in surgical simulations. An important issue in haptic interaction with deformable

object simulation that has implications in the design of the haptics middleware and

the related APIs is difference between simulation and haptic interface sampling rates.

The simulation typically runs at graphical update rate of 10 Hz order of magnitude.

However, haptic interface requires update rate in the order of 1 kHz. It is not pos-

sible to increase the update rate of the physical model to match the update rate of

haptic interface due to computational limitations. Multi-rate simulation approaches

are used to address the sampling rate mismatch issue. Çavuşoğlu and Tendick [85]

proposed a multi-rate simulation approach which uses a local linear approximation

to handle the difference between the update rate requirements for the physical model

and haptic interface. This method was adopted in GiPSi.
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Linearized Low-Order Approximations

A linearized low-order approximation is an order reduction of the lumped element

model in a single contact with haptic device [85, 86]. The linear low-order approxi-

mation is constructed and sent to the local model to generate the force feedback to

the haptic device at haptic update rate. This method is integrated into the GiPSi

framework by MSDModel and MSDModelBuilder classes. The MSDModel is the con-

tainer class to store the information of masses and springs for building a linearized

low-order approximations of lumped element model. The MSDModelBuilder fills the

connectivity information into the MSDModel. When the haptic device contacts the

node in the lumped element model, the ReturnHapticModel() function in MSDObject

class is called to create the linearized low-order approximations model at a contact

node. The MSDModelBuilder retrieves the connectivity around the contact node,

such as the neighbor nodes and springs and identifies what type of springs. There

are three types of spring, which are contact, internal, and boundary springs. The

contact spring is the spring that has one contact mass node. The boundary spring is

the spring that has one boundary mass node. The internal spring is the spring that

has neither contact nor boundary mass node. The boundary of model is defined by

the depth of neighbor contact mass node. After that, the low-order linear model is

stored in GiPSiLowOrderLinearHapticModel structure and sent to the haptic device

to generate the force feedback in haptic callback.

User Interface

The GiPSi user interface is the control sequences of command that user employs to

control the state of GiPSi simulation, such as the keystrokes from the computer key-

board. The UserInterface based class contains the constructor and destructor, the

simulation kernel pointer and the function to set the simulation kernel pointer. The

EndoSimUserInterface class is derived from the user interface class for managing
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the key presses from user. This derived class does the mapping between key press

character and user interface command string. The EndoSimUserInterface searches

the user interface command string corresponding to the key press character when user

presses a keyboard. After that the EndoSimUserInterface sends the user interface

command string to simulation kernel buffer and simulation kernel executes the user

interface command string. The user interface is implemented in simulation kernel to

get and execute the user interface command. The setUICommand() is added to sim-

ulation kernel to get the user interface command string controlling simulation kernel

from EndoSimUserInterface and save it in buffer, while the user interface command

string controlling visualization is executed immediately in visualization engine. The

executeUICommand() is also added to simulation kernel to get the user command

string from buffer and execute it in simulation kernel. After that the user command

string buffer is cleared.

5.4 GiPSiNet

The first release of the GiPSi framework provided an API between the simulation

kernel and input/output interfaces (haptic, visualization). By expanding and adding

a network extension to GiPSi provides benefit to user to use surgical simulation over

the network. Users can access and perform the simulation any time from any ap-

propriate network access point. Network extension of GiPSi involves a middleware

module (GiPSiNet) to improve the lack of network QoS and to enhance the user-

perceived quality of a networked simulation. In order to extend the kernel-I/O API

to a network environment, a middleware layer (GiPSiNet) is added between the sim-

ulation kernel and the input/output subsystem; such a middleware encapsulates all

networking functionalities (Figure 5.5). The resulting simulator involves two commu-

nication endpoints, which are client and server. The client interacts with the end-user
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Figure 5.5: The GiPSiNet software architecture. Shaded modules were part of the
existing GiPSi platform, clear modules were part of the GiPSiNet middleware [2].

(e.g., surgeon, trainee) through the haptic and visualization interfaces, and the server

is the host for running simulation kernel, simulating the physical models, and colli-

sion detection and response. The middleware transparently incorporates the complex

adaptive methods that are described in [2]. Moreover, the networked framework in-

herits from GiPSi its flexibility and potential for extensibility to a variety of surgical

simulations. The design of the middleware layer (including the design of the client

and server side proxies for visualization engine and the haptic manager) have been

done by Dr.Cai, and has been explained in detail in Appendix A.1 for completeness.

GiPSiNet is the extension of GiPSi [8] to networked virtual environments via the

Internet by using real-time CORBA with TAO [87, 88]. CORBA is a middleware

technology that supports the construction and integration of client-server application

in heterogeneous distributed environment. CORBA is stand for the Command Ob-

ject Request Broker Architecture which is the result of a standardization consortium,

called OMG (Object Management Group), involving more than six hundred interna-
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tional software companies. The ACE ORB (TAO) is an open source implementation

of a standard CORBA Object Request Broker (ORB) which based on the standard

Object Management Group (OMG) CORBA reference model, and is constructed us-

ing s software concepts and frameworks provided by the Adaptive Communications

Environment (ACE). The ACE/TAO is implemented by using C and C++ languages

and developed by the researchers at Washington University, St.Louis, University of

California, Irvine and Vanderbilt University. The TAO is an open-source available

online at http://www.cs.wustl.edu/∼schmidt/TAO.html.

The GiPSiNet middleware between the client and the server uses the remote proxy

design pattern [89], which provides a surrogate or placeholder for another object to

control access to it. The remote proxy pattern uses a proxy to hide a service object,

which is located on a different machine from the client objects. The client objects

request the service from the service proxy, which is located on the same machine. The

service object and the service proxy are transferring the information transparently

like the service and the client are in the same machine. In order to provide a network

functionality with transparency to the original GiPSi API, the simulation kernel

proxy (SKP), haptic manager proxy (HMP), and visualization engine proxy (VEP)

are created to be the proxy of simulation kernel, haptic manager, and visualization

engine, respectively. In GiPSi data flow, the simulation kernel communicates with

the haptic manager and visualization engine directly. In GiPSiNet data flow (Figure

5.6), the HMP and VEP communicate with the SK at the server side, and the SKP

communicates with the HM and VE at the client side, instead of communication

directly with the original objects.

5.4.1 GiPSiNet Mechanism

GiPSiNet is the network extension of GiPSi which contains server and client shown in

Figure 5.7. In the networked environment, the server contains the simulation kernel,
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and the client contains user interface, haptic manager and visualization engine. The

user interface manages user inputs, such as, key presses on the keyboard, opening

of the project file which contains the parameters to set up a simulation, closing of

the connection between the client and the server. The haptic manager manages

haptic devices which capture input position from user and render force feedback to

user. The visualization engine manages display output from simulation. Proxies

between GiPSiNet server and client, specifically between simulation kernel at the

server and the haptic manager, visualization engine and user interface at the client,

are implemented using CORBA/TAO middleware.

From the view point of CORBA/TAO middleware, the haptic manager and visu-

alization engine are the services running in the client side and the user interface is

embedded in the visualization engine. When a user starts the client, the user inter-

face connects to the server and selects the project file to load. Client sends selected

filename to the server to retrieve the project file and send that project file back to

the client. Then, both the server and the client loads this project file. After that the

client starts the haptic manager and visualization engine services and sends a sig-

nal to the server to notify that the haptic manager and visualization engine services

are started in the client. The server then starts haptic manager and visualization

engine proxies. These let the visualization engine and haptic manager connect to

the simulation kernel via the visualization engine and haptic manager proxies. Two

communication services, which are simulation kernel-haptic manager and simulation
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Figure 5.7: GiPSiNet Client - Server Architecture

kernel-visualization engine, are created separately to transfer the data independently

to the simulation kernel.

