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Analysis of Cellular Cardiac Bioelectricity Models toward

Computationally Efficient Whole-Heart Simulation

Abstract

by

NATHAN ALEXANDER WEDGE

This thesis studies the characteristics of excitable cell mathematical models, with

the goal of developing new insights and techniques in simulating the electrical be-

havior of the human heart. While very simple, small-scale models of such behavior

can be simulated at real-time or better speeds on powerful computing equipment, the

use of realistic cell models or organ-magnitude cell networks make the simulations

computationally infeasible. We examine the FitzHugh-Nagumo model using analysis

techniques for nonlinear systems and examine the effects of its parameters. Using

observations from this analysis and the system’s linearization, we develop methods

for optimizing calculations in the single-cell model using two local interpolation tech-

niques: nearest neighbor and locally weighted regression. In the multiple-cell setting,

we generalize the system’s response to stimuli, and building upon these observations,

we formulate cell network simulation methods. Finally, we present a method of speed-

ing simulations in multi-cell networks by tracking cellular activations.
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Chapter 1

Introduction

1.1 Problem and Motivation

Our purpose in this thesis is to explore the characteristics of cardiac cell models with

the goal of developing techniques for a computationally feasible whole-heart model.

Such a model could be invaluable in the study of human heart pathology and the

development of drugs for the treatment of various disorders. Thus, its potential value

is undeniable. A whole-heart model could dramatically expand our presently limited

understanding of cardiovascular disease and abnormality while providing a convenient,

noninvasive, and inexpensive method of proposing and testing revolutionary drug

therapies and other treatment interventions.

Development of techniques for large-scale modeling of systems is a common theme

across many fields of research today. Cardiac modeling presents complications not

found in many modeling tasks, since excitable cell models are nonlinear in nature,

and many ordinary and valuable analysis techniques for differential equations do not

apply to nonlinear systems. The simplest cardiac cell models have two variables while

realistic models can have dozens, and the total number of cells in the human heart is

on the order of 1010 (i.e., in the tens of billions). Therefore, extraneous details must
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be abstracted away so that only relevant information is actively simulated.

1.2 Cardiac Modeling Background

Researchers have long worked to capture the behavior of the human heart with a

realistic mathematical model. In fact, preliminary work can be traced back to Van

der Pol and Van der Mark’s work in the late 1920’s [33] that compared the human

heartbeat to a second-order differential equation. Later work over the past seven

decades has taken large strides forward to capture the complex voltage signals and

ionic flows that mark the operation of the human heart. Successive models have

captured specific features not found in their ancestors, leading to recently available

realistic cardiac models.

In 1952, Hodgkin and Huxley proposed the first equation model [10] designed to

mimic the excitable behavior of an individual cell. Originally developed as a model

of the giant squid nerve axon, it was found to provide a useful model of individual

cardiac cells as well, due to their similarly excitable nature. This fundamental model is

widely considered to be an impressively large initial step into what would later evolve

into the field of cardiac modeling. Following their work, other researchers began to

develop more complex models to bring additional realism to cardiac modeling.

FitzHugh [7], and soon after, Nagumo [21], were two of the first researchers to

investigate the properties of the model put forward by Hodgkin and Huxley years

earlier. FitzHugh provided a detailed mathematical analysis of their model, and

proposed a model of his own, based on a simplifying assumption that the sum of

two of the variables was nearly a constant. Still, FitzHugh’s new model retained

the essential excitable characteristics of the previous model. By contrast, Nagumo

approached the problem from an electrical point of view and created a nonlinear

circuit that paralleled the behavior of FitzHugh’s simplified model. Credit for this
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new model, to which we devote our attention in this thesis, was divided between

the two researchers. For a more detailed overview of the history of cardiac model

development see [24].

1.3 Current Research

As further research effort increased the complexity and quality of available cardiac

models, the new field of computational biology came into being. When FitzHugh

published his first paper, the analog computer was a modern computational tool.

Even the computational power available today that dwarfs FitzHugh’s resources is

not capable of providing real-time simulations of the relatively simple dynamics of

his model across an organ-magnitude system. Therefore, researchers have begun to

turn their attention toward development of novel mathematical and computational

methods to make such simulations feasible for modern computing hardware. Still,

this effort is recent and has great potential remaining for development.

Historically, two main approaches exist in attempts to build cardiac models: dis-

crete (or network) modeling and continuum modeling. The former, which is the basis

for the work in the later portion of this thesis, conceptualizes the heart tissue as a

large, interconnected network of cells, each individually described by an instance of

some model equation system (e.g., that of FitzHugh and Nagumo). Elements in these

networks are subject to an electrical interaction that provides the mechanism for the

propagation of potential waves and thus the heartbeat. In such an approach, the

individual cells often have a small number of neighbors through which any potential

wave must pass to reach them. Simulations of this kind become computationally

demanding well before the magnitude scale of true heart tissue.

Modern simulations based on the discrete modeling approach use a cell count

that is often well below the actual count of the human heart, to avoid the excessive
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demands of such calculations. One of the largest simulations constructed through

discrete modeling [20] used an array of over 140,000 circuit elements to simulate a

small (0.25 mm by 5.0 mm) section of cardiac tissue. Another used a hybridized

method in which tissue was modeled according to continuum modeling theory or

discrete modeling theory depending on local conditions. The fully discretized heart

contained two million cells [32]. The development of these and other models bore out

important qualitative results, but the individual efforts do not attempt to describe

the whole-heart in a computationally feasible setting.

In contrast to the discrete modeling idea, other research has followed the contin-

uum modeling theory, in which heart tissue is assumed to be a continuous region of

both extracellular and intracellular space rather than a set of distinct cells. Based

on the assumption that the features of phenomena to be observed are of large scale

compared to that of the individual cell, this approach discards the concept of the

discrete cell. The specific equations corresponding to this method of modeling are

simulated using the same basic computational ideas as the discrete approach, despite

the fundamentally different assumptions of the two approaches.

Continuum modeling suffers from the same restrictions of computational demand

as discrete modeling. Recent research suggests that the simulation of a single heart-

beat, approximately one half-second of real time, requires “about 50 gigabytes of

storage... for a full-scale heart simulation, and many days on a high-performance

computer” [13] using this technique. Currently, researchers are inventing new adap-

tive techniques that regulate the simulation timesteps based on local activity [26, 27]

and applying large-scale parallel processing computer systems [36] to deal with the

resource demands of heart simulation. Other techniques are adaptive on the spatial

scale [11], and actually split discrete cells that show signs of impending electrical acti-

vation in order to increase the spatial resolution around wavefronts. For an overview

of the approaches to whole-heart modeling (including information about modeling
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the mechanical and fluidic aspects of the heart) see [13, 17, 23].

The continued use of the simple FitzHugh-Nagumo model [11, 29] speaks to the

lack of real development in the quest to make large-scale simulation feasible. Though

models of this level are widely accepted as valid for qualitative analysis of heart phe-

nomena, more modern and complex models like those of Luo and Rudy [16] (with 14

currents and 11 gating variables) or DiFrancesco and Noble [6] (with 12 currents and

7 gating variables) are superior in their ability to represent individual ion channel

dynamics and concentration changes. Additionally, their complexity and correspond-

ing computational requirements dwarf the single current and gating variable of the

FitzHugh-Nagumo model. Thus, a whole-heart model that provides these details

through use of one of the more complex models will be more useful from both a

qualitative and quantitative standpoint.

1.4 Thesis Contributions

This thesis explores the structure of the FitzHugh-Nagumo excitable cell model in

order to characterize which details can be discarded through abstraction and which

are important to the model’s overall dynamics. Based upon the concept of electrical

wave propagation in the human heart, we examine the model using general analysis

techniques for nonlinear systems and give a thorough treatment of the effects of

its parameters on waveform shape and periodicity. Using observations from this

analysis and an analysis of the system’s linearization, we pose a method of optimizing

calculations in the single-cell model with two local interpolation techniques: nearest

neighbor and locally weighted regression.

To advance to the multiple-cell setting, we establish the system’s general response

to diffusive stimuli and discuss the effects of several specific types of stimuli. Building

upon these observations, we formulate cell network simulations and describe the types
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of electrical waves that are possible in such settings. Finally, we use our previous

analysis to form the basis for a method of speeding simulations in multi-cell networks

by tracking a list of “active” cells.

Portions of this work have been detailed previously in [35].

1.5 Thesis Outline

The thesis is separated into six chapters:

Chapter 1 introduces the theme of cardiac modeling and the associated computa-

tional complications, along with progress in the field. It further outlines the

motivating problems and contributions of the thesis.

Chapter 2 presents the FitzHugh-Nagumo model, which we use to analyze excitable

cardiac cell activity throughout the thesis. It proceeds to characterize the

dynamics of the model in a single-cell environment and provides details about

the system parameters and its periodic nature.

Chapter 3 studies the degree of nonlinearity in the FitzHugh-Nagumo model by

applying a linear approximation for the model. We introduce the idea of cap-

turing the model as a mapping relationship between present and future values.

Further, we propose the use of two interpolation algorithms (nearest neigh-

bor and locally weighted regression) to reconstruct this nonlinear mapping by

sampling-based methods.

Chapter 4 explains the mathematical concepts that model diffusion and wave propa-

gation through an excitable media. We draw an analogy between the diffusion

concept and forcing in ordinary differential equations, by which we analyze

the responses of the single-cell FitzHugh-Nagumo model to various stimulus.
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Finally, we show that the model possesses a certain “constant shape.” That is,

there exists a certain excitation shape for which the model outputs the same

waveform that is given as the input, albeit with a timeshift.

Chapter 5 progresses toward multi-cell simulations in one and two dimensions by

introducing several simulation cases. We outline the waveform classifications

that can occur in two-dimensional simulations and apply the previously in-

troduced dynamics of the model to motivate a novel activity list algorithm to

speed general simulations.

Chapter 6 concludes the thesis by summarizing the important developments reached

and proposes additional possibilities for further research.

1.6 Implementation

Throughout this thesis, the data and plots displayed were generated using MATLAB

6.5.1 on a Pentium IV 2.4 GHz processor PC with 1.5 GB of RAM. Algorithms

were implemented using purely built-in MATLAB routines whenever possible. The

exception is the numerical integration methods (Euler and Runge-Kutta), which used

hand-coded implementations in speed-critical settings, and MATLAB’s ode45 method

in analysis. MATLAB code for algorithms described within this thesis can be found in

Appendix A. Error plots given reflect absolute error between full-fledged simulations

and the output from the appropriate approximation or algorithm. Many preliminary

results, upon which this thesis is based, were generated with simulation programs

written in C++ using the OpenGL and GLUT graphics libraries. See Appendix B.
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Chapter 2

Basic Analysis of the Single-Cell

Model

The preliminary step in understanding the evolution of cardiac electrical potentials

lies in examining the characteristics of the individual cell. This requires a mathe-

matical model that will realistically approximate these characteristics, to the extent

that the model data is relevant. In this exploration, we choose the FitzHugh-Nagumo

model as a straightforward but qualitatively representative model with which to de-

velop new insights into model behavior and simulation techniques. This chapter

introduces various basic analysis techniques for the model and scrutinizes several

features of the model in a single-cell setting.

2.1 FitzHugh-Nagumo Model

In this thesis, we give detailed attention to the FitzHugh-Nagumo excitable cell model [7],

both in the context of a single-cell environment and of a multi-cellular network. This

particular model gives a qualitative representation of cardiac bioelectric phenomena,

so its waveforms and time are considered without units. The model is specified as

follows.

8



2.1.1 Equations

The FitzHugh-Nagumo model is governed by two coupled first-order differential equa-

tions:

∂V

∂t
=

1

ε

(
V − V 3

3
−W

)
, (2.1)

∂W

∂t
= ε (V − γW + β) . (2.2)

The first variable, V , represents the electrical potential of the cell and is referred to

as the fast variable due to its more rapid change compared to the second variable.

The slow variable, W , represents a combination of the sodium and potassium gating

variable of the cell, and is analogous to the cell’s refractory potential. An excitation

of a cell’s electrical potential is followed by a similar wave pattern in the gating

variable, which in turn prevents the cell from being re-excited immediately afterward

or sustained in the excited state. Thus, the slow dynamics of the gating variable helps

enforce a regularity in electrical excitation of cardiac cells.

2.1.2 Parameters

The FitzHugh-Nagumo system contains three parameters that control its dynamics:

ε, β, and γ. The value of ε, which is typically much less than one, is responsible for the

fast movements of V relative to W . The effects of the parameters will be examined

in detail later in this section. Unless otherwise stated, typical values applied in this

thesis for the aforementioned parameters are as follows:

ε = 0.2, β = 0.7, γ = 0.8.
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2.2 Solution Techniques

In common systems of ordinary differential equations (ODEs), one of several conven-

tional numerical methods is typically applied to solve the system. Two examples of

such methods are the Euler method and the Runge-Kutta method (see [9]), both of

which can be applied to the FitzHugh-Nagumo system. The Euler method, which

predicts the solution values of differential equations for (small) incremental timesteps,

is useful in preliminary analysis to qualify the general shapes and characteristics of the

FitzHugh-Nagumo curves. However, since it is lower-order and thus prone to numer-

ical errors, more developed analysis often demands application of the Runge-Kutta

method to obtain more accurate solutions. Thus, all FitzHugh-Nagumo solutions

presented in this thesis are completed using a form of the fourth-order Runge-Kutta

method. This Runge-Kutta method (of fourth order) computes a future value by

using a weighted average of slopes calculated at the current time and times one-half,

one, and two timesteps in the future. Figure 2.1 presents a comparison of solutions

reached by the two methods for three different timesteps. The “real” solution is

one computed by the Runge-Kutta method with a timestep of 0.0001 (and verified

against a similar Euler method calculation), to ensure minimal numerical error. It

should be noted that although both Euler and Runge-Kutta method solutions can

often remain stable along increasing timesteps in systems like this, numerical errors

arise at larger timesteps in the form of time lags that will cause them to diverge from

the true solution.

2.3 Phase Plane Analysis

Continuing the application of standard ordinary differential equation analysis meth-

ods, this section examines the FitzHugh-Nagumo model in the phase (V -W ) plane.

Phase plane analysis of the system helps to illustrate the model’s long-term behavior,
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Figure 2.1: Euler vs. Runge-Kutta Comparison

along with its limit cycles and equilibrium points.

2.3.1 Nullclines

The system has two nullclines, whose equations can be derived directly from Equations

(2.1) and (2.2) by setting dV
dt

and dW
dt

to zero. The equations for these nullclines,

depicted graphically in Figure 2.2 are as follows:

W = V − V 3

3
, (2.3)

W =
V + β

γ
. (2.4)
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Figure 2.2: Phase Plane with Nullclines and Sample Solution Trajectory. The sam-
ple trajectory and nullclines are shown with the system’s direction field, and the
equilibrium point is signified with a filled point.

2.3.2 Equilibrium Points

The intersections of the two nullclines reveal equilibrium points in up to three loca-

tions, given by the roots of a cubic equation. For the system in general, equilibrium

points are given by the cubic equation as follows:

V 3

3
+ V

(
1

γ
− 1

)
+

β

γ
= 0. (2.5)

For our typical parameter values, two of the roots have imaginary components, leading

to a single equilibrium point at (V, W ) ≈ (−1.1994,−0.6243) in the real numbers.

2.3.3 Cell Phase States

As shown in Figure 2.2, viewing the solutions of the FitzHugh-Nagumo system in the

phase plane allows its behavior to be logically separated into four main phases [7]:

12



regenerative, active, absolutely refractory, and relatively refractory. These phases

are listed in the figure along the edges of a sample solution trajectory started with

initial values (V, W ) = (−0.6,−0.6243). An external electrical stimulus of sufficient

magnitude will initiate an excitation cycle, in which the cell progresses through these

four states. In the regenerative phase, the cell begins a buildup of potential across its

membrane. If the perturbation is of insufficient magnitude, the cell will simply relax

back to its equilibrium, rather than experiencing a full excitation cycle. The active

phase represents the period in which the cell’s membrane potential is temporarily

suspended near a peak value. Entering the absolutely refractory phase, the cell’s

membrane potential drops rapidly toward its equilibrium value. At this point, as

shown by the direction field, the gating variable is at a maximum, and the cell is

quite resistant to any external stimulus. In the final phase, relatively refractory, it

is again possible to stimulate the cell into a renewed excitation cycle, though it will

display some resistance to such stimulation until it again reaches the equilibrium

point.

2.4 Parameter Significance

Examining the FitzHugh-Nagumo model equations under a range of parameters ex-

poses a general similarity in wave shapes across all values of the parameters. The

parameter ε has the primary role of controlling the relative dynamics between V and

W , making for sharp peaks in V at near-zero values and smoother peaks for larger

values. Similarly, W curves sharpen at near-zero values of ε to the point of being

similar to a sawtooth curve and have a smoother pattern for larger values. Contrasts

between the variables arise in the magnitude of the slopes. For small values of ε, V

curves have near-infinite slope values when the electrical potential peaks and relaxes,

while W slopes tend to reach a nearly constant value that decreases with ε values.
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Figure 2.4: Epsilon Parameter Effects (Unscaled Time)

Thus, the W curves take on a triangular shape at smaller values of ε. These effects

also lead to a time dilation with ε that extends excitation cycles in time with smaller

parameter values. Figures 2.3 and 2.4 display curves associated with different val-

ues of the parameter ε with and without time scaled by a factor of ε to show these

characteristics.

The other two parameters, β and γ, have only subtle effects on the wave shapes

of FitzHugh-Nagumo solutions. In fact, the only effect γ has on the wave shape

is a negligible deflection at the relaxation of the membrane potential (the so-called

relatively refractory phase). The effects of β are quite similar to those of γ, and are still
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Figure 2.5: Beta Parameter Effects
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Figure 2.6: Gamma Parameter Effects

centered on the relatively refractory phase of the waveform but are more pronounced.

Additionally, different values of β cause a noticeable shift in the time at which the

maximum of the gating variable occurs. Figures 2.5 and 2.6 demonstrate the effects of

varying these two parameters. Beyond these effects, examining the system’s response

to different values of β and γ reveals an interesting effect for certain parameter pairs:

spontaneous periodicity. We explore this in the next section.
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2.5 System Periodicity

There is one special case in the FitzHugh-Nagumo model that brings about a funda-

mental shift in its time behavior. If the linear nullcline, Equation (2.4), intersects the

cubic nullcline, Equation (2.3), in the center region of positive slope (V ∈ [−1, 1]),

it creates a Hopf bifurcation. In such a bifurcation, the equilibrium point becomes

unstable and a limit cycle of similar shape to the solution curve in Figure 2.2 arises.

This creates a natural periodicity in the system, which is not caused by any out-

side input. The intersection required for this limit cycle behavior is brought about

by certain value pairs of β and γ. Since the cubic nullcline is stationary across all

values of the system’s parameters, it is straightforward to show that the appropriate

intersection is bounded by

1− 2γ

3
> β, (2.6)

with the assumption that β ≥ 0 and γ ≥ 0 (β and γ are both positive parameters).

Despite the onset of periodic behavior in this case, the system continues to display

strong similarities in waveform shape.

We can characterize the period of the FitzHugh-Nagumo system through the use

of the solution’s autocorrelation function, given by

r(t) = lim
T→∞

1

2T

∫ T

−T

f(τ)f(t + τ)dτ. (2.7)

Since the autocorrelation function is given by an integral of two time-shifted ver-

sions of a solution, it takes up maximum values when the two solutions are synchro-

nized at a multiple of their period. Therefore, the distance between these maximum

values is the period of the solution. Figure 2.7 shows a sample autocorrelation func-

tion for β = 0.5 and γ = 0.5, where the peak-to-peak distance is 13.88, corresponding

to the period of the system.
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Figure 2.7: Sample Autocorrelation Function (for β = 0.5, γ = 0.5)

By sampling within the appropriate values of β and γ and calculating their solu-

tion periods, we can represent the period of the system as a smooth function of β and

γ. See Figure 2.8(a). Jagged edges in this surface are a consequence of the numer-

ical methods used to produce the plot; they are not a function of the system itself.

Figure 2.8(b) shows a histogram plot of the period data, representing the frequency

of appearance of the different values of period. In the approximate range of periods

(11.5 ≤ T ≤ 20.5), the lower period values (11.5 ≤ T ≤ 14.5, whose solutions are

more representative of the characteristic shapes seen in previous figures) dominate.

2.6 Characteristic Wave Shapes

Across all values of the system parameters, the FitzHugh-Nagumo system displays a

shape characteristic of the excitation behavior the system seeks to model. Though the

shape varies based on the exact values of the parameters and any external stimulus

applied, it retains the discernible excitation phase and the four-state motion through
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Figure 2.8: Period Correspondence and Distribution

the phase plane (see Section 2.3.3). Additionally, the excitation shape is very robust

to the specific choice of initial conditions; aside from a time shift associated with the

regenerative phase of the excitation, waves in the FitzHugh-Nagumo system settle

onto the same cycle through the active phase and both refractory phases. This ten-

dency is shown in Figure 2.9 under different initial values of the membrane potential

(V ) which are capable of expressing an excitation cycle.
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Chapter 3

Simulation Techniques

Having established a number of basic properties of the FitzHugh-Nagumo system in

the previous chapter, this chapter outlines methods of approximating the solution of

this nonlinear system. We first examine linearization and then move on to establish

two computational methods that can be used to determine the system’s solutions over

large timesteps.

3.1 Linear Approximation

In general, the first step toward analyzing any nonlinear system involves approximat-

ing it with a linear system, in the hope that this approximation will yield valuable

insights into the nonlinear system’s properties. Additionally, if the error associated

with the approximation is small, the linear approximation can be used in place of the

full-fledged system.

3.1.1 Theory

Applying a concept similar to the approximation of a function using its Taylor Series,

we seek to approximate the variables of the FitzHugh-Nagumo system at some future
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time as a function of its current values. Taylor’s theorem states that a function’s

value can be approximated by a series involving the derivatives of the function. To

extend this to a multi-variable system, we propose that the system can be described

by a series of weighted products of current values (where ∆x represents a vector of

the system’s variables):

∆x+ = M∆x +
1

2
H(∆x, ∆x) + · · · , (3.1)

where M and H are the first two terms in this extended Taylor series. Much as M is

premultipled to ∆x to generate the linear terms, the higher-order terms are composed

of two elements: an outer product that generates the individual terms (e.g., ∆V ·∆W )

and a tensor (such as H) whose elements provide their proportionalities. Each tensor

has a dimension equal to the order of its term (i.e., H is of order three). The term

∆x+ denotes the system’s variable values at some advanced time τ units later than the

original ∆x is defined. For the FitzHugh-Nagumo system, ∆x = [∆V ∆W ]T . Thus,

∆V + = M11∆V +M12∆W + 1
2
(H111∆V 2+H112∆V ∆W +H121∆W∆V +H122∆W 2)+

· · · would represent a series expansion for the membrane potential value.