Figure 5.8 shows the communication flow chart between the client and the server.

The start and stop processes are described in detail below (Figure 5.8). The CORBA

naming service is required for mapping CORBA objects, and needs to run all the time

in GiPSiNet communication. The server initially starts and waits for connection of the

client by using TAO with that naming service. When the client starts, the client makes

a connection with the server with the same naming service. The client then retrieves

the XML data from the server by using the getProjectXML() function. The server

opens the project file and sends the XML data back to the client. The client loads this

project and sends an acknowledgment signal to the server by using loadedProject()

function. When the server gets the signal, the server loads the project file. Then,

the client starts the haptic manager service and sends an acknowledgment signal

to the server by using startedService() function with “HM” parameter. When

the server gets the signal, the server starts the haptic manager proxy. The same

events occur for the visualization engine service. The client starts the visualization

engine service and sends an acknowledgment signal to the server. When the server

gets the signal it starts the visualization engine proxy. After that the client starts

the visualization engine with the graphical user interface (GUI) loop and the server

starts the visualization engine proxy loop at the same time. In these loops, the
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communication between VEP-VE and HMP-HM are established to send data between

the server and the client. The HM sends the data of the haptic device position and

receives the data of the force feedback to generate the feedback to the user. The VEP

sends the visualization buffer to the client for display of the simulation objects at the

user terminal. Moreover, the user interface communication is also captured in these

loops. The details of visualization engine proxy and haptics manager proxy, which

are collaborated with Prof.Liberatore and Dr.Cai are described in Appendix A.1.

The detail of user interface is described in the next section. The stop process occurs

when the user presses “quit”, then the setUICommand() function is called and sends

the string “exit” to the server. The server executes the command by terminating

the simulation and calls the closeConnection() function, which stops the haptic

manager proxy and visualization engine proxy loops.
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5.4.2 GiPSiNet User Interface

The user interface is a way to control the system by user by using keyboard, mouse

or other input devices. The simple user interface is a command line interface that

controls the system by pressing a keyboard. Later, a graphical user interface (GUI)

was introduced to control the system with richly graphical design for easy using. The

GiPSi framework does not provide the user interface itself, because the user interface

is dependent on the developed application. GiPSi only provides the necessary API

for user interface to control the state of simulation kernel.

The user interface in GiPSi is based on the transmission of command from vi-

sualization engine to simulation kernel (Figure 5.9a). A user interface string buffer

is introduced between visualization engine and simulation kernel to store the com-

mands that need to be processed (Figure 5.9b). There are two sets of user interface

commands, which are for controlling the simulation kernel and controlling the visu-

alization engine. The user interface command strings for controlling the simulation

kernel from the visualization engine are sent to the simulation kernel and saved in a

buffer, while the user interface command strings for controlling the visualization are

executed immediately by the visualization engine.

For remote user interface, the user command buffer is transmitted over the net-

work by implemented the setUICommand() function in simulation kernel proxy, which

derived from simulation kernel in Figure 5.9c. This function sends the user interface

command from simulation kernel proxy at the client to simulation kernel at the server

and executes the user command in the same way as GiPSi does. This means that

only user interface commands controlling simulation kernel are transmitted over the

network.
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Figure 5.9: User interface in GiPSi (a,b) and remote user interface (c).

5.5 Experimental Evaluation

The simulation was tested and benchmarked on the Microsoft Windows XPTM 32-

bit based workstation with the Intel Pentium D 2.80 GHz, 1 GB of RAM and a

PCI Express NVidia GeForce 8800 Ultra Graphics Card with 768 MB of memory to

collect performance benchmarks for non-networked environment. For the networked

environment configuration was the following. The server was the Microsoft Windows

XPTM 64-bit based workstation with dual Intel XEON 2.8 GHz, 8 GB of RAM used for

GiPSi core computations, which were simulation kernel, simulation objects evaluating

with numerical integration, and collision detection and response. The client was the

workstation with the Intel Pentium D 2.80 GHz, 1 GB of RAM and a PCI Express

NVidia GeForce 8800 Ultra Graphics Card with 768 MB of memory connected with

the PHANTOM Ommi R© haptic device. Both workstations installed CORBA/TAO

environment and had a gigabit network card connected with AT-GS916GB 16 port

10/100/1000T unmanaged switch. The network connection used was a low latency

dedicated network connection without significant cross traffic. The naming service

was running on the client machine.

We implemented an endoscopic neurosurgery training simulator (Figure 5.10) as
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a test bed to evaluate the GiPSi/GiPSiNet functionality. The simulation was com-

posed of geometric models of the anatomy obtained from a commercial company. The

simulation consisted of 20 simulation objects and 13 texture objects. The complete

list of simulation objects and texture objects was in the Appendix A.2.1. For ex-

ample, two choroid plexus models were composed of 6,000 nodes and 11,996 faces in

each model. The ventricle system model was composed of 9,145 nodes and 17,942

faces with quasi-static decoupled spring model which every node in model anchored

to the original position with springs. The ventricle floor model was composed of 233

nodes and 286 faces with lumped element model of 74 masses and 249 springs. The

implicit Euler numerical integration method with simulation time step of 0.01 second

was used for lumped element models in simulation. The simulator was run 10 times

and the results averaged. The visualization engine was operating at 43 frames per

second in non-networked environment. In networked environment, the visualization

engine was operating at 54 frames per second. This because the GiPSi/GiPSiNet was

designed with multi-threading processes. In non-networked environment all thread-

ing processes ran on same machine which decreased the visualization performance

from intensive computation in simulation kernel, while in networked environment

visualization engine and simulation kernel are separated in different machine.

We also measured and compared the time spent in the main five communication

functions, which were related to the communication of the project file, user interface

command, display arrays, linearized low-order approximation haptic models and hap-

tic device configurations. The turnaround times from invocation to completion of the

network communication functions in networked environments were run 10 times and

the average results were shown in Table 5.1. The size of project file was 63.38 KB.

The total data transfer for the visualization per scene was 8.44 MB. The maximum

data transfer of a linearized low-order approximation of haptic model was 12.10 KB

per haptic update. The complete list of linearized low-order approximation models
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Figure 5.10: The endoscopic third ventricle simulation.

Table 5.1: Transfer time of functions in endoscopic simulator with networked envi-
ronments. The average turnaround time of visualization and haptic communications
reported per frame. Project file transmission occurred once per simulation. User
interface commands were issued on demand and repeated per transmission.

Data transfer (bytes) Average transfer time (ms)

Transfer project file 63,382 4.26
Set user interface command 4-17 3.14

VEP-setArray() 8,440,428 283.64
HMP-UseHapticModel() 12,102 4.19

HMP-ReadConfiguration() 100 7.41

was in the Appendix A.2.2. The data transfer of haptic device configuration was 0.1

KB per haptic update.

We also implemented a simple test bed (Figure 5.11) with soft tissue model with

haptic device to evaluate the network capability. The simulation consisted of 3 sim-

ulation objects and 5 texture objects. The soft tissue model had two square geomet-

ric models connected together and for each geometric model was composed of 121

nodes and 200 faces. One of the objects was embedded with lumped element model

composed of 121 masses and 420 springs and the other object was embedded with

quasi-static decoupled spring model also composed of 121 masses and 121 springs an-
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Figure 5.11: The tissue embedded with different physical models, the quasi-static
decoupled spring model on the left and the lumped element model on the right.

Table 5.2: Transfer time of functions in simple test bed with networked environments.
The average turnaround time of visualization and haptic communications reported
per frame. Project file transmission occurred once per simulation. User interface
commands were issued on demand and repeated per transmission.

Data transfer (bytes) Average transfer time (ms)

Transfer project file 12,265 2.69
Set user interface command 4-17 2.29

VEP-setArray() 3,166,872 92.99
HMP-UseHapticModel() 12,102 2.91

HMP-ReadConfiguration() 100 7.60

chor to the original position. The simulation was run 10 times and results averaged.

The visualization engine was operating at 56 frames per second in non-networked

environment and 57 frames per second in networked environment. The turnaround

times from invocation to completion of the network communication functions were

shown in Table 5.2. The size of project file was 12.27 KB. The total data transfer

for visualization per scene was 3.17 MB. The maximum data transfer of a linearized

low-order approximation of haptic model was 12.10 KB per haptic update. The data

transfer of haptic device configuration was 0.1 KB per haptic update.
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A detailed profiling of the simulation using the Intel VTuneTM performance an-

alyzer was used to measure the sources of overhead resulting from using the GiPSi/

GiPSiNet API in non-networked and networked environments. The sources of over-

head in non-networked operation were the data translations between the model state

and the display, boundary, and domain geometries, and the data translations occur-

ring inside the connectors. The additional sources of overhead in networked operation

were the data transfers occurring between the GiPSi modules and the proxies, and

the overhead resulting from the use of TAO functions. The percentage of overhead

running time was calculated from the overhead running time divided by the total

running time and multiplied by 100%. The double-chamber heart model simulation

[8] (Figure 5.12) was tested and benchmarked in the stand alone environment. The

visualization engine was operating at 58 frames per second. The profiling analysis re-

vealed that the overhead accounted was 6.18% of the overall application. In network

environment, the profiling analysis revealed that the overhead accounted were 7.31%

and 4.62% for the client and the server, respectively. For the endoscopic neurosurgery

training simulator (Figure 5.10), the profiling analysis in the stand alone environment

revealed that the overhead accounted was 15.22% of the overall application. In net-

work environment, the profiling analysis revealed that the overhead accounted were

13.55% and 5.86% for the client and server, respectively. For the simple test bed

(Figure 5.11), the profiling analysis in stand alone environment revealed that the

overhead accounted was 12.97% of the overall application. In network environment,

the profiling analysis revealed that the overhead accounted were 8.49% and 7.15%

for the client and server, respectively. The overhead was relatively higher for the

endoscopic training simulator because the endoscopic simulator contained a lot of

complex geometry objects which the simulation kernel spent a lot of time to transfer

the data between the model state and the display, boundary, and domain geometries.
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Figure 5.12: The double-chamber heart model simulation.

5.6 Conclusion

In this chapter we presented the GiPSi, an evolving open source/open architecture

software framework for developing organ-level surgical simulations, and the exten-

sions and improvements to GiPSi that were done as part of the research. The de-

sign improvements include the development of the real-time simulation kernel, exe-

cution order in simulation kernel, implicit numerical integration algorithms, revision

of simulation object class hierarchy, extended geometry data structure, multi-display

manager, collision detection and response algorithm, collision rules, haptic interac-

tion and linearized low-order approximation model, and user interface. Moreover

the GiPSiNet, an open source/open architecture networked simulation framework for

surgical simulation, is introduced. The GiPSiNet extends GiPSi with network envi-

ronment and enhances the quality of networked surgical virtual simulation by using

CORBA middleware. The GiPSiNet mechanism is presented along with the commu-

nications between the client and the server which are the GiPSiNet user command

interface, GiPSiNet visualization, and GiPSiNet haptic.
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We used an endoscopic simulator and simple test bed as the test applications for

GiPSi/GiPSiNet. We captured the data transfer and time used between the client

and the server to benchmark the performance of GiPSiNet. As well as the detailed

profiling of the simulation was measured by using the Intel VTuneTM performance

analyzer.
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Chapter 6

Endoscopic Third Ventriculostomy

Surgery Simulator

6.1 Introduction

Endoscopic surgery is a minimally invasive surgical technique that involves the use of

an endoscope, a special viewing instrument which allows a surgeon to see images of the

internal body’s structures through very small incisions. Endoscopic surgery has been

used for decades in a number of different procedures, such as gallbladder removal. The

first endoscopic neurosurgery was performed by Lespinasse in 1910 [90]. He performed

endoscopy through burr holes with choroid plexus coagulation in two hydrocephalic

infants. The first endoscopic third ventriculostomy was performed by Mixter in 1923

[91] in a child with hydrocephalus by using endoscopic guidance by bypassing an

obstruction in the ventricular system. Nowadays, endoscopic surgery is applied into

many surgery procedures, for example, endoscopic sinus surgery, cholecystectomy

(gall bladder removal), endoscopic spine surgery, endoscopic third ventriculostomy

surgery, etc.

An endoscope consists of two basic parts: a tubular probe with a tiny camera
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and light, which is inserted through a small incision; and a viewing screen, which

magnifies the transmitted images of the body’s internal structures. During surgery,

the surgeon watches the screen while moving the tube of the endoscope through

the surgical area. It’s important to understand that the endoscope functions as a

viewing device only. To perform the surgery, a separate surgical instrument, such

as a scalpel, scissors, or forceps, must be inserted through a different point of entry

and manipulated within the patient’s body. Surgeons should be well-trained and

experienced to perform these surgeries. There are many approaches to practice those

surgical skills. Computer-based surgical simulation offers the trainers to practice with

variety of surgical skills in a controlled, risk-free environment before surgeon performs

in actual operation. The benefits of computer-based surgical simulation are reducing

cost and time compared with traditional surgical training and increasing the patient

safety and surgeon self-confidence.

This chapter introduces a virtual environment-based training simulator for endo-

scopic third ventriculostomy as a test bed of surgery simulator. The GiPSi [8] frame-

work is used to develop the third ventriculostomy simulator. The remainder of this

chapter is organized as follows: In the next section, the symptoms and treatments

of Hydrocephalus are described in section 6.2, including the third ventriculostomy

surgery, which is an endoscopic surgical technique for treatment of Hydrocephalus.

In section 6.3, the third ventricle surgery simulator is described. The elastoplasticity

lumped element model which used to model the ventricle floor is presented in section

6.4. Then, the implementations of simulator which are endoscopic surgery instru-

ments and hole poking procedure are presented in section 6.5 and 6.6. After that,

the experimental results are presented in section 6.7, followed by concluding remarks

in section 6.8.
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Figure 6.1: A brain without and with hydrocephalus [3].

6.2 Hydrocephalus and Third Ventriculostomy

Hydrocephalus, or called water on the brain, is a condition that the amount of cere-

brospinal fluid (CSF) excesses the capacity of the brain and puts pressure to the

tissue of the brain causing brain damage as well as causing the head enlargement.

Hydrocephalus occurs in one of 1,000 live births. There are two treatments of hydro-

cephalus, which are shunting procedure and third ventriculostomy procedure. The

shunting procedure is introduced by Holter and colleagues in the early 1950s. The

shunt procedure diverts the flow of CSF from the Central Nervous System (CNS) to

another area of the body by inserting a shunt system. The shunt system consists

of a catheter, and a valve. The catheter is a flexible tube made of sturdy plastic.

One end of catheter is placed within a ventricle inside the brain and the other end

is usually placed within the abdominal cavity. The small valve is located between

two ends of catheter to maintain one-way flow and control the amount of CSF flow.

An example of the shunt is shown in Figure 6.2. The shunting procedure is not the

perfect treatment in long term because shunt may malfunction or cause infection. It

needs operative revision several times. The third ventriculostomy is introduced as an

alternative hydrocephalus treatment. The third ventriculostomy was performed be-

fore shunting procedure by Mixter [91]. However, this procedure was not widespread

because the instruments used in surgery at that time were not as good as the instru-
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Figure 6.2: An example of a shunt in place [3].

ment used today. In this procedure, surgeon inserts an endoscope into the patient’s

head to reach the surgical area which is the third ventricular floor and uses a small

tool to make a hole in the floor. This hole poking at third ventricular floor allows the

CSF to flow normally in the system and reduce the pressure in the brain.