Further, we propose that if a linear approximation of the FitzHugh-Nagumo sys-

tem is valid, any changes (disruptions from equilibrium) to the system can be related

to resulting values after a certain passage of time with a single term as:

 ∆V +

∆W+

 ≈
 M11 M12

M21 M22


 ∆V

∆W

 . (3.2)

This is equivalent to a statement that the system’s future values are purely linear

functions of its present values, or can be approximated as such. In a multi-variable

system, the higher-order terms would include cross terms (i.e. ∆V ·∆W ) and power

terms (i.e. (∆V )2) to capture the nonlinearity in the response. Therefore, dealing

with a higher-order approximation quickly becomes difficult due to the increasing
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number of terms and the complexity of available methodology for solving for the

constants (i.e., the components of the tensor H).

3.1.2 Implementation

Two methods for determining the components of the matrix M in Equation (3.2) are

immediately clear. First, if we analytically compute the system’s Jacobian (see [3],

Chapter 5), we find that it is

A ,

 1
ε
(1− V 2

0 ) −1
ε

ε −εγ

 . (3.3)

Evaluating it at the equilibrium point (V0, W0) = (−1.1994,−0.6243), the matrix A

has numerical values and the resulting system is linear (of the form ẋ(t) = Ax(t)).

Therefore, we can use principles of linear system analysis (see [4], Chapter 4) to

calculate the matrix M in Equation (3.2) with the quantity eAτ . With τ = 0.1, this

results in the linearized system

 ∆V +

∆W+

 =

 0.799 −0.445

0.018 0.980


 ∆V

∆W

 . (3.4)

In place of this method, we can also use a numerical technique to derive the linearized

system, as described next.

Conceptualizing the relationship between present values V and W and future val-

ues V + and W+ as a pair of surfaces in three dimensions (for convenient visualization)

allows us to use the elements Mii as independent slopes of the surfaces. These two

surfaces, which map (V, W ) → V + and (V, W ) → W+ with a given timestep τ , can

then be approximated by a planar surface tangential to them at the equilibrium point

(where (∆V, ∆W ) = (0, 0)). The elements of the matrix M can then be determined

with standard mathematical methods. The most convenient options are to solve the
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Figure 3.1: Linear Approximation versus Actual Mapping Surfaces for Timestep of
τ = 0.1. Though there is significant deviation between the two membrane potential
surfaces, the gating variable surfaces are indistinguishable at this small timestep.

plane equation (ax + by + cz + d = 0) using the equilibrium point ((0,0) since we

are dealing with disturbances from equilibrium) and two other nearby points (for

instance, (0,0.01) and (0.01,0)) or to construct parametric equations (of the form

x = x0 + at) for the plane using numerical approximations of the derivatives. Either

method yields the tangent plane at the equilibrium point, which ensures that the

approximation will at least be stable directly on the equilibrium.

Fitting planar surfaces to the transition mapping surfaces results in a matrix M

that defines the linear part of the system’s response (for a given τ of 0.1):

 ∆V +

∆W+

 =

 0.791 −0.443

0.018 0.980


 ∆V

∆W

 . (3.5)

This results in a similar system to that of Equation (3.4). Figure 3.1 shows the

relationship between the mapping surface and the linear approximation. Over the

chosen timestep (τ = 0.1), the gating variable (W ) is strongly linear, having a sum

of squared errors of only 0.030 and a maximum absolute error of only 0.011 between
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Figure 3.2: Linear Approximation versus Actual Mapping Error Surfaces

the linear approximation and the true surface. In fact, the approximation surface is

indistinguishable from the true mapping surface. Figure 3.2, which shows the error

between the linear mappings and the true solutions, supports this observation. By

contrast, the membrane potential (V ) mapping surface displays a lack of linearity

away from the equilibrium point, especially at higher disturbances to the value of V ,

which correspond to the onset of an excitation wave. It has a significantly larger sum

of squared errors (200.256) and maximum absolute error (1.030). The excitation wave

pattern is the primary factor that produces errors between the true surface and the

linear approximation. Such nonlinearity significantly reduces its ability to reproduce

the system’s response.

Examining the surfaces in a qualitative light shows us that a significant portion of

the deviation between the system and its linearized version occurs in the behavior of

the membrane potential (V ) and corresponds to the excitation cycle, which is precisely

where the form of Equations (2.1) and (2.2) and our previous analysis predict such

behavior. Since the gating variable (W ) behaves in a quite linear fashion, even during

the excitation cycle, the only nonlinear behavior that is realized in the system is that
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of the membrane potential during an excitation cycle. Thus, it will be this feature of

the model that a successful optimization will capture accurately while still reducing

computations.

3.1.3 Issues

Though our method of approximating the FitzHugh-Nagumo system by a linear rela-

tionship between its present and future values provides helpful information, it fails to

capture the level of accuracy that would be required to substitute it for a full-fledged

simulation of the differential equation system. Instead, if the linear approximation

replaces the true model equations, the excitation cycles fail to occur. In fact, a calcu-

lation of the the eigenvalues of Equation (3.4) suggests that the system will converge

quickly to equilibrium since the values (0.873 and 0.905) are less than one. Figure 3.3

compares a FitzHugh-Nagumo simulation to one performed with the linear approxi-

mation. The mapping for the gating variable (W ) can be replaced in such a way, but

this represents an insignificant computational savings, since Equation (2.2) and the

W component of Equation (3.2) have similar forms. The membrane potential (V )

cannot be captured accurately by this method of linear approximation and deviates

immediately from the true curve.

Higher-order terms, such as H in Equation (3.1), can be added to increase the

accuracy of the approximation, but in doing so, we add complications. First, a reliable

fitting method to solve for the higher-order constants would be required. This fitting

method must also provide surfaces that preserve the stability of the equilibrium point,

so that the system does not display spontaneous excitations or drift away from the

resting state. Second, increasing the count of terms in an approximation such as

this reduces the potential gains in speed for which the approximation is developed.

Therefore, other methods might be better suited to this problem.
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Figure 3.3: Linear Approximation versus FitzHugh-Nagumo Simulation. The systems
are both initialized to the values (V, W ) = (−0.6994,−0.6243), which produces an
excitation in the normal system.

3.2 Alternative Methods

3.2.1 Theory

Though the full details of the FitzHugh-Nagumo model cannot be captured accu-

rately using linear approximation, we can take another approach to the problem of

developing a relationship between the system’s current and future values. We know

that in the autonomous, single-cell model, variable values at particular times deter-

mine the state of the system at all future times. Therefore, we can consider this

relationship as a nonlinear mapping between present values and future values, given

a certain timestep. This relationship takes the form (V, W ) 7→ Φ(τ, V, W ). We can

take advantage of this mapping relationship to perform high-accuracy calculations of

the system’s behavior off-line. During a simulation, these pre-created samples can be

interpolated to obtain an approximation of the system’s future values at timesteps

significantly larger than those required for stability and accuracy in methods such as

Runge-Kutta.

Rather than approximating the response of the system, we can generate and store
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discrete samples of the system’s behavior in advance and use these samples to predict

arbitrary behaviors during a simulation. Unlike the method of linear approximation,

in which the mapping must be nearly planar to be approximated accurately, this

approach provides more flexibility in the shape of the predicted mapping surface.

It also allows for control of the distribution of sample data, which can be used to

increase accuracy in certain regions of the input space.

3.2.2 Methods

We investigate two algorithms that can be used to interpolate the off-line sample data:

the nearest neighbor method and locally weighted regression. These approaches have

associated storage requirements to preserve the samples, and in the case of locally

weighted regression, advanced computational requirements to validate the sample

data.

Nearest Neighbor Method

As one of the simplest available interpolation methods, the nearest neighbor method

is a straightforward algorithm that predicts an output by proposing that it is equal to

the output of the single nearest sample. In its simplest form, the algorithm calculates

the distance between the requested query point and each input sample, picking out

the closest sample. The distance is defined according to a particular metric (often

Euclidean distance) that is chosen based on the problem. The output of this sample

is returned as the output of the requested query point. The algorithm is specified in

psuedo-code as follows:

NearestNeighbor(q,SampleList)
{

distmin = distance metric(q,SampleList[0].x);
indexmin = 0;
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FOR EACH i ∈ [1,SampleList.length()-1],
{

dist = distance metric(q,SampleList[i].x);

IF dist < distmin,
{

distmin = dist;
indexmin = i;

}
}

return SampleList[indexmin].x;
}

The nearest neighbor method only considers the closest sample point, as shown

in Figure 3.4. Therefore, it does not require concentrated data in regions of roughly

constant response. Conversely, the quality of its predictions benefits markedly from

more concentrated data in regions of sharp change.

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8

1

Figure 3.4: Nearest Neighbor Point Selection (query point (0.5, 0.5), marked by the
diamond). The nearest neighbor method selects the closest point in space (marked
by the filled square) and returns its output as the output of the query point.
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Locally Weighted Regression

In contrast to the simplicity of the nearest neighbor method, locally weighted re-

gression [30] is a matrix-based method that estimates the output by calculating a

weighted average of the outputs of several nearby samples. The sample weights are

calculated based on an exponential metric of the form e−
h

2σ2 d2

(for one dimension)

where h is a constant determining the relative size of the neighborhood, σ is the

standard deviation of the samples, and d is the distance from the query point to

the sample point. The algorithm is specified in psuedo-code as follows (where n is

the number of input dimensions; p is the number of sample points; D (n-by-n), W

(p-by-p), and X (p-by-n + 1) are matrices; and D and W are diagonal):

LWRegression(h,q,SampleList) % adapted from [30]
{

p = SampleList.length();
D = h · diag( 1

σ2
1
, 1

σ2
2
, ..., 1

σ2
n
);

FOR EACH samplei ∈ SampleList,
{

wii = e−
1
2
(SampleList[i].x−q)T D(SampleList[i].x−q);

xdi = ((SampleList[i].x− q)T 1)T;
}

X = (xd1, xd2, xd3, ..., xdp)T;
y = (SampleList[1].y, SampleList[2].y, ..., SampleList[p].y)T;
return (XT WX)−1XT Wy;

}

In locally weighted regression, weights are calculated based on the exponential

metric to appear as the example weights in Figure 3.5. In the typical case, many

points have a weight very near zero, and can be excluded from further calculations,

effectively reducing the working sample data set to a fraction of its true size. For

evenly-distributed sample data and a smooth, continuous mapping, considering a

count of local sample points on the order of 10 will produce an accurate prediction.
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Figure 3.5: Locally Weighted Regression Point Weighting (query point (0.5, 0.5),
marked by the diamond). Locally weighted regression weights surrounding points by
an exponential metric with a Gaussian profile. Close by points that have significant
weights (e.g., greater than 0.05, marked by filled circles) are considered in the algo-
rithm, whereas others can be ignored. Sample points on any given circle centered at
the query point will have equal weights.
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The constant h is unique to the sample set of a given problem, and is determined

by a process called cross validation. For a given h value, cross validation processes

the sample data set to determine the error between each sample’s output and the

locally weighted regression output for that sample’s input, ignoring that sample.

Essentially, the algorithm gauges the inaccuracy of predicting its own sample data.

It then outputs the corresponding sum of squared errors, which can be used in turn

to determine the optimal h value for a given data set. The optimal h value gives

the smallest sum of squared errors, and correlates to the relative amount of input

space considered in interpolating a single output. The cross validation algorithm is

specified in psuedo-code as follows:

CrossValidate(h,SampleList) % adapted from [30]
{

sse = 0;

FOR EACH samplei ∈ SampleList,
{

sampletemp = samplei;
SampleList.remove(i);
sse += sampletemp.y − LWRegression(h,sampletemp.x, SampleList);
SampleList.add(sampletemp);

}

return sse;
}

3.2.3 Progression Shapes

In both of the aforementioned interpolation methods, we can represent the mapping

(V (t), W (t)) → (V (t +4t), W (t +4t)) (given a time passage τ) as a pair of three-

dimensional surface that performs the same mapping. See Figure 3.6. In addition

to the importance of their data in the interpolation methods, the shapes of these

surfaces represent the time progression of the system’s variables. Regions of sharp
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Figure 3.6: Surfaces Mapping Input Values to Output Values (τ = 1.0)

change (notably, on the diagonal of the input plane) denote value pairs that can evolve

distinctly differently if subjected to small perturbations. In contrast, there are also

regions that display nearly constant or nearly linear output, in which one variable

strongly determines a future output value, and the value of the other variable is only

weakly significant.

Locally weighted regression and the nearest neighbor method can be used to re-

construct these shapes from sample data, giving an impression of the quality of their

output. Figures 3.8 and 3.9 were created by using the nearest neighbor and locally

weighted regression algorithms to reconstruct a surface by placing query points on

a uniform grid in the input space, similar to the respective mappings in Figure 3.6.

Each method analyzed the same set of 1024 sample points, which was created with

a uniform random distribution in the input space rectangle V ∈ [−2.1, 1.9], W ∈

[−0.7, 1.0]. This input space area corresponds to the region though which the typical

excitation wave travels. For error analysis, refer to Section 3.2.5.

These methods also preserve the stability of the equilibrium point, a requirement
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we noted earlier. Figure 3.7 shows the results of continual mapping through a 4096-

sample data set by the nearest neighbor method, with τ = 0.5 and a time length

of 15.0. A set of systems initiated (t = 0.0) on a grid of reasonable values (V ∈

[−2.1, 1.9], W ∈ [−0.75, 1.05]) evolves toward equilibrium on a path approximating

the one determined by the FitzHugh-Nagumo equations, and settles to the equilibrium

value over time. This stability is contingent upon the count of samples used to

simulate the system, since a small enough sample data set will clearly introduce

errors large enough to spontaneously stimulate excitations from what should be stable

equilibrium.

3.2.4 Sampling Distribution

In both the nearest neighbor method and locally weighted regression, the exact dis-

tribution and size of the sample data in input space is an important factor in the

quality of predictions and the computational speed of the algorithms.
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Figure 3.8: Nearest Neighbor Reconstruction of Mapping Surfaces
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Figure 3.9: Locally Weighted Regression Reconstruction of Mapping Surfaces
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Algorithm Speed

In both algorithms, increased concentration of sample data in sharply-changing re-

gions can provide the algorithms with more information to reach their output values.

In the nearest neighbor method, highly concentrated data poses no problem for the

algorithm, and will reliably produce greater accuracy as the average requested point

will have nearer neighbors. However, locally weighted regression does not deal well

with concentrated sample data, beyond a certain point. Since the algorithm depends

on a tuning process (cross validation) to define a global relative neighborhood size

for consideration, unevenly distributed data can cause this neighborhood to include

markedly different quantities of sample points, depending on the requested point. For

instance, a neighborhood size that includes 20 points in one section of input space

may include 100 points in another area of input space with more concentrated sample

data. This seriously hinders the algorithm’s speed when producing interpolations in

these concentrated regions.

Interpolation Accuracy

Beyond the speed factor, the distribution of sample points also has implications in the

accuracy of the two algorithms’ predictions. As a matrix-based method that relies on a

matrix inversion, locally weighted regression begins to suffer from numerical problems

caused by nearly singular matrices as samples become concentrated in particular

areas of input space. This is due to the difference in total sample weight for a

certain neighborhood size between densely-sampled areas and sparsely-sampled ones.

A neighborhood size that produces accurate results in densely sampled areas, will

make it likely that the largest weight in a sparsely sampled area will be very small,

producing a nearly singular matrix and making the algorithm’s output invalid. By

contrast, the nearest neighbor method does not suffer from such numerical problems.

In Figures 3.8 and 3.9, we can see that both algorithms produce significant error
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in the regions where the ratio of the number of sample points to the rates of change of

the mapping output is small. In these areas, there is insufficient data representative

of the particular output data to produce an accurate output. In simpler terms, the

query point is too distant from any sample to provide an accurate output.

One potential solution to address the aforementioned inaccuracies is to use psuedo-

random point distributions that ensure a more even distribution of sample points.

Rather than using a uniformly random distribution, we can apply Halton or Ham-

mersley points [15] to ensure that no region of input space is far away from any

sample point. These points are so-called low dispersion points, which indicates that

they follow a distribution that avoids spatial regions that can be filled by large spheres

that contain no samples. Halton and Hammersley points are given by sequences that

follow a deterministic distribution that has lower dispersion than uniform random

sampling. Both sequences use representations of the number sequence i = 0, 1, 2, ...

in prime bases to distribute sample points. Denoting pn as the nth prime number,

the digits (ak) of these representations are given as

i = a0 + a1 pn + a2 p2
n + · · · (3.6)

Then, individual coordinates in the ith sample are given by the digits (ak) in the base

pn representation of i as

rpn(i) =
a0

pn

+
a1

p2
n

+
a2

p3
n

+ · · · (3.7)

Complete sample coordinates in the two sequences are given by a set of d of these

numbers rpn(i) ∈ [0, 1], so that each sample coordinate belongs in <d:

Halton: (rp1(i), rp2(i), · · · , rpd
(i)), (3.8)

Hammersley:

(
i

N
, rp1(i), rp2(i), · · · , rpd−1

(i)

)
, (3.9)
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where d is the dimension of the required sample points. Thus, the Hammersley

sequence is a modification of the Halton sequence in which the first coordinate is

given by i
N

, where N is the count of samples. Therefore, the Halton sequence has

the advantage over the Hammersley sequence of not requiring an advance definition

of the sample count. The Halton sequence requires a calculation of the first d primes,

whereas the Hammersley sequence needs the first d− 1 primes.

Using the example mapping surface z = cos(2x + 2y), we tested the accuracy

of locally weighted regression by reconstructing a rectangular grid from differently-

sized sample sets. This procedure is the same as that used previously to reconstruct

the FitzHugh-Nagumo mapping surfaces in Figure 3.9. Then, we cross-validated the

sample data and compared the sum of squared errors between the true mapping

surface and the locally weighted regression mapping surface. The optimal values of

the neighborhood sizing parameter h are shown in Figure 3.10, and the corresponding

sum of squared errors are shown in Figure 3.11. The tests were run using sample

counts of 128, 256, 512, 1024, 2048, 4096, and 8192. Additionally, the number of

neighboring sample points considered by the algorithm for the optimal h value in the

tests is shown in Figure 3.12.

These tests bear out several interesting conclusions about the pairing between

the aforementioned sample generation methods and the locally weighted regression

algorithm. As we expect, there is a strong, continuing downward trend in error as the

sample size is increased. Similarly, there is a direct relationship between increasing

sample count and increasing optimal h value, corresponding to decreasing neighbor-

hood size. As the sample count increases and samples become more concentrated in

input space, the neighborhood size required for an accurate output will shrink. The

nature of this relationship in our tests is predictable enough to provide a useable h

value for other testing, but full cross validation of the particular sample data set is

still best for simulation use. As a consequence of the relationship between sample
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count and h value, the average number of neighbors considered is a roughly constant

quantity. Therefore, we can further see the potential repercussions of uneven distri-

bution of samples. Since h is a single constant for each sample data set, query points

at different locations in a non-uniform sample data set would have a large variance in

the count of their neighbors. The overall conclusion from these tests is that Halton

points tend to have a more optimal distribution to produce accurate locally weighted

regression results for all but the smallest sample counts. The magnitude of the ben-

efit compared to uniformly random points is small, and Halton points have a greater

computational requirement (taking roughly 80 times longer to generate a sample set

in our implementation). However, the sampling computations are performed off-line,

so Halton points have an advantage over random points, though the latter are useful

for testing purposes in which accuracy is less vital.
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3.2.5 Benefits and Disadvantages

Both the nearest neighbor method and locally weighted regression are capable of

providing significantly more accurate output in capturing the input/output mapping

in the FitzHugh-Nagumo system than a linear approximation of these mappings.

In both algorithms, the regions of notable error are linked strongly with regions of

sharp change in the mappings, which can be identified in advance. Nearest neighbor

has a marked advantage in its flexibility to allow non-uniform sampling distribu-

tions, because concentrating samples within specific areas can significantly increase

the accuracy of the algorithm. Figure 3.13 shows a comparison between the ordinary

uniformly-distributed random sampling (right column) and a controlled sampling dis-

tribution in which samples are placed with probability scaled to their gradient (left

column). The exact distribution of sample points is depicted in the bottom figures.

This data was produced by considering the gradients of the mapping (V, W ) → V +,

which does not reduce the errors of the other mapping (V, W ) → W+. It is straight-

forward to use separate sample sets to capture the two mappings individually in cases

when non-uniform sampling is used, but this requires separate queries to each data

set.

When uniform sampling is applied, locally weighted regression is the preferred

choice, since it produces a smoother mapping output than the nearest neighbor

method. For a particular sample count, locally weighted regression also reproduces

mappings with smaller and more predictably localized error magnitudes. Overall, the

reproduced mappings in Figures 3.8 and 3.9 have a sum of squared errors of 33.53

for the locally weighted regression surface and 41.41 for the nearest neighbor surface.

Additionally, nearest neighbor produced a larger maximum absolute error of 3.10 (lo-

cally weighted regression produced no errors greater in magnitude than 1.42). In our

implementations, locally weighted regression also displayed a small speed advantage,

running 106% faster than the nearest neighbor method at a sample count of 2048.
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The nearest neighbor method and locally weighted regression also have established

methods for optimizing their stored data for efficient retrieval [19, 5]. Previous re-

search [30] shows that such methods can be applied to real-time problems, within the

bounds of computing resources and problem scope.

3.3 Time-Flexible Mapping

Up to this point, we have discussed mappings in the FitzHugh-Nagumo system of the

form (V, W ) → (V +, W+), given a certain time passage τ . There are two methods

of extending this idea. First, we can develop another, higher-dimensional mapping

of the form (V, W, τ) → (V +, W+). Inserting the time passage τ into the mapping

increases the dimension from two to three, but it can then be used to produce output

values for arbitrary times. Second, we can utilize one or more mappings with varied

values of τ , calling them F (τ), to selectively advance a simulation of the FitzHugh-

Nagumo system by those timesteps. For instance, given initial values of the system,

the output after 3.7 time units could be characterized by applying F (1.0) three times

and F (0.7) once. In cases where the time passage does not correspond to any stacking

of the available mappings, they can be used to advance to a point near the final time,

and another method (e.g., Runge-Kutta) can be used to reach the final time.

This development of the mapping idea allows simulations using one of the inter-

polation techniques to advance at selective timesteps, rather than one predetermined

one (i.e., τ = 1.0). Specific time values of the system can thus be provided. This does

not come without computational consequences: a higher-dimensional sample set re-

quires more points to achieve the same level of accuracy, increasing both computation

times and storage requirements. In this case, the increase is somewhat staggering: to

match the accuracy of a two-dimensional sample set of 1024 (322) points, we must

provide 32,768 (323) points.
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Figure 3.14: Time-Flexible Mapping Using Two Timestep Choice Methods. The first
chooses timesteps for advancement that are inversely proportional to the derivative of
V , whereas the second chooses timesteps that are inversely proportional to the value
of V .

To realistically apply this idea, we must have some method of choosing the

timestep. In the single-cell setting, a useful way to motivate this choice is by degree

of change. In other words, we choose smaller timesteps when the model is changing

rapidly (at the initiation and drop of the excitation cycle) and larger ones when it

is relatively constant (at or close to equilibrium). Another method is to choose the

timestep based directly on the value of one of the variables (i.e., larger timesteps

for lower values of V and smaller ones for higher values of V , so the timestep is

reduced during excitation cycles). Both methods are similar to variable timestep

methods in common differential equation solvers [28], but they retain stability over

large timesteps. Figure 3.14 compares these two methods, using a 32,768-point sam-

ple set that is randomly-distributed and bounded by V ∈ [−2.1, 1.9], W ∈ [−0.7, 1.0],

and τ ∈ [0.0, 2.0]. This sample set covers all realistic values for the system, and allows

any timestep less than 2.0 time units in one execution of the interpolation algorithm

(locally weighted regression in this case).