The third ventriculostomy procedure or endoscopic third ventriculostomy (ETV)

from Farina at el. [4] is described as follows: A burr hole is made through the

skull (Figure 6.3). The endoscope trajectory is aimed to the foramen of Monro and

floor of the third ventricle from the burr hole (Figure 6.3). Then, an endoscopic

instrument (Figure 6.4) is inserted into the lateral ventricle, and the choroid plexus.

The foramen of Monro is located between septal and thalamostriate veins (Figure

6.5). The endoscope is advanced into the third ventricle. The mamillary bodies are

the posterior landmark of the third ventricle (Figure 6.6). An opening in the floor
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Figure 6.3: Positioning the patient and planning the incision [4].

Figure 6.4: Endoscopic instrument with forceps (left) and with balloon catheter
(right) [4].

of the third ventricle is initially made with neuroendoscopic instruments and then

inflated using a balloon catheter.

6.3 Third Ventricle Surgery Simulator

A third ventriculostomy procedure is a endoscopic surgery which is difficult for sur-

geon to operate because endoscopic surgery has restricted vision, restricted movement

of instruments, difficult to handle instruments. Manipulation of endoscopic instru-

ments with indirect vision through a monitor requires extensive training. A computer-
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Figure 6.5: Endoscopic intraventricular anatomy [4].

Figure 6.6: Viewing through foramen of Monro targeting the floor of the third ven-
tricle [4].

based simulation training environment is the best solution for training surgeon in the

endoscopic surgery procedure.

The third ventriculostomy simulator has been developed by using GiPSi frame-

work. The geometric models of the anatomy used in the simulator were obtained

from a commercial company. Then, the area of interest, the third ventricle floor,

is extracted for creating the lumped element model as physical model by using pa-

rameters determination method as describe in Chapter 2. The third ventricle model

building procedure is shown in Figure 6.7.
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Figure 6.7: Third ventricle model building procedure.

The endoscopic surgery instruments consist of an endoscope, and a balloon catheter.

The endoscopic surgery instruments are controlled by using the PHANTOM Ommi R©

haptic device (SensAble Technologies). An elastoplasticity lumped element model,

which is the physically based model, is used to model the third ventricle floor which

interacts with the endoscopic instrument. The third ventricle floor can also create

a hole when an endoscopic instrument contacts the third ventricle floor model and

applies forces in excess of the limits of the physical model.
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Figure 6.8: Elastoplastic lumped element model.

6.4 Elastoplasticity Lumped Element Model

A soft tissue is not perfectly elastic. A real tissue may exhibit a variety of inelastic

properties. For example, the tissue may not restore to its initial shape after the force

removal. A deformable object with inelastic properties does not obey the Hooke’s

law when the forces exceed certain limited values, and the object does not reverse

into its initial shape. The effect of permanent deformation is called plasticity. The

combination between elasticity and plasticity is called the elastoplasticity shown in

Figure 6.8. The elastoplasticity is extended from the normal elastic spring behavior

with the plasticity property by adding more parameters, which are the spring constant

of plasticity, elasticity limited percentage, and the initial rest length. If the strain

exceeds the elastic limitation, the spring rest length is modified and spring constant

of plasticity is introduced into the original spring [14].

l = ‖x1 − x2‖ (6.1)

fs(l) = ke (l − L0) + kp (L− L0) (6.2)

Lnew = Lold + dL (6.3)

dL =


0; L−RL0 < l < L+RL0

dl; l > L+RL0 and dl > 0
0; l > L+RL0 and dl < 0
dl; l < L−RL0 and dl < 0
0; l < L−RL0 and dl > 0

(6.4)
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where l is the displacement between node 1 and node 2, fs is the spring force from

elasticity and plasticity, ke is the elasticity spring constant, kp is the plasticity spring

constant, L is the rest length of spring, L0 is the initial rest length of spring, R is the

elasticity limited percentage.

The elastoplasticity is implemented into Spring class. To validate the elastoplastic

mechanism, the simple mass-spring model with two masses connected with one spring

is created by applied the external sinusoidal displacement at node 2 and fixed position

at node 1. The mass is 0.5 units. The spring has a damping constant of 0.86, elastic

constant of 15000 units, plastic spring constant of 1/10 of elastic spring constant.

The initial rest length is 2.0 units, the elasticity limited percentage is 0.2. The result

of relationship between the force and displacement is shown in Figure 6.9. The spring

starts from the rest length at 2.0 units and applies sinusoidal displacement at node

2. When the spring extends to L+RL0 = 2.0+0.2*2.0 = 2.4 units, which reaches the

elasticity limit, the plastic spring force is added into the spring force while the elastic

spring force maintains the same value from this point. The displacement is continued

to be applied until it reaches to 3.0 units. At this point, L = L0 + dl = 2+0.6 = 2.6

units. Then the displacement is decreased. When the spring length is less than 2.2

units, which is less than L − RL0 = 2.6-0.2*2.0 = 2.2 units, the plastic spring force

starts to decrease. The displacement continues to be applied until it reaches to 1.0

unit. At this point, L = L0 + dl = 2.6-1.2 = 1.4 units. Then the displacement is

increased again, until the spring displacement is greater than 1.8 units, which is more

than L + RL0 = 1.4 + 0.2*2.0 = 1.8 units. Then ,the plastic spring force starts to

increase again.
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Figure 6.9: Displacement vs. force of lumped element model at node 2.

6.5 Endoscopic Surgery Instruments

Endoscopic surgery is a minimally invasive surgical technique that involves the use

of an endoscope, a special viewing instrument which allows a surgeon to see images

of the body’s internal structures through very small incisions. Endoscopic surgery

instruments as simulation objects are designed and implemented as described below.

6.5.1 Endoscope

An endoscope consists of two basic parts: a tubular probe with a tiny camera and

light, which is inserted through a small incision; and a viewing screen, which magnifies

the transmitted images of the body’s internal structures. During surgery, the surgeon

watches the screen while moving the tube of the endoscope through the surgical area.

The RigidProbeHIO class is used for endoscope which captures the movement of

the haptic interface and renders the endoscope in the simulator. The transforma-

tion matrix from endoscope to world coordinates (gWE) is used in the simulation by

equation:

gWE = gWLH
· gLHH · gHE (6.5)

where gWLH
is the transformation matrix from local coordinates of haptic interface to

the world coordinates which is defined by user in the project file in <HIOParameters>

129



Figure 6.10: Endoscope in simulator using the GiPSi framework.

element, gLHH is the transformation matrix from haptic interface to the local co-

ordinates of haptic interface which is the position and orientation of haptic device,

and gHE is the transformation matrix from endoscope to haptic interface which is

defined by user in the project file. The connector between endoscope and catheter is

introduced because the catheter is constrained with the tube of endoscope. When the

endoscope moves, the catheter should move with the same position and orientation

of endoscope. The transformation matrix from the local coordinates of catheter to

the world coordinates (gWLC
) is the following:

gWLC
= gWE · gELC

(6.6)

where gELC
is the transformation matrix from local coordinates of catheter to endo-

scope which is defined by user in the project file. The result of transformation matrix

transfers to the catheter. Figure 6.10 shows the endoscope in GiPSi simulator. The

left side figures show the objects drawn with wireframe and the right side figures

show the objects drawn with texture.

6.5.2 Balloon Catheter

A balloon catheter is a soft catheter with an inflatable balloon at the tip which is

used during a catheterization procedure to enlarge a narrow hole. In endoscopic
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third ventriculostomy surgery, the balloon catheter is used to poke a hole in third

ventricular floor to make the cerebrospinal fluid circulate. The surgeon uses the

endoscope as a guide into the brain and inserts the balloon catheter through the

hole of endoscope. The tip of the balloon pokes a small hole and then the balloon is

inflated to enlarge the hole.

The design of balloon catheter model contains the catheter and balloon objects.

The balloon catheter can be moved in and out of endoscope device by the mouse

movement. The balloon inflation and deflation can be controlled by the keyboard

input from the user which sends user interface command string to simulation kernel.

The balloon catheter object is modeled by simple mass spring damper model which

can interact with the other simulation objects. The force feedback can be generated

and send back to the haptic device.

The balloon is the simulation object separated from the catheter because the

balloon can inflate and deflate. The connector between catheter and balloon is in-

troduced to attach these two simulation objects together when the user moves the

catheter, the balloon is moved relative to the moving catheter. The transformation

matrix from catheter to world coordinates (gWC) is used in the simulation by equa-

tion:

gWC = gWE · gELC
· gLCC = gWLC

· gLCC (6.7)

where gLCC is the transformation matrix from catheter to the local coordinates of

catheter which is defined by user in the project file. The transformation matrix

from the local catheter to the world coordinates (gWLC
) can get from the connector

between the endoscope and catheter. The connector between catheter and balloon is

introduced because the balloon is at the tip of the catheter. When the catheter moves,

the balloon should move with the same position and orientation of catheter. The

transformation matrix from the local coordinates of balloon to the world coordinates
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Figure 6.11: Balloon catheter in simulator using the GiPSi framework.

(gWLB
) is calculated as the following:

gWLB
= gWC · gCLB

(6.8)

where gCLB
is the transformation matrix from local coordinates of balloon to catheter

which is defined by user in the project file. The result of transformation matrix is

sent to the balloon object.

The transformation matrix from balloon object to world coordinates (gWB) is used

in the simulation by equation:

gWB = gWC · gCLB
· gLBB = gWLB

· gLBB (6.9)

where gLBB is the transformation matrix from balloon object to the local coordinates

of balloon which is defined by user in the project file. The transformation matrix from

the local coordinates of balloon to the world coordinates (gWLC
) can get from the

connector between the catheter and balloon. Figure 6.11 shows the balloon catheter

in GiPSi simulator. The left side figures show the objects drawn with wireframe and

the right side figures show the objects drawn with texture.
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6.5.3 Camera Attached Haptic Device

The camera acts as the eye of surgeon to view the working area of surgery. The camera

is inserted into the tube of endoscope to the end of endoscope, normally at the tip of

endoscope; therefore, the position of attached camera locates at the tip of endoscope.

When the haptic device moves, the viewing of camera moves with the same amount

of the movement of the haptic interface. The transformation matrix from viewing of

camera to world coordinates (gWV ) is used in the simulation by equation:

gWV = gWLH
· gLHH · gHV (6.10)

where gHV is the transformation matrix from viewing of camera to haptic interface

which is defined by user in the project file in <cameraToHapticTransformation>

sub-element in <camera> element and gWLH
is also defined by user in the project file

in <baseToWorldTransformation> sub-element in <camera> element.

6.5.4 Light Attached Camera

The light illuminates the area of surgery which attaches with camera. The transforma-

tion matrix from light source to world coordinates (gWL) equals to the transformation

matrix from viewing of camera to world coordinates (gWV ) as the equation:

gWL = gWV (6.11)

6.6 Poking a Hole

When an endoscopic instrument reaches the third ventricle, the floor of the third

ventricle is opened by a catheter and enlarged the hole with balloon inflation. The

movement of endoscopic instrument is captured by haptic device and the movement

of catheter and balloon are captured by the mouse. The ventricle floor is modeled by

lumped element model with elastoplasticity. The endoscopic instrument, catheter and
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balloon movement interacts with the ventricle floor. The collision detection detects

the overlap parts among simulation objects and the collision response with penetra-

tion depth approximation method resolves the collided object by separating parts of

collided area. The hole at the third ventricle floor occurs when the catheter contacts

the third ventricle floor hard enough to break the tissue strength. We designed and

implemented the algorithm for creating hole by breaking spring.

The basic idea of this algorithm comes from the nature of how tissue is broken

when the external force is large enough to break the tissue structure. The haptic

device captures the movement of the user controlling endoscopic instrument. When

the tip of catheter contacts the tissue at the third ventricle floor, a linearized low-

order approximation model is created at the contact node. This model generates the

force feedback to the haptic device. Springs with elastoplasticity can change their

properties depending on the how large of a force is acting on them. This force is

compared with the threshold value. If the spring force reaches the breaking point,

then spring is broken and removed from the simulation. The Hole class is created

and associated in MSDObject. Hole stores the contact node index, contact node force.

When the haptic device contacts the node in lumped element model and the force

feedback is large enough to make a hole. The node index and the force are stored

in Hole. Hole is updated in Display() function with removing the broken spring as

well as broken geometry. The implementation and the result shows in Figure 6.12.

The left side figures show the objects drawn with wireframe and the right side figures

show the objects drawn with texture.

This algorithm needs the neighbor connectivity information tables which are pro-

vided by the ExtendedTriSurface data structure. The neighbor connectivity infor-

mation tables are created after the simulator loads a geometry model from file. The

extended geometry creates a vertex-to-face and edge-to-face tables. When the user

move the haptic device and touch a node at the third ventricle floor, the user can
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Figure 6.12: Result of hole poking by breaking spring algorithm.

touch the node harder until the length of spring connected with that node exceeds

the limitation of elastoplasticity. The springs are broken by setting a spring rest

length to zero and set broken flag to true. At this point, the vertices related to nodes

belonged to broken spring can retrieve from mapping function. After the two vertices

are retrieved, the edge is identified along with the faces that belong to that edge. The

faces are then removed from the geometry. For simplicity and efficiency, the vertices

and faces in ExtendedTriSurface are not physically deleted, but instead a flag is set

to exclude them during processing.

6.7 Experiment and Discussion

The endoscopic third ventriculostomy simulator was implemented by using GiP-

Si/GiPSiNet framework and tested on the Microsoft Windows XPTM 32-bit based

workstation with Intel Pentium D 2.80 GHz, 1 GB of RAM and a PCI Express

NVidia GeForce 8800 Ultra Graphics Card with 768 MB of memory to collect perfor-

mance benchmarks. The hole poking by breaking spring algorithm was implemented

and integrated into the simulator. The simulator consisted of 22 simulation objects,

13 texture objects and 3 connectors. The ventricle system model was composed of
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Figure 6.13: Result of endoscopic third ventriculostomy simulator viewing at intra-
ventricular between lateral ventricle and the choroid plexus.

9,145 nodes and 17,942 faces with quasi-static decoupled spring model. The ventricle

floor model was composed of 558 nodes and 1,050 faces with lumped element model

of 558 masses and 1,607 springs. The implicit Euler numerical integration method

with simulation time step of 0.01 second was used for lumped element model in sim-

ulation. The simulator operated at about 27 frames per second. The visualization

results were shown in Figures 6.13, 6.14, 6.15, and 6.16.

6.8 Conclusion

We developed the endoscopic third ventriculostomy simulator as a test bed of surgery

simulator by using GiPSi/GiPSiNet framework. The third ventriculostomy procedure

is the treatment of hydrocephalus, which needs the surgeon to train and get familiar

with endoscopic surgery. The computer-based simulator is a new and excited train-

ing method. Since the GiPSi is a general interactive physical simulation interface,

which provides only the core of simulator, the specific endoscopic simulator applica-
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Figure 6.14: Result of endoscopic third ventriculostomy simulator viewing at third
ventricle floor and the mamillary bodies are the posterior landmark of the third
ventricle.

tion needs to implement specific components into the GiPSi, such as, springs with

elastoplasticity, specific tools, such as, an endoscope with a balloon catheter, and

related connectors between endoscope, catheter and balloon, and hole poking proce-

dures. The result shown that the GiPSi/GiPSiNet framework enabled the application

developer to build the specific simulator with speed and easiness.