Both methods have distinctly different allocations of timesteps. Because of this

characteristic, the derivative method required 0.19 seconds to complete the simula-
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tion, while the value method required 0.47 seconds. Comparatively, the generation of

the sample data required 3.37 minutes. When the timestep is chosen to be inversely

proportional to V ’s derivative, it is overall more accurate than the second method,

but it takes some time to “catch up” to the initial rise of the excitation cycle. If

the timestep is instead chosen to be inversely proportional to the value of V , the

algorithm more correctly reproduces the waveform shape, but the excitation cycle is

simulated at an earlier time than is accurate. These two methods are by no means

the only ways to pick timesteps and are likely not the most efficient ones.
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Chapter 4

Multi–Cell Network Analysis

In the previous chapters, we have examined the FitzHugh-Nagumo model in detail in

the context of a single cell. However, in order to progress toward a practical simulation

of the heart, techniques to simulate the system in a multiple-cell environment must

be available. This chapter establishes terminology and experimental methodology for

an examination of the model in a discrete, multi-cell network.

4.1 Diffusion

The important feature of cellular interaction is the propagation of potential waves

throughout cardiac tissue. Among other factors, this is made possible by the flow of

various ions (sodium, potassium, calcium, etc.) throughout the cardiac tissue. To

model the diffusion that allows wave propagation to occur in the system, the term

∂2V
∂x2 must be added to Equation (2.1) given previously, resulting in a modified system:

∂V

∂t
=

∂2V

∂x2
+

1

ε

(
V − V 3

3
−W

)
, (4.1)

∂W

∂t
= ε(V − γW + β). (4.2)

Thus, a sufficient difference in potential between adjacent cells can produce an action
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potential that flows across a system. In a system with multiple spatial dimensions

(2D or 3D), the ∂2V
∂x2 is replaced with the corresponding ∇ · (D · ∇V ) term, in which

D is a matrix representing the diffusion coefficients for the extracellular space.

The diffusion of action potentials, and the associated behaviors of excitation and

return to equilibrium of individual cells in a network, is responsible for the normal

mechanical contraction of the heart [26]. However, under certain conditions, diffusion

can also bring about abnormal, self-sustaining waves which are tied to heart attacks

and other ailments. The simplest of these wave types is the spiral wave, which has

been shown to be reproducible using the FitzHugh-Nagumo model dynamics [29]. To

understand the ways in which these abnormal waves are established, we must first

understand how the model responds to diffusive inputs.

4.2 Forcing Analogue

We begin our analysis by noting that the ∂2V
∂x2 diffusion term can be replaced with

any function to give the system’s response to arbitrary stimulus. This is analogous

to the concept of forcing in the analysis of ordinary differential equations. We can

then redefine the model equations in terms of an input/output system (where f(t) is

the forcing function and y(t) is the output):

∂V

∂t
= f(t) +

1

ε

(
V − V 3

3
−W

)
, (4.3)

y(t) = V (t). (4.4)

Thus, we can apply standard analysis techniques to capture the system’s response

to various diffusive inputs. For example, we can use Fourier analysis to show the

system’s nonlinear frequency response.
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(a) (b)

Figure 4.1: Two Views of the System Response to the Forcing Function f(t) = C

4.2.1 Applicable Forcing Functions

The simplest forcing functions we can apply to the FitzHugh-Nagumo system are of

the form f(t) = C (constant) and f(t) =
∑∞

i=1 Aδ(t − Pi) (periodic impulse train).

Given sufficient amplitude, both functions will produce periodic excitation behavior

in the FitzHugh-Nagumo system. Figure 4.1 shows the system’s response to various

magnitudes of the constant forcing function.

In the situation of a constant forcing function, we can observe two important

threshold values. First, a constant magnitude less than approximately 0.53 is not

capable of producing any excitation wave in the FitzHugh-Nagumo system. Second,

a constant magnitude of forcing less than approximately 1.54 creates an intermediate

state in which the system experiences one initial excitation wave and no further activ-

ity. This intermediate state is a consequence of the constant forcing’s impact on the

gating variable (W ), which “holds” the gating variable above its typical equilibrium

value and prevents the normal relaxation after an excitation wave. Thus, only the

first excitation wave is permitted in this system state. Additionally, we can observe
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Figure 4.2: System Response to Large-Scale Constant Forcing

a certain limit behavior of the periodicity of the excitations as the magnitude of the

constant forcing function increases. This data suggests the existence of a maximum

frequency capability of the FitzHugh-Nagumo system to produce excitation waves. In

fact, there is an additional threshold in this situation at very high forcing magnitudes.

As shown in Figure 4.2, if the forcing magnitude moves beyond approximately 7.23,

the system transitions into a state similar to the previous intermediate state (forcing

magnitude ∈ [0.53, 1.54]), but the gating variable (W ) is driven to an unrealistic pos-

itive value. In this state, both the membrane potential (V ) and the gating variable

are “held” to a new forced equilibrium value. At a forcing magnitude of 7.23, this

forced equilibrium is at (V, W ) = (1.03, 2.11).

It is interesting to note that the quantitative shifts in Figure 4.1 can be correlated

with the changing appearance of the system’s phase plane under each magnitude

of constant forcing. The overall effect of the constant forcing function is to shift

the cubic nullcline along the gating variable axis in the phase plane. By observing

snapshots of the phase plane (for f(t) = 0.5, 1.5, 2.5, in Figure 4.3), we can see that

the movement of the cubic nullcline provides the same conditions for periodicity that

we observed in Chapter 2 when the forcing magnitude is approximately equal to 1.5.
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(b) f(t) = 1.5
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(c) f(t) = 2.5

Figure 4.3: Phase Planes under the Forcing Function f(t) = C

This corresponds to the threshold between single excitation and periodic excitation

in Figure 4.1.

In contrast to the constant forcing function f(t) = C, the periodic impulse train

f(t) =
∑∞

i=1 Aδ(t − Pi) can produce repeated excitation waves without affecting

the state of the system in between cycles. Numerically, we realize the δ function

by adding the amplitude A of the function at specific timesteps. The period P is

set as a multiple of the simulation timestep, so that the occurrences of δ functions

coincide with calculated timesteps. Again, we can vary the amplitude A of the forcing

function, but we can also vary the periodicity of the function (period = P ). Figure 4.4

presents a comparison between two periods of impulse-train forcing (P = 20.0, 12.0)

for varying amplitudes. This reveals another noteworthy aspect of the FitzHugh-

Nagumo system: if an excitation wave has not terminated completely, the system is

resistant to the onset of another excitation. This is visible in Figure 4.4(b), in which

the impulses occur too often for each to cause a distinct excitation cycle. When

such impulses occur following the excitation, the gating variable resists a further

excitation. As small impulses do not create excitations, the threshold phenomenon is

again visible.
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(a) P = 20.0 (b) P = 12.0

Figure 4.4: System Response to the Forcing Function f(t) =
∑∞

i=1 Aδ(t−Pi) (where
A = 2.0)

4.3 Fourier Analysis

We can further develop the analysis of diffusion in the FitzHugh-Nagumo sytem by

using Fourier analysis to characterize its nonlinear frequency response to sinusoidal

waveforms. Figure 4.5 provides power spectrum plots generated by MATLAB’s fft

(Fast Fourier Transform) method that relate the frequency of an input sinusoidal

diffusion term (of the form f(t) = A cos(2πf0t)) to the output’s frequency components

for six different amplitudes (0.5, 1.0, 1.5, 2.0, 2.5, 3.0). The constant component of each

output is excluded.
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(a) A = 0.5

(b) A = 1.0
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(c) A = 1.5

(d) A = 2.0
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(e) A = 2.5

(f) A = 3.0

Figure 4.5: Fourier Analysis of System Response to Sinusoidal Forcing. The frequency
components are given in units of inverse time units.
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These figures display several interesting patterns. The most striking contrast

between the Fourier plots is in the apparent linearity in frequency in Figure 4.5(a).

This is further evidence of the threshold phenomena discussed previously. For any

signal of small input amplitude (i.e., 0.5 or less), there is no prevailing excitation

triggered, resulting in little response. Instead, the system passes through a potential

signal of equal frequency and small amplitude. As a consequence, small diffusive

signals may be safely passed over as they are incapable of triggering excitations in

the system. Additionally, we note that the output of the FitzHugh-Nagumo system

tends to have a perceptible direct harmonic of the input across all amplitudes.

Turning our attention to the other plots, we note that for a given amplitude, there

is a cutoff input frequency (approximately 0.4 in Figure 4.5(c)) past which the system

displays a qualitatively different response. As with the impulse trains in Section 4.2.1,

when driven past this frequency, the system undergoes a single excitation cycle in

normal fashion. However, following this, the input holds the gating variable at a

near-constant value above equilibrium, preventing any further excitations. A second,

higher cutoff frequency also exists (approximately 0.85 in Figure 4.5(b), extending

beyond the plot ranges in others), above which the single excitation cycle is also

inhibited, resulting in an essentially null response. In the remaining frequency regions,

the system exhibits a normal periodic excitation caused by the sinusoidal input.

4.4 Forcing by Characteristic Waves

Having examined the FitzHugh-Nagumo system’s response to various inputs, we pro-

ceed to an issue that will be directly relevant in simulating complex cell networks: how

the system responds to inputs of its own characteristic shape. The particular shape

used was determined by inserting a finite forcing function (e.g, a single δ impulse)

and then passing the output back through the system several times. In applying such
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Figure 4.6: System Response to Forcing by Characteristic Wave

potential waves, we must make a minor change in methodology so that the forced cell

system is not disturbed when the forcing wave is at equilibrium. This is consistent

with the reasonable notion that no net diffusion would occur between adjoining cells

at the same potential. Therefore, we consider the forcing function in this case to be

Vshape − Vcurrent, in which Vshape is a stored FitzHugh-Nagumo excitation wave, and

Vcurrent is the cell receiving the diffusive input. Figure 4.6 presents a base shape that

is used as the input to a second cell system. This pattern continues using the newly

generated waveform as the input to the next cell.

The immediately striking feature of this plot is the similarity between succes-

sive waveforms. In fact, the excitation shape of the FitzHugh-Nagumo system is an

eigenfunction of the system, and a cell that receives a diffusive input in that form

will respond with an identical waveform, including a timeshift corresponding to the

propagation time. Here, the propagation delay between successive excitation waves

is approximately 0.439 time units. In this situation, the forcing shape is a prede-

termined function; it is not subject to the effects of the cell system being forced.

However, in practical multi-cell simulations, this one-sided relationship will not hold,
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Figure 4.7: System Response to Forcing by Modified Characteristic Wave

and the diffusive connections will be more complex as individual cells have multiple

neighbors.