To produce the realistic look of the hole, the implementation of hole by patching

area algorithm needs to be done. Using GPU also enables a realistic look with speed

up of the simulator. In order to complete the third ventriculostomy simulator for

use in actual training, a graphic user interface, specific training scenario, methods

for measuring performance metrics, and a database for storing the training outcomes

also need to be designed and implemented.
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Figure 6.15: Result of endoscopic third ventriculostomy simulator viewing at the
third ventricle floor with balloon catheter performing the hole poking.

Figure 6.16: Result of endoscopic third ventriculostomy simulator viewing at the
third ventricle floor with balloon catheter and the hole.
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Chapter 7

Conclusion

This chapter concludes the dissertation. The first section summaries the main re-

search results and contributions of this thesis, followed by a discussion of possible

future research related to this thesis.

7.1 Conclusion

The main contributions of this thesis are distributed into five primary areas. The

first is a novel method to determine the elasticity parameters in lumped element

models by approximating elements of lumped element model with elements of finite

element models. Lumped element models have advantages over the highly accurate

finite element model in terms of computational complexity. However, there are no

well-established methods to determine the elasticity parameters of lumped element

model for a specific deformable object. Here, we propose the method where the

elasticity parameters are determined through an optimization that minimizes the

matrix norm of the error between the stiffness matrices of the lumped element model

with a corresponding finite element model. The resulting deformable object models

using lumped element model are shown to have behavior very close to finite element

models.
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The second is as in depth study and comparison of numerical integration algo-

rithms used in simulation to identify underlying trade-offs as a function of material

properties. The results of this study can be used to determine a suitable numerical

integration algorithms and simulation time step size to be used in simulations to

maintain system stability.

The third is the design and implementation of collision detection and response al-

gorithms for deformable objects used in the GiPSi framework. The design of collision

detection and response algorithms are based on hierarchical axis aligned bounding

boxes and a penetration depth approximation method, respectively. The proposed

algorithms are suitable for deformable objects. The developed algorithms are incor-

porated into the GiPSi framework and employed in the developed test bed surgical

simulation.

The forth area is the improvement the design of the GiPSi simulation framework

architecture and the extension of the GiPSi framework to networked operation. As

parts of this research, several improvements to the GiPSi framework are developed

for improving the functionality of GiPSi framework including: the addition of a real-

time simulation kernel, ability to explicitly specify object order of execution, addition

of implicit numerical integration algorithms, extension of geometry data structures,

multi-display manager, development of collision detection and response algorithms,

implementation of haptic interaction algorithm which uses linearized low-order ap-

proximations, and the addition of a user interface. The network extension of GiPSi

(GiPSiNet) to provide remote operation of GiPSi over the Internet is also imple-

mented in collaboration with Prof.Vincenzo Liberatore and Dr.Qingbo Cai.

The fifth area is the development of a prototype endoscopic third ventriculostomy

simulator as a test bed using the GiPSi/GiPSiNet framework. The resulting of the test

bed application shows the capability of GiPSi/GiPSiNet framework for developing the

specific simulator application.
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7.2 Future Work

The following are the possible future directions of research related to this study. The

elasticity parameters determination for lumped element model can be more precisely

determined by adding more spring parameters, such as angular springs to the lumped

element model. Otherwise, the use of different optimization methods can produce the

difference elasticity parameters which may be suitable for specific deformable objects

or applications.

In numerical integration algorithms for deformable object, the study and imple-

mentation of new numerical integration algorithms, such as Newmark and Simplectic

methods, may increase the performance and stability of the system. Moreover, the

new physical based models can also improve physically based models, such as the

finite element model, mesh free model or point associated finite field (PAFF) [92].

The collision detection and response algorithms use a large portion of the compu-

tation time in the simulation kernel. We can improve the computation time by using

the compute unified device architecture (CUDA) developed by NVidia which per-

forms computing on GPU. We can also use CUDA to improve performance of other

computations by implementing a lumped element method, as well as implementing

numerical integration algorithms. Moreover, the implementation of finite element

model in CUDA can speed the application to real-time system.

The endoscopic third ventriculostomy simulator has many possible future research

directions. The hole puncturing in the simulator can be designed and implemented

by using other alternative approaches, which may produce better visualization of

the hole. For example, hole by patching area algorithm places a virtual hole at the

contact point with a specified radius and using subdivision to generate additional

geometry around the hole and attach into the original physical model. Moreover, the

complete simulator including the graphic user interface, database, and training sets

can be developed to be an usable application for surgeon.
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Another interesting topic is an augmented reality technology which is an active

research area. The augmented reality can apply on surgical simulation by producing

augmented video on top of the tangible physical surfaces or artificial tissues interact

with the real surgical instruments. This technique should produce the realistic look

over the augmented video and realistic feel from artificial tissue.
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Appendix A

GiPSiNet Visualization and

Haptics

A.1 GiPSiNet Design

GiPSiNet is in collaboration with Prof.Liberatore and Dr.Cai from network research

laboratory at Case Western Reserve University. The GiPSiNet visualization and

haptic design originate by Dr.Cai and Prof.Liberatore. The detail of GiPSiNet is in

[2].

A.1.1 GiPSiNet Visualization

Visualization in surgical simulation is an output to screen display representing the

physical simulation objects and their interactions that communicates to user via the

visual perception. Especially, in minimally-invasive surgery using endoscopic device

which the procedures in the real world, surgeon interacts with an image on a screen.

The key requirement is the development of an API such that the actual mechanics

of the display specific to a given visualization library are transparent to the model

developer. Therefore, the API needs to separate the specifics of what needs to be
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displayed, which is determined by the model developer, from the specifics of how the

actual display happens.

Visualization in GiPSi is based on a stream of frames. Each frame represents a

snapshot of the video. The video is displayed by rendering the continuous sequence

of frames in a stream. Frames are currently represented with a format specific to

GiPSi, and have variable size, i.e., different frames in a stream can have different

length. GiPSi frames are composed of frame elements. Frame elements belong to

simulation objects, and each simulation object can have 0, 1, or more frame elements.

Each object can dynamically change the size and number of its frame elements. The

GiPSi implementation breaks up the storage of each frame into the frame elements

that belong to each object. In the basic GiPSi concept, the simulation kernel (SK)

generates the frame stream, which is consumed by visualization engine (VE) for

rendering as shown in Figure A.1a. In GiPSi, the SK and VE are two separate

threads of control (e.g., threads or processes) that communicate the stream over

shared memory. The rendering engine is currently implemented with OpenGL. The

SK constructs each frame by iterating through the simulation objects and generating

their frame elements. The VE implicitly reconstructs each frame by iterating through

the frame elements that belong to the simulation objects. The SK can produce frames

at a higher or lower rate than the rate at which the VE can render them. Hence, a

buffer is introduced between the SK and the VE to match the different processing

speeds as shown in Figure A.1b. The buffer is lossy in the sense that the SK can

generate frames that never reach the VE. In effect, buffer losses are used to match

the slower VE with a faster SK. The buffer consists of an input buffer, a queue, and

an output buffer as shown in Figure A.1c.

The SK repeatedly writes a frame in the input buffer, which is then enqueued.

The VE repeatedly copies the queue head-of-line into the output buffer and renders

its contents. In GiPSi, the queue has length one. Its drop policy is “drop-head”: if the
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queue is full and a new frame arrives, the previously enqueued frame is dropped. The

motivation of the drop-head policy is that newer frames should be rendered rather

than older ones. The buffer management requires repeated copies of the input buffers

into the queue and of the queue head into the output buffer. Frame copying is fast in

shared memory since it only requires pointer management and locking (triple-buffer

implementation). Since frames can have different lengths, the buffer elements might

have to be resized over the course of the execution.

The objective of remote visualization is to implement the SK and VE on different

machines with no changes to their code. In particular, the SK and VE must have the

appearance of communicating with each other through a shared memory buffer as

discussed above. Remote visualization is accomplished with an engine that matches

the output buffer at the SK side with the input buffer at the VE side.

The engine consists of a SK-side thread of control called the visualization engine

proxy (VEP) and a VE-side thread of control called the simulation kernel proxy

(SKP). The VEP (SKP) is intended to interface with the SK (VE) exactly as the VE

(SK) would. In particular, the VEP communicate to the SK via shared memory and

copies frames out of the queue via locking and pointer management. Analogously, the

SKP communicates with the VE via shared memory. The VEP repeatedly dequeues

a frame into the SK-side output buffer and sends it to the SKP. The SKP repeatedly

fills the VE-side input buffer with received frames and enqueues them. The format of

frame elements is a GiPSi API standard, and can be converted into IDL. The VEP

and SKP implementation must deal correctly with variable-size frames.

Although in non-distributed visualization, the rendering speed is limited by the

VE throughput, in distributed visualization the visualization speed is determined by

the minimum of VE throughput and network goodput. Regardless, the SK-side buffer

can match a higher-speed SK with a slower (networked) visualization system.

The main issues that arise in remote visualization is transport reliability. In
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a reliable transport, the frame is copied exactly and reliably across sites. In an

unreliable transport, the frame can be lost. In an unreliable transport, the SKP

should drop a whole frame even if only a part was lost. Moreover, frame losses should

not jeopardize rendering correctness.

Although correctness can be preserved even with an unreliable transport, perfor-

mance could differ significantly. Furthermore, it may be advantageous to implement

an unreliable transport that makes multiple attempts at receiving a frame. Transport

performance is a major open issue, and hence to be postponed to future cycles.

SK VE

SK VEbu�er

(a)

(b)

(c)

SK VEOutput 
bu�er

Input 
bu�er Queue

bu�er

Network

(d)

SK Output 
bu�er

Input 
bu�er Queue

bu�er

VEP

VEOutput 
bu�er

Input 
bu�er Queue

bu�er

SKP

Figure A.1: Visualization in GiPSi (a,b,c) and remote visualization (d).

A.1.2 GiPSiNet Haptics

GiPSi uses a multi-rate simulation scheme proposed by Çavuşoğlu and Tendick in

[85]. In this method, each simulation object in haptic interaction provides local dy-

namic and geometric models for the haptic interface. The local dynamic model is

a low-order linear approximation of the full deformable object model, constructed
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by the simulation object from the full model at its update intervals, and the local

geometric model is a planar approximation of the local geometry of the simulation

object at the haptic interfacing location. These local models are used by the haptic

interface, running at a significantly higher update rate than the dynamic simulations,

for estimating the inter-sample interaction forces and inter-sample collisions. The

haptics in GiPSi is based on a closed loop control of a haptic interface: the simula-

tion kernel (the controller) repeatedly queries the current configuration (i.e., position,

orientation, stylus button state) of the haptic interface, and generates force feedback

to apply to the haptic interface. In current GiPSi, the haptic Interface (HI) is man-

aged by a haptic manager (HM) thread as shown in Figure A.2a, which in turn is

launched by the project loader. The actual haptic interface is represented by haptic

interface object (HIO) in the simulation, and the HIOs are created and maintained

by the simulation kernel (SK); the HM instantiates HIOs and attaches them to the

correct HIs according to the XML data in project file. The HM and SK threads

communicate with each other using the process owned memory (variables).

The objective of remote haptics is to implement the SK and HM on different ma-

chines with minimum changes to GiPSi code as shown in Figure A.2b. In GiPSiNet,

the SK-HM inter-process communications done by method invocations on remote ob-

jects. For example, the HI proxy is implemented and called by the SK to delegate

all operations on the HI, which is managed by the HM and is a remote object to the

SK. Meanwhile, to incur minimum code change to extend GiPSi to GiPSiNet, the HI

proxy (HIP) is implemented as the derived class of HI, and consequently the HIP can

be used where the HI is used in GiPSi. Moreover, the HIP encapsulates the details

of invocations on remote objects. Therefore, the SK can invoke methods on remote

HI objects via HIP objects as if the HIs were local objects. The haptic attachment

occurs in simulation kernel by using the HM. The HM gets a haptic interface pointer

through a device identifier and attaches to the HIO. In GiPSiNet, four proxy classes
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are added: HI proxy (HIP), PhantomHI proxy (PhantomHIP), HM proxy (HMP),

and OpenHM proxy (OpenHMP). The method invocation mechanism on remote ob-

jects is a typical use of CORBA/TAO, and consequently the main effort to implement

this class is to do the argument transformations between the GiPSi types and TAO

types so that the TAO implementation is encapsulated in GiPSiNet and is hidden

from GiPSi.

(a)

SK
HIO

HM
HI

HMP
HIP

SK
HIO

HM
HI

Network

(b)

Figure A.2: Haptics in GiPSi (a) and remote haptics (b).

A.2 GiPSiNet Bandwidth

This section shows the bandwidth of data transfer between the client and the server.

The data is captured into four locations which are visualization engine proxy, haptic

manager proxy, user interface command, project file transfer.

A.2.1 GiPSiNet Visualization Bandwidth

The bandwidth of visualization data is calculated by the summation of dA size and

iA size of all geometry objects and the summation of height*width of all textures.

The visualization bandwidth includes the size of geometry and texture shown in

Tables A.1 and A.2 for endoscopic neurosurgery training simulator. Tables A.3 and

A.4 are geometry and texture data for simple test bed. The number of vertex can

calculated from dA size divided by DISPARRAY NODESIZE which is 15 expect the
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haptic geometry is divided by 12. The number of face can calculated from iA size

divided by 3 for triangle face.

Table A.1: Geometry data in endoscopic simulator

Geometry Object dA size iA size Total (byte)
ANOTHER VEIN 6,330 2,520 35,400

ANOTHER VEIN DISPLACED 6,330 2,520 35,400
ANTERIOR SEPTAL VEIN 6,330 2,520 35,400

ANTERIOR SEPTAL VEIN DISPLACED 6,330 2,520 35,400
BASILAR ARTERY 4,530 1,800 25,320

BLACK COVER 3,240 1,284 18,096
CHOROID PLEXUS 90,000 35,988 503,952

Haptic 1,212 579 7,164
LEFT ANOTHER VEIN 6,330 2,520 35,400

LEFT ANOTHER VEIN DISPLACED 6,330 2,520 35,400
LEFT ANTERIOR SEPTAL VEIN 6,330 2,520 35,400

LEFT ANTERIOR SEPTAL VEIN DISPLACED 6,330 2,520 35,400
LEFT CHOROID PLEXUS 90,000 35,988 503,952

LEFT THALAMOSTRIATE VEIN 6,330 2,520 35,400
LEFT THALAMOSTRIATE VEIN DISPLACED 6,330 2,520 35,400

MAMMILLARY BODIES 14,460 5,760 80,880
THALAMOSTRIATE VEIN 6,330 2,520 35,400

THALAMOSTRIATE VEIN DISPLACED 6,330 2,520 35,400
VENTRICLE FLOOR 3,495 858 17,412

VENTRICLE SYSTEM 137,175 53,826 764,004

Table A.2: Texture data in endoscopic simulator

Texture data Height Width Total(byte)
AnteriorSeptalVeinBase 192 192 147,456

AnteriorSeptalVeinHeightMap 192 192 147,456
BasilarArteryBase 192 192 147,456

BasilarArteryHeightMap 192 192 147,456
CatheterBase 256 256 262,144

ChoroidPlexusBase 256 256 262,144
ChoroidPlexusHeightMap 256 256 262,144

MammillarryBodiesBase 256 256 262,144
MammillarryBodiesHeightMap 256 256 262,144

VentricleFloorBase 512 512 1,048,576
VentricleFloorHeightMap 512 512 1,048,576

VentricleSystemBase 512 512 1,048,576
VentricleSystemHeightMap 512 512 1,048,576

A.2.2 GiPSiNet Haptic Bandwidth

GiPSiLowOrderLinearHapticModel structure stores a linearized low-order approxi-

mation as the following:
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Table A.3: Geometry data in simple test bed