We also note here that the membrane potential through the refractory period has

little effect on the action potential of successive cells. If a cell system is forced by a

FitzHugh-Nagumo shape as before, but with the membrane potential set to equilib-

rium for all time after it crosses equilibrium following an excitation, only the first cell

will show any perceptible change in response. Furthermore, this small change “filters”

as the input is passed through additional cells and is eliminated within two cells of its

introduction. Figure 4.7 shows the results of such a process. This result, along with

that of the previous characteristic shape forcing, suggests that the FitzHugh-Nagumo

excitation shape is extremely robust and will tend to re-establish itself in normal

situations.
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4.5 Experimental Setups

Through the results of the previous simulations, we can reach a clear conclusion of

the relative stability of the FitzHugh-Nagumo system. Its dynamics enforce clearly

defined boundaries with respect to frequency of excitation and magnitudes of diffusive

inputs, and it responds in a predictable manner to inputs of similar shape to its

own excitation waves. Additionally, it has a filtering quality that tends to produce

normal excitation cycles from reasonable but abnormal inputs. With a thorough

understanding of the responses of the FitzHugh-Nagumo system to various diffusive

inputs, we have the tools to establish simulations of multi-cell networks, in which

action potentials will propagate through neighboring cells to create electrical waves

in the spatial dimensions of the simulation.
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Chapter 5

Multi–Cell Simulation Experiments

To progress toward the goal of a full-fledged, computationally feasible simulation of

the human heart, it is necessary to construct multi-cell simulations that can be used to

examine the interactions between cells. The essential component in such simulations is

the diffusion term, for which we approximate ∂2V
∂x2 in Equation (4.1) with the numerical

term (Vn+1 − Vn) − (Vn − Vn−1) = Vn+1 − 2Vn + Vn−1. Therein, Vn is the membrane

potential of a particular cell, and Vn+1 and Vn−1 are the membrane potentials of

the adjacent cells. From these simulations, we can gain an understanding of the

dynamics of the FitzHugh-Nagumo system in an interconnected network environment

and examine the types of waveforms that can be produced.

In this chapter, we set up one-dimensional simulations with cells in a line and

ring arrangement and a two-dimensional simulation with cells on a uniform grid.

Using these simulations, we establish the basic wave patterns and dynamics of the

FitzHugh-Nagumo model in the multi-cell environment. Following these simulation

studies, we pose an algorithm for speeding their computation times.
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5.1 One-Dimensional Simulation Cases

We construct three main types of multi-cell simulations, two of which are one-dimensional

and one of which is two-dimensional. Initially, all cells in a simulation are at a resting

equilibrium. An action potential is initiated by providing an external stimulus to one

or more cells, which in turn propagates throughout the system.

5.1.1 Cell Line

The simplest multi-cell simulation involves a linear connection of cells, which allows

for a one-dimensional propagation of electrical potential waves. This simulation is

similar in nature to the forcing by characteristic shapes examined in Chapter 4, but

we introduce the additional complexity that each cell affects the cells from which it

receives input. Based on this addition of feedback between the cells, we expect to see

subtly different results in terms of the time shift associated with propagation and the

exact waveform shapes that result.

By stimulating the first cell in a line and following the resulting wave, we can

characterize the new wave propagation speed by plotting the excitation peak times

by the index of the cell. This is shown in Figure 5.1. A linear fit to this data shows

that the propagation delay associated with passing an excitation cycle from one cell

to the next of a line wave in a multi-cell situation is raised from 0.439 time units (as

a forcing function, as in Chapter 4) to 0.591 time units. The waveforms produced in

this situation are shown in Figure 5.2. From a qualitative standpoint, the waveforms

are quite similar, but the peak and trough in the original, forced cell is noticeably

sharper. This is an effect of the interconnection with the previous cell; when that

peak time is reached in a cell in the cell line, the previous cell has passed its peak,

and is thus exerting a downward pull on the cell. This reduces the magnitude of the

peak, and in the same way reduces the sharpness of the trough.
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Figure 5.1: Propagation Speed of Waves in the Cell Line
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Figure 5.2: Comparison between Forced Cell and Cell Line Waveforms
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Figure 5.3: Comparison of Individual Cell Time Wave (left) versus Cell Line Spatial
Wave (right)

Interestingly, we also observe a striking similarity between the time-varying po-

tential waveform of a single cell and the spatially-varying waveform of the cell line

simulation as a whole in Figure 5.3. Aside from the discrete nature of the spatial

wave (since it is built up over particular cells in the line), the waveforms are related

by the propagation delay. Thus, the networked FitzHugh-Nagumo system produces

excitation waves that are related to the excitation waves in particular cells by a factor

of 0.591 time units per cell: Vi(t) = Vi+1(t + 0.591).

One final aspect of wave propagation can be seen in the cell line setup: model

response to wave collisions. As shown in Figure 5.4, mutually incident potential waves

annihilate in the FitzHugh-Nagumo model. This is a consequence of the symmetry of

the incident waves. To understand this phenomenon, we can consider two approaching

waves far away from each other. Due to the dynamics of the FitzHugh-Nagumo

system, these waves will quickly assume a standard shape and will be moving with

a particular, constant speed. Therefore, there will be some point in space at which

these waves will meet, and around which they will have mirror symmetry. Cells on

either side of this point will receive no stimulus from each other, as they are always at
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Figure 5.4: Time Snapshots of Colliding Waves in the Cell Line

the same state. Thus, they are unable to pass the excitation wave any further in its

current direction of travel, and it dies out at the conclusion of its normal expression.

5.1.2 Cell Ring

We can define a second simulation analogous to the cell line, with the distinction

that the first and last cell in the line will be neighbors. This simulation can produce

continuing waves around the ring since they can propagate back to the start of the

line upon reaching its end. Additional considerations must be made to prevent the

initial stimulus that begins the wave propagation from moving in both directions

around the ring and annihilating at the opposing end. We prevent this occurrence by

selectively severing the first/last connection while initial stimulus is applied and the

propagating wave has not completely passed away from the boundary.

There exists a lower bound on the circumference of cells in a ring that will allow a
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stable wave to exist. Below this bound, a wave passing one point on the ring will make

a complete revolution through the ring to the cell at that point before the cell has

finished the complete refractory cycle. The wave will then die off as successive cells

are less ready to accept excitations. We found this bound to be at a circumference

of 18 cells in our simulations. Considering the previously determined propagation

speed of 0.591 time units per cell, the time for a wave to make one revolution of the

ring would be 10.64 time units. This number roughly corresponds to the time width

of the gating variable (W ) excitation wave, which inhibits further excitation waves

while above equilibrium. For rings of circumference 18 or more, the travel time of the

wave around the ring provides sufficient time for the cells to reach or be sufficiently

close to equilibrium to allow re-excitation at the wave’s return.

Referring back to the numerical diffusion term (Vn+1 − Vn) − (Vn − Vn−1), we

note that the two grouped potential differences can be thought of as two currents

with an intermediate resistance of unity. These currents flow between each pair of

connected cells in the simulation, producing moving potential waves. In the cell ring

simulation, there is a clearly visible, perpetual wave motion in one direction only.

However, if the current term associated with the opposite direction of wave motion

is dropped, there is a significant change in the propagation speed. In actuality, the

propagation delay returns to the value of 0.439 time units found previously, since

this establishes a chain of characteristic shape forced cells like that investigated in

Chapter 4. Figure 5.5 shows the difference in waveforms generated in one cell in a

circumference 50 ring, where one simulation uses the normal current terms, and one

drops the term corresponding to the opposing direction of wave motion.
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Figure 5.5: Timing Influence of Bi-Directional Current

5.2 Two-Dimensional Simulation Case

When we make the transition from one-dimensional to two-dimensional simulation

structures, we inherit an additional complexity in dynamics due to the operation of

the gating variable. In previous one-dimensional simulations, we measured the role

of the gating variable in regulating the rate of excitation cycles, but this effect was

not responsible for any qualitative behavioral shifts. Rather, it provided the differ-

ence between a stable, continuous excitation and one of finite duration that would

damp out of the system. In two dimensions, however, membrane potential waves can

approach a certain cell from multiple directions, creating new and interesting effects

like the spiral wave, which will be discussed in the following section.

5.2.1 Wave Types

In addition to the line waves typically generated in the cell line and ring simulations,

the cell grid simulation has the unique property of being able to develop expanding

circular waves and self-sustaining spiral waves.
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Figure 5.6: Linear Wave Propagation Pattern (at Time t = 20.0). The wave is
produced by exciting cells along the x = 1 line of cells.

Line Wave

As in the line and ring simulations, it is possible to generate a linearly-propagating

wave in two dimensions. This situation is analogous to the line simulation case, since

such line waves occur when initiated by a uniform stimulus across the length of an

edge of the simulation grid. Figure 5.6 illustrates the propagation of a line wave

through a square (60-by-60) simulation grid.

Circular Wave

In two dimensions, it is more common for waves to propagate with circular or other-

wise curved wavefronts. Due to the constant propagation speed associated with the

FitzHugh-Nagumo system, a localized stimulus away from the simulation boundary

will trigger an outwardly-moving wave that expands in every direction with the stim-

ulus location as its center. Figure 5.7 shows the typical, regular circular wave. In

general, this effect influences most moving wavefronts to create curvature. Figure 5.8

demonstrates the tendency of waves to build curved wavefronts during their motion.
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Figure 5.7: Circular Wave Propagation Pattern at t = 14.0. The simulation uses a
single initial stimulus to a centered cell (29,29) of a 60-by-60-cell grid to initiate the
circular wave.

Figure 5.8: Circular Wave Tendency in a Channel Environment. An initial stimulus
along the width of the lower channel (x = 49) produces two oppositely traveling waves,
one of which is eliminated from the system by artificially setting its excited cells to
equilibrium. The remaining wave, which is shown at 17 different times, propagates
in a counterclockwise direction as a line wave, while in the edges between channels it
builds into a circular wave.
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Spiral Wave

In select situations, it is possible for heart tissue simulations to form a wave pattern

that resembles a spiral and has a self-reinforcing property. The traditional wave

patterns mentioned previously tend to propagate through and die out of a system

over time (excluding Figure 5.8, in which a channel is specifically designed to hold

the wave). By contrast, the spiral wave rotates around a semi-stationary center that

moves in a flower-shaped pattern [11, 26] and reinforces itself throughout its motion.

In FitzHugh-Nagumo simulations, spiral waves do not occur in the natural course

of stimulus and propagation. Rather, the system must be altered (i.e., by resetting ex-

cited sections to equilibrium potential) or repeatedly stimulated (further than just the

initial stimulus) during its operation to produce such waves. To produce spiral waves

by repeated excitation requires an initial stimulation and a second, later stimulation

in the wake of the propagating wave. If the second stimulation happens late enough to

create a second excitation, it will initiate a wave that will experience a rotational in-

fluence due to the curvature of the previous wave’s refractory component. We created

such a pairing by initially stimulating a rectangle of cells (x ∈ [22, 38], y ∈ [28, 32])

and following with a stimulation of a cell line (x ∈ [25, 35], y = 37]) at t = 11.0.

The stimuli were both rectangular pulses of amplitude 4.0 and duration 2.0. In this

situation, a spiral wave pairing like that in Figure 5.9 will arise. It is also possible

to initiate a single spiral wave simply by exciting a linear wave and prematurely re-

turning some of its component cells to membrane potential equilibrium. In our case,

the spiral wave was generated by initially stimulating one edge (e.g., the X = 0 edge)

of the simulation and resetting the membrane potentials of half the simulation plane

(e.g., the Y > 30 half) when the wave is near the center of the simulation grid (e.g.,

at t = 18.0). The asymmetry between membrane potentials in the still-excited cells

and the newly-relaxed ones allows the remaining refractory wave to exert a rotational

influence as before. Such a lone spiral wave is shown in Figures 5.10 and 5.11.
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Figure 5.9: Superimposed Rotation Pattern of the Spiral Wave Pairing at Successive
Times, Separated by Timesteps of ∆t = 8.0

Figure 5.10: Superimposed Rotation Pattern of the Single Spiral Wave at Successive
Times, Separated by Timesteps of ∆t = 9.0

68



Figure 5.11: The Single Spiral Wave at Time t = 48.0

One aspect of note in the dynamics of the spiral wave is the abnormal excitation

behavior of the wave rotational center. Though the self-sustaining nature of the wave

alone creates an abnormal action potential pattern on the tissue level, the individual

cell that coincides with the center of the spiral wave undergoes abnormal excitation

cycles. These cycles, which resemble a “stuttering” of the action potential as it tries

to spike, last for several periods of normal excitation until the center moves away

from the cell. This pattern, shown in Figure 5.12, holds the cell nearby its normal

equilibrium, but still prevents normal excitation cycles.