Geometry data dA size iA size Total (byte)

Haptic 312 144 1,824
SHEET1 1,815 600 9,660
SHEET2 1,815 600 9,660

Table A.4: Texture data in simple test bed

Texture data Height Width Total(byte)

BlueBase 512 512 262,144
OrganBase 256 256 65,536

OrganHeight 256 256 65,536
TissueBase 256 256 65,536

TissueHeight 256 256 65,536

typedef struct {

unsigned int _n; // number of states

unsigned int _m; // number of inputs

unsigned int _k; // number of outputs

Matrix<Real> *A11; // _n/2 x _n/2 matrix

Matrix<Real> *A12; // _n/2 x _n/2 matrix

Matrix<Real> *B1; // _n/2 x _m matrix

Matrix<Real> *C11; // _k x _n/2 matrix

Matrix<Real> *C12; // _k x _n/2 matrix

Matrix<Real> *D; // _k x _m matrix

Vector<Real> *f_0; // _k x 1 vector

Vector<Real> *zdot_0; // _n x 1 vector

Vector<Real> *normal; // _k x 1 vector

} GiPSiLowOrderLinearHapticModel;

The bandwidth of linearized low-order approximation model is calculated by summa-

tion of all data type in structure. Assuming an unsigned int is 4 bytes and Real

is 8 bytes. The Matrix and Vector are approximated only by the size of matrix and

vector with no other overhead.

bandwidthhaptic = 12 + 8

(
n2

2
+
nm

2
+ km+ kn+ 2k + n

)
where n is the number of states, m is the number of inputs, and k is the number

of outputs of linearized low-order approximation. Tables A.5 and A.6 are linearized
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low-order approximation model data for endoscopic simulator and simple test bed,

respectively.

Table A.5: A linearized low-order approximation model in endoscopic simulator

n m k Data(byte)

0 6 3 204
6 6 3 684

48 6 3 12,108

Table A.6: A linearized low-order approximation model in simple test bed

n m k Data(byte)

0 6 3 204
6 6 3 684

30 6 3 5,484
48 6 3 12,108

The ReadConfiguration function transfers the state of haptic device from haptic

manager in the client to haptic manager proxy in the server. The data transfer

contains

double Position[3];

double Orientation[9];

unsigned int ButtonState;

The data transfer size is 24+72+4=100 bytes.
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V. Garćıa, C. Alberola, M. A. R. Florido, J. Ruiz, and J. Usón, “SINERGIA la-

paroscopic virtual reality simulator: Didactic design and technical development,”

Computer Methods and Programs in Biomedicine, vol. 85, no. 3, pp. 273–283,

2007.

[12] G. Lacey, D. Ryan, D. Cassidy, and D. Young, “Mixed-reality simulation of

minimally invasive surgeries,” IEEE Multimedia, vol. 14, no. 4, pp. 76–87, 2007.

[13] Y. C. Fung, Biomechanics: mechanical properties of living tissues. New York,

NY, USA: Springer-Verlag, 1993.

[14] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable mod-

els,” in SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer

graphics and interactive techniques, 1987, pp. 205–214.

153



[15] D. N. Metaxas, Physics-Based Deformable Models: Applications to Computer

Vision, Graphics, and Medical Imaging. Norwell, MA, USA: Kluwer Academic

Publishers, 1996.

[16] X. Provot, “Deformation constraints in a mass-spring model to describe rigid

cloth behavior,” in Proceedings of Graphics Interface, 1995, pp. 147–154.

[17] D. Bourguignon and M. Cani, “Controlling anisotropy in mass-spring systems,”

in Eurographics Workshop on Computer Animation and Simulation (EGCAS),

ser. Springer Computer Science, aug 2000, pp. 113–123.

[18] M. Bro-Nielsen, “Finite element modeling in surgery simulation,” Proceedings of

the IEEE, vol. 86, no. 3, pp. 490–503, 1998.

[19] D. L. James and D. K. Pai, “ArtDefo: Accurate real time deformable objects,”

in SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer

graphics and interactive techniques, 1999, pp. 65–72.

[20] S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic deformations of soft

tissues for surgery simulation,” IEEE Transactions on Visualization and Com-

puter Graphics, vol. 5, no. 1, pp. 62–73, 1999.

[21] Y. Zhuang and J. Canny, “Haptic interaction with global deformations,” in

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA 2000), 2000, pp. 2428–2433.

[22] H. Delingette, S. Cotin, and N. Ayache, “Efficient linear elastic models of soft

tissues for real-time surgery simulation,” in Studies in Health Technology and

Informatics, vol. 62, 1999, pp. 100–101.

[23] K. D. Costa, P. J. Hunter, J. M. Rogers, J. M. Guccione, L. K. Waldman, and

A. D. McCulloch, “A three-dimensional finite element method for large elastic

154



deformations of ventricular myocardium: Part I - Cylindrical and spherical polar

coordinates,” ASME Journal of Biomechanical Engineering, vol. 118, pp. 452–

463, 1996.

[24] ——, “A three-dimensional finite element method for large elastic deformations

of ventricular myocardium: Part II - Prolate spherical coordinates,” ASME Jour-

nal of Biomechanical Engineering, vol. 118, pp. 464–472, 1996.

[25] X. Wu, M. S. Downes, T. Goktekin, and F. Tendick, “Adaptive nonlinear finite

elements for deformable body simulation using dynamic progressive meshes,” in

Proceedings of the Eurographics, vol. 20, no. 3, 2001, pp. 349–358.

[26] X. Wu and F. Tendick, “Multigrid integration for interactive deformable body

simulation,” in Procedding of International Symposium on Medical Simulation

(ISMS 2004), ser. Lecture Notes in Computer Science, vol. 3078, 2004, pp. 92–

104.

[27] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-time

deformations,” in SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Euro-

graphics symposium on Computer animation. New York, NY, USA: ACM, 2002,

pp. 49–54.

[28] M. Müller and M. Gross, “Interactive virtual materials,” in GI ’04: Proceed-

ings of Graphics Interface 2004. Canadian Human-Computer Communications

Society, 2004, pp. 239–246.

[29] M. Nesme, Y. Payan, and F. Faure, “Efficient, physically plausible finite ele-

ments,” in Eurographics (short papers), 2005, pp. 77–80.

[30] G. Irving, J. Teran, and R. Fedkiw, “Invertible finite elements for robust

simulation of large deformation,” in SCA ’04: Proceedings of the 2004 ACM

155



SIGGRAPH/Eurographics symposium on Computer animation. Aire-la-Ville,

Switzerland, Switzerland: Eurographics Association, 2004, pp. 131–140.

[31] F. Conti, “Tissue modeling via space filling elastic spheres,” 2001, presented at

the Stanford Workshop on Surgical Simulation.

[32] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric

models,” in ACM SIGGRAPH Computer Graphics, vol. 20, no. 4, 1986, pp.

151–160.

[33] B. Barsky, Computer Graphics and Geometric Modeling Using Beta-Splines.

New York: Springer-Verlag, 1988.

[34] A. Joukhadar, F. Garat, and C. Laugier, “Parameter identification for dynamic

simulation,” in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA ’97), 1997, pp. 1928–1933.

[35] A. Joukhadar and C. Laugier, “Dynamic simulation: Model, basic algorithms,

and optimization,” in Algorithms For Robotic Motion and Manipulation, 1997,

pp. 419–434.
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