5.3 Activity Tracking

Since the FitzHugh-Nagumo system has a stable, attractive equilibrium point, many

cells in a simulation will be implicitly inactive, and hence it is wasteful to calculate

their unchanging membrane potentials and small propagation currents. Instead, we

can assume that cells near equilibrium (for instance, both V and W are within 0.001 of

the equilibrium values (V0, W0) = (−1.1994,−0.6243)) can be set to equilibrium and
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Figure 5.12: Deviated Excitation Behavior Associated with the Spiral Wave Center.
The (25,29) cell position is shown.

not updated. It is possible to use a simple list data structure to track the activation of

individual cells in order to avoid these calculations. Further, the mechanism of wave

propagation ensures that only direct neighbors of activated cells can be activated in

the future. Therefore, two lists that track the currently active set of cells and the set

of neighbors of these cells will completely describe the subset of a cell network that

may be active in the successive timestep. To streamline the process of determining

cell neighbors and to prevent cells adjoining multiple active cells from being added

to the active list twice, we also retain a matrix structure that marks the active cells

in the two-dimensional grid. Provided that the computational overhead of the lists

themselves is small, this measure only results in improvements in computation time

required for a simulation. The algorithm for tracking cell activity is given as follows:

ActivityTrack(ActiveList)
{

FOR EACH celli ∈ ActiveList,
{

Model.simulate(celli);
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FOR EACH cellj ∈ celli.Neighbors,
IF cellj /∈ NeighborList & cellj /∈ ActiveList,

NeighborList.add cell(cellj);
}

FOR EACH celli ∈ ActiveList,
FOR EACH cellj ∈ celli.Neighbors,

Model.calculate diffusion(celli,cellj);

FOR EACH celli ∈ NeighborList,
FOR EACH cellj ∈ celli.Neighbors,

IF cellj ∈ ActiveList,
Model.calculate diffusion(celli,cellj);

FOR EACH celli ∈ ActiveList,
IF celli.equilibrium state() = TRUE,

ActiveList.remove cell(celli);

FOR EACH celli ∈ NeighborList,
{

IF celli.equilibrium state() = FALSE,
ActiveList.add cell(celli);

NeighborList.remove cell(celli);
}

}

To test the viability of this algorithm, we used four benchmarking simulation

situations: (1) a 200-cell line, stimulated by the first cell, simulated for 120 time

units; (2) a 100-by-100 cell network, stimulated by the center cell, simulated for 30

time units; (3) a 100-by-100 cell network, stimulated at two cells on the diagonal,

simulated for 30 time units; and (4) a 60-by-60 cell network, stimulated to produce a

spiral wave pairing, simulated for 60 time units. The averaged results of three trials

for each situation in both benchmark mode and optimized by the activity list are

presented in Table 5.1.

From the time data of simulations run with and without the optimization, it is

apparent that the improvement in computation time is dependant on the relative level

of activity in the system. This conclusion agrees with the idea of the optimization:

when very few cells are active, there is relatively little to calculate, but when a large

71



portion of cells are active, there is no room to save on calculations. This is apparent

from the spiral wave case; most cells are kept active throughout the entire simulation

due to the self-reinforcing nature of the wave, so very few cells are skipped by the

algorithm. This creates a negligible increase in computation time corresponding to

the overhead associated with initializing and maintaining the lists. In the other cases,

the activity lists ensure that cells reaching equilibrium after the passage of a wave

are again removed from the set of updated cells. This reduces the computation time

proportional to the spatial size of the propagating wave.

To further validate this algorithm, we compare the absolute error between the

full-blown simulation and the activity list method in both the colliding circular wave

case (Figure 5.13) and the dual spiral wave case (Figure 5.14). These plots are

time snapshots of the simulations at t = 40.0, in order to ensure that any error in

propagation speed would be recognizable. Both plots show that the error magnitudes

are small, with a maximum error of 0.075 in the membrane potential and 0.008 in the

gating variable. The sum of squared errors are similarly small (in the dual circular

wave case, 0.53 for the V plot and 0.02 for the W plot). Figure 5.15 shows the change

in sum of squared errors over time for the dual circular wave case, which declines

from a maximum when the waves begin to vanish past the outside of the simulation

grid. Compared with the membrane potential excitation magnitude of approximately

2.0 and the gating variable excitation magnitude of approximately 1.0, all errors are

negligible.

Table 5.1: Activity List Optimization Speedups
Linear Grid(1) Grid(2) Spiral

Full-Blown Simulation 2.94 s 11.89 s 11.87 s 8.75 s
Activity List Method 0.32 s 4.84 s 6.67 s 9.48 s

Time Savings 89.2% 53.9% 43.8% -8.3%

72



Figure 5.13: Activity List Optimization Error in the Dual Circular Wave Case (for
Time t = 40.0)

Figure 5.14: Activity List Optimization Error in the Dual Spiral Wave Case (for Time
t = 40.0)
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Figure 5.15: Sum of Squared Errors over Time for the Dual Circular Wave Case of
the Activity List Optimization
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Chapter 6

Conclusion

6.1 Results and Contributions

In this thesis, we have examined the dynamics of the FitzHugh-Nagumo model in

both the single-cell and multiple-cell settings. After defining the key aspects of the

model’s behavior in each setting, we proposed methods of optimizing the simulations

associated with cardiac excitation. In the single-cell setting, these methods were in the

form of interpolation techniques (nearest neighbor and locally-weighted regression)

that could perform input/output mapping operations based on offline sampled data.

In the multiple-cell setting, we used the idea that the system often contains a large

degree of inactivity to advance a list-based method of optimization.

In Chapter 2 we gave an in-depth analysis of the properties of the FitzHugh-

Nagumo equations, a simple, qualitative system that models the electrical activation

of a single cardiac cell. We demonstrated the technique of phase plane analysis and

identified the four major states of the excitation cycle. After characterizing the effects

of each of the system’s three parameters on the shapes and timings of the output

waveforms, we described the conditions that create spontaneous periodicity. Finally,

we introduced the notion that the system produces characteristic shapes that retain
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many common properties across varied initial values and parameters.

Chapter 3 built upon the analysis of the single-cell model by first proposing

a method of approximating the system with a linear model. After showing that

the linear model was not capable of thoroughly capturing the features of the true

FitzHugh-Nagumo system, we advanced the idea of sampling and reconstructing the

input/output mapping of the system with two interpolation methods: nearest neigh-

bor and locally weighted regression. We examined the system’s nonlinear mapping in

the context of these two algorithms and compared them in depth. We also extended

the dimensionality of the mapping to three by adding time with the two variables

of the system. These ideas allow both large timestep advancements of the system

and variable-step calculations, so that it can be “skipped” forward or specified at

selective, smaller timesteps.

We introduced the concepts behind diffusion and wave propagation through car-

diac tissue in Chapter 4 and used the idea of forcing from the study of ordinary

differential equations to analyze the system’s response to stimulus. We provided

results detailing the excitation patterns caused by simple stimuli like the constant

function and the pulse train and proceeded to show its frequency response using

Fourier analysis. To initiate the concept of a tissue simulation composed of multiple,

discrete cells, we examined the model’s response to stimulus by its own characteristic

shapes.

Chapter 5 concludes the development of material by scrutinizing the dynamics

of the multiple-cell simulation. We use three simulations (line, ring, and grid) to

examine the properties of diffusion, and we proceed to give details about the different

types of electrical waves that arise in two-dimensional simulations (linear, circular,

and spiral). Finally, we present an algorithm for tracking the activations of individual

cells in order to avoid calculations to update inactive portions of the simulation.
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6.2 Future Work

The research presented in this thesis investigates the behavior of the FitzHugh-

Nagumo model at a basic level. Therefore, there are several potential aspects re-

maining to be investigated in the quest for a whole-heart model.

6.2.1 Activity List Algorithm Improvements

The activity list algorithm given in this thesis is an idea that can be further developed.

One immediate possibility for the algorithm is to include the consideration of “neigh-

bors of neighbors” so that the algorithm would have access to more time-advanced

information about possible locations for the wave to propagate. Additionally, it is

possible to develop a method for the algorithm to monitor the direction of wave

propagation to reduce the number of “wasted” neighbor calculations. The present

algorithm is ignorant of the wave propagation direction, so it processes neighbors on

both sides of an excitation wave. This results in wasted cycles to track certain neigh-

bors. These optimizations could reduce the computational overhead of the algorithm,

while also increasing its accuracy.

6.2.2 Interpolation Methods and Performance

As we noted in Chapter 3, there are significant performance improvements available

through the use of innovative data structures and computer methods to improve the

speed of the nearest neighbor [5, 19] method and locally-weighted regression [30].

Such improvements are needed before the algorithms can find a place in optimizing

practical cell simulations. Also, since both algorithms have identifiable issues with

accuracy in the nonlinear maps associated with the FitzHugh-Nagumo model, other

algorithms could be investigated to potentially take their place. For example, MAT-

LAB provides several built-in interpolation methods not analyzed here, including
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bilinear, cubic spline, and bicubic interpolation. Also, it is qualitatively visible that

the FitzHugh-Nagumo system could be approximated by a cubic surface rather than

the planar one introduced in Chapter 3. This suggests that such an approximation

idea may be a worthwhile exploration for higher-level models.

6.2.3 Complex 3D Cell Networks

Though analogous in nature to two-dimensional simulations, this research has not

touched on three-dimensional simulations of multi-cell networks due to complexity

and visualization issues. In fact, research has shown that new and qualitatively dif-

ferent wave types can arise in three-dimensional simulations [26] that are not seen in

two-dimensional ones. Both increased understanding of cardiac behavior and the

goal of whole-heart simulation require three-dimensional multi-cell networks with

irregularly-spaced cells.

6.2.4 Model Substitution

The FitzHugh-Nagumo model is one of the simpler available models of excitable cells.

More rigorously-developed models provide increased accuracy in certain situations,

but also have significantly higher dimensions. The ability to dynamically switch be-

tween complex and simple models will be valuable in balancing the real-world accuracy

of whole-heart simulation with speed. Fortunately, both the nearest neighbor method

and locally weighted regression possess general forms that function for arbitrary input

dimension. Additionally, there may even be variables in these higher-order models

that can be successfully approximated by a linear or other low-order function to speed

calculations. The activity list algorithm will generalize to any model that has a stable

equilibrium point. Still, the complexity of such models also ensures that the analysis

that must be performed to truly characterize the viability of these techniques will be

much more demanding.
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6.2.5 Wavelets and Kernel Functions

Due to the existence of characteristic shapes in the FitzHugh-Nagumo model, wavelet

theory could be applied to separate the waveforms into components important to

wave propagation and those not relevant. In addition, we noted in Chapter 4 that

the waveform shape associated with the late refractory period is not important to the

prevailing propagation pattern of waves. This further suggests that a decomposition

of the waveforms may provide useful information on diffusion phenomena.
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Appendix A

MATLAB Code

Nearest Neighbor Code

The nearest neighbor function requires three parameters: Xq (the query point), Xi (a

matrix of sample data), and Yi (a matrix of output data associated with the sample

data). It returns Yq, a copy of the output data associated with the closest sample

point in input space.

function Yq = GetNN(Xq,Xi,Yi)

[samples dimensions] = size(Xi);

mindist = 100000000;
minindex = 0;

for j=1:samples,
dist = 0;
for n=1:dimensions,

dist = dist + (Xq(n) - Xi(j,n))^2;
end
if dist < mindist,

mindist = dist;
minindex = j;

end
end

Yq = Yi(minindex);
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Locally Weighted Regression Code

The code for locally weighted regression is divided into two parts: the main algorithm

(locally weighted regression) and the support algorithm (cross validation).

Locally Weighted Regression

The main locally weighted regression algorithm uses the same parameters for query

point and sample data as the nearest neighbor implementation, but it requires sev-

eral additional parameters. These include h (the neighborhood sizing parameter)

and XiVar (the variance of the sample data in each input dimension). The final pa-

rameter, exclude, is provided so the algorithm can ignore a particular sample point

for compatibility with the cross validation algorithm. The algorithm returns Yq, its

prediction for the output of the query point.

function Yq = GetLWR(h,Xq,Xi,XiVar,Yi,exclude)

[samples dimensions] = size(Xi);

w = zeros(samples,1);
for n=1:dimensions,

w = w + ((Xi(:,n)-Xq(n)).^2)/XiVar(n);
end

if h == 0,
k = 1:samples;

else
k = find(w < (-2/h)*log(0.001));

end

w = exp((-h/2)*w(k));

if exclude ~= 0,
exclude = find(k == exclude);
w(exclude) = 0;

end

X = ones(length(k),dimensions+1);
for n=1:dimensions,

X(:,n) = Xi(k,n)-Xq(n);
end
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W = repmat(w’,dimensions+1,1);
Y = Yi(k);

XtW = X’.*W;
B = (XtW*X)\(XtW*Y);
Yq = B(dimensions+1);

Cross Validation

The cross validation algorithm cycles through each sample point and computes the

error between the sample point’s output and the locally weighted regression prediction

using a sample set without that sample point. It returns sserror, the sum of squared

errors for the particular h value being tested.

function sserror = CrossValidate(h,Xi,XiVar,Yi)

[samples dimensions] = size(Xi);

sserror = 0;
for m=1:samples,

sserror = sserror + (GetLWR(h,Xi(m,:),Xi,XiVar,Yi,m) - Yi(m))^2;
end

Activity List Code

The code below implements the activity list algorithm for the dual circular wave

case (see Chapter 5). It produces a pair of three-dimensional matrices containing the

complete membrane potential (V ) and gating variable (W ) data over the simulation

time for each cell. Note that the lists (ActiveXList, ActiveYList, NeighborXList,

NeighborYList) are an approximation of the true idea of a list for the MATLAB

environment. Each list is composed of an n-by-1 matrix, where n is the total cell

count. The true data length of this matrix/list structure is updated as data is stored

to, or removed from, the list. New data is added by writing at the element after the
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current length of the list, and data can be removed by overwriting it with the final list

element and reducing the list length by one. The matrix (ActiveNeighborMatrix)

keeps a redundant set of data and is used to facilitate checks of whether a particular

cell is already contained within the active or neighbor lists.

TimeLength = 30.0;
TimeStep = 0.04;
HalfTimeStep = TimeStep/2;
Time = 0:TimeStep:TimeLength;

DiffusionX = 1;
DiffusionY = 1;

Beta = 0.7;
Epsilon = 0.2;
Gamma = 0.8;

SampleCount = length(Time);
CellWidth = 100;
CellLength = 100;

ActiveXList = zeros(1,CellWidth*CellLength);
ActiveYList = zeros(1,CellWidth*CellLength);
ActiveListLength = 0;
NeighborXList = zeros(1,CellWidth*CellLength);
NeighborYList = zeros(1,CellWidth*CellLength);
NeighborListLength = 0;
ActiveNeighborMatrix = zeros(CellWidth,CellLength);

ForcingPattern = zeros(CellWidth,CellLength);
ForcingPattern(30,30) = 1;
ForcingPattern(71,71) = 1;

ActiveXList(1) = 30;
ActiveYList(1) = 30;
ActiveXList(2) = 71;
ActiveYList(2) = 71;
ActiveListLength = 2;

ActiveNeighborMatrix(30,30) = 2;
ActiveNeighborMatrix(71,71) = 2;

V0 = roots([-1/3 0 1-1/Gamma -Beta/Gamma]);
V0 = V0(3);
W0 = (Beta + V0)/Gamma;

V = V0*ones(CellWidth,CellLength,SampleCount);
W = W0*ones(CellWidth,CellLength,SampleCount);

Threshold = 0.001;
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V0Low = V0 - Threshold;
V0High = V0 + Threshold;
W0Low = W0 - Threshold;
W0High = W0 + Threshold;

for Sample = 2:SampleCount,
% Fill the neighbor list by the active list and process
% differential equation for all active cells
for i = 1:ActiveListLength,

CellX = ActiveXList(i);
CellY = ActiveYList(i);

if CellX ~= 1,
if ~ActiveNeighborMatrix(CellX-1,CellY),

NeighborListLength = NeighborListLength + 1;
NeighborXList(NeighborListLength) = CellX-1;
NeighborYList(NeighborListLength) = CellY;
ActiveNeighborMatrix(CellX-1,CellY) = 1;

end
end
if CellX ~= CellWidth,

if ~ActiveNeighborMatrix(CellX+1,CellY),
NeighborListLength = NeighborListLength + 1;
NeighborXList(NeighborListLength) = CellX+1;
NeighborYList(NeighborListLength) = CellY;
ActiveNeighborMatrix(CellX+1,CellY) = 1;

end
end
if CellY ~= 1,

if ~ActiveNeighborMatrix(CellX,CellY-1),
NeighborListLength = NeighborListLength + 1;
NeighborXList(NeighborListLength) = CellX;
NeighborYList(NeighborListLength) = CellY-1;
ActiveNeighborMatrix(CellX,CellY-1) = 1;

end
end
if CellY ~= CellLength,

if ~ActiveNeighborMatrix(CellX,CellY+1),
NeighborListLength = NeighborListLength + 1;
NeighborXList(NeighborListLength) = CellX;
NeighborYList(NeighborListLength) = CellY+1;
ActiveNeighborMatrix(CellX,CellY+1) = 1;

end
end

PreviousV = V(CellX,CellY,Sample-1);
PreviousW = W(CellX,CellY,Sample-1);
mV = (PreviousV - (PreviousV^3)/3 - PreviousW)/Epsilon;
mW = Epsilon*(PreviousV - Gamma*PreviousW + Beta);
Vtemp = PreviousV + HalfTimeStep*mV;
Wtemp = PreviousW + HalfTimeStep*mW;
nV = (Vtemp - (Vtemp^3)/3 - Wtemp)/Epsilon;
nW = Epsilon*(Vtemp - Gamma*Wtemp + Beta);
Vtemp = PreviousV + HalfTimeStep*nV;
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Wtemp = PreviousW + HalfTimeStep*nW;
qV = (Vtemp - (Vtemp^3)/3 - Wtemp)/Epsilon;
qW = Epsilon*(Vtemp - Gamma*Wtemp + Beta);
Vtemp = PreviousV + TimeStep*qV;
Wtemp = PreviousW + TimeStep*qW;
pV = (Vtemp - (Vtemp^3)/3 - Wtemp)/Epsilon;
pW = Epsilon*(Vtemp - Gamma*Wtemp + Beta);

V(CellX,CellY,Sample) = PreviousV + ...
TimeStep*(mV + 2*nV + 2*qV + pV)/6;

W(CellX,CellY,Sample) = PreviousW + ...
TimeStep*(mW + 2*nW + 2*qW + pW)/6;

end

% Process forcing term
for CellX = 1:CellWidth,

for CellY = 1:CellLength,
if ForcingPattern(CellX,CellY),

V(CellX,CellY,Sample) = V(CellX,CellY,Sample) + ...
TimeStep*4/(1+exp(16*(Time(Sample)-2)));

end
end

end

% Process currents for adjacent cells
I = zeros(CellWidth,CellLength);

for i = 1:ActiveListLength,
CellX = ActiveXList(i);
CellY = ActiveYList(i);

if CellX ~= CellWidth,
Itemp = DiffusionX*(V(CellX+1,CellY,Sample) - ...

V(CellX,CellY,Sample));
I(CellX,CellY) = I(CellX,CellY) + Itemp;
I(CellX+1,CellY) = I(CellX+1,CellY) - Itemp;

end
if CellY ~= CellLength,

Itemp = DiffusionY*(V(CellX,CellY+1,Sample) - ...
V(CellX,CellY,Sample));

I(CellX,CellY) = I(CellX,CellY) + Itemp;
I(CellX,CellY+1) = I(CellX,CellY+1) - Itemp;

end
end
for i = 1:NeighborListLength,

CellX = NeighborXList(i);
CellY = NeighborYList(i);

if CellX ~= CellWidth,
if ActiveNeighborMatrix(CellX+1,CellY) == 2,

Itemp = DiffusionX*(V(CellX+1,CellY,Sample) - ...
V(CellX,CellY,Sample));

I(CellX,CellY) = I(CellX,CellY) + Itemp;
I(CellX+1,CellY) = I(CellX+1,CellY) - Itemp;
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end
end
if CellY ~= CellLength,

if ActiveNeighborMatrix(CellX,CellY+1) == 2,
Itemp = DiffusionY*(V(CellX,CellY+1,Sample) - ...

V(CellX,CellY,Sample));
I(CellX,CellY) = I(CellX,CellY) + Itemp;
I(CellX,CellY+1) = I(CellX,CellY+1) - Itemp;

end
end

end

V(:,:,Sample) = V(:,:,Sample) + TimeStep*I;

% Move all active cells at equilibrium off the active list
for i = 1:ActiveListLength,

CellX = ActiveXList(i);
CellY = ActiveYList(i);

if (V0Low < V(CellX,CellY,Sample)) && ...
(V(CellX,CellY,Sample) < V0High) && ...
(W0Low < W(CellX,CellY,Sample)) && ...
(W(CellX,CellY,Sample) < W0High),
ActiveNeighborMatrix(CellX,CellY) = 0;
ActiveXList(i) = ActiveXList(ActiveListLength);
ActiveYList(i) = ActiveYList(ActiveListLength);
ActiveListLength = ActiveListLength - 1;

end
end
% Move neighbor cells to the active list or off the neighbor list
for i = 1:NeighborListLength,

CellX = NeighborXList(i);
CellY = NeighborYList(i);

if (V0Low < V(CellX,CellY,Sample)) && ...
(V(CellX,CellY,Sample) < V0High) && ...
(W0Low < W(CellX,CellY,Sample)) && ...
(W(CellX,CellY,Sample) < W0High),
ActiveNeighborMatrix(CellX,CellY) = 0;

else
ActiveNeighborMatrix(CellX,CellY) = 2;
ActiveListLength = ActiveListLength + 1;
ActiveXList(ActiveListLength) = NeighborXList(i);
ActiveYList(ActiveListLength) = NeighborYList(i);

end

NeighborListLength = 0;
end

end

clear mV mW nV nW qV qW pV pW Vtemp Wtemp PreviousV PreviousW Itemp ...
Sample CellX CellY;
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Appendix B

GUI System

As mentioned in Chapter 1, early results in this thesis were obtained during the de-

sign of a GUI system written in C++ using the OpenGL and GLUT libraries. This

program contained implementations of a fourth-order Runge-Kutta differential equa-

tion solver to simulate the FitzHugh-Nagumo system (in the “FitzHugh-Nagumo”

window) given a user-defined parameter set (adjustable using the sliders in the “Con-

trol” window). Additionally, it displayed the solutions in the phase plane and pro-

vided a sampling-based nearest neighbor and locally weighted regression scheme (in

the “Sample” and “Data” windows) to simulate the system as in Chapter 3. Three

example screen captures of the GUI system are shown in Figure B.1.
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Figure B.1: FitzHugh-Nagumo GUI System
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