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Assessment of Event-Related Desynchronization in Stroke Survivors

Performing Shoulder-Elbow Movements

Abstract

by

MICHAEL FU

It is unknown whether electroencephalography (EEG) signal characteristics in stroke

survivors with motor deficits register enough activity for use with brain-computer

interfaces (BCIs). This research studied pre-movement EEG from shoulder-elbow

movement in stroke survivors to identify signal characteristics potentially useful for

robot-assisted stroke rehabilitation. Pre-movement event-related desynchronization

(ERD) was examined in the alpha band mu rhythm for control (n =7) and stroke

subjects (n = 11). Subjects were all right-hand dominant; stroke subjects used their

afflicted arm and controls were assigned a side to match stroke subjects. Both non-

dominant-arm-tested stroke and control subjects exhibited greater ERD intensity vs.

those using their dominant arm (p < 0.05). Also, pre-movement ERD was detected

in stroke survivors, which suggests at the possibility of using ERD as a BCI system

control signal. However, the peak ERD of stroke survivors was significantly lower

than that of healthy subjects (p < 0.05), which brings doubt to whether the intensity

of ERD in stroke survivors is large enough to be used as a BCI system control signal.
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Chapter 1

Introduction

Cortical activity driving motor-related activity has become an important field of

research for studies attempting to decode the brain’s electrical activity for use as a

control signal in brain-computer interfaces (BCIs) or brain-machine interfaces (BMIs).

Many studies reported use of BCI or BMI to improve the lives of people suffering

from spinal chord injuries (SCI) or amyotrophic lateral sclerosis (ALS) [7]. Patients

with SCI or ALS can plan out or imagine movements normally, but not perform

them. In these studies, the brain’s neural activity was detected during imagined

movements and translated into prosthesis control signals or into mouse cursor motions

for communication purposes.

Cortical activity as a result of motor-related planning exists not only in normal,

undamaged brains, but also in the brains of stroke survivors, despite the injury that

ischemia inflicts in the brain [8]. However, because of the ischemia, damaged neurons,

and potentially altered neural activity, it is unknown whether EEG in stroke survivors

can be used in BCI. The purpose of this research study was to characterize EEG in

stroke survivors in order to identify signal characteristics that could potentially be

used in BCI applications.
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Figure 1.1: The Inmotion2 Shoulder-Elbow Robot is used in upper extremity physical
rehabilitation therapies and only allows 2D shoulder-elbow movements [1].

1.1 Thesis Contributions

The objective of this thesis was to extend existing literature in a number of ways.

First, the event-related desynchronization characteristics of stroke-affected EEG dur-

ing a shoulder-elbow motion were evaluated during use of the Interactive Motion

Technologies, Inc. (Cambridge, MA) Inmotion2 Shoulder-Elbow Robot (Fig. 1.1).

Second, new information was identified regarding EEG signal characteristics for dom-

inant versus non-dominant shoulder elbow movements for both healthy controls and

stroke survivors.
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1.2 Thesis Outline

The remainder of this thesis is organized as follows. Several relevant background

topics and existing research are discussed in the Background (ch. 2) and Literature

Review (ch. 3) chapters. Then, the Methods chapter (ch. 4) describes the experiment

paradigm and data analysis techniques that were employed. Findings from this study

are reported in the Results chapter (ch. 5) and extensions to literature and study

limitations are mentioned in the Discussion chapter (ch. 6). Key findings and further

research directions are also described in the Discussion chapter.
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Chapter 2

Background

This section will discuss information and current research regarding stroke, EEG

waves, and BCI. Niedermeyer and Lopes da Silva’s text Electroencephalography [9]

and Bogousslaysky and Caplan’s text Stroke Syndromes [10] are definitive texts on

EEG and stroke, respectively.

2.1 Background on Stroke-related Motor Deficits

A stroke occurs when a blood vessel leading directly to the brain can no longer deliver

oxygen and nutrients to it, resulting in the death of cortical tissue. There are two

types of stroke: 1) an ischemic stroke occurs when a blood clot blocks blood from

entering the brain and 2) a hemorrhagic stroke occurs when a blood vessel ruptures.

In a normal adult, motor tasks on a particular side of the body are controlled by

the side of the brain contralateral to the side of motion (for instance, a right arm

movement is controlled by the left side of the brain). Therefore, if a stroke occurs

near the sensory or motor areas of the brain (Fig. 2.1) various motor deficits can

occur and impair the side of the body contralateral to the damaged side of the brain.

Some of the motor impairments that can occur are hemiparesis, hemiplegia and

motor aphasia. Hemiparesis is a weakness in the muscles of a single side of the

4



body, whereas hemiplegia is a total paralysis of one side of the body. Stroke victims

suffering motor aphasia, on the other hand, might have little trouble with executing

movements, but are unable to understand how objects are used. For instance, they

will see a hammer and a nail and not understand how to use the hammer on the nail.

The stroke survivors in this study suffered from hemiparesis or hemiplegia.

Figure 2.1: The major cortical regions of the brain over which EEG electrodes were
placed [2].

2.2 Background on EEG

Electroencephalography (EEG) signals are recorded in terms of voltage (microvolts

in scale) by electrodes placed on the scalp of a subject and were first studied by

Hans Berger in humans in 1920 [9]. The recorded signals result from fluctuating

extracellular electric field potentials surrounding neurons in the brain. When active

excitatory or inhibitory synapses alter the electric signal arriving from the neuron, the

result is a fluctuating field potential that can be measured at the scalp with electrodes

and amplifiers. The current standard for electrode placement is the International 10-
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20 system (Figure 2.2). Each electrode is 8 mm in diameter and has a cavity depth

of 5 mm in which conductive gel can be injected to lower impedance between the

electrode and the scalp. The electrodes are labeled by their location on the scalp (F

for frontal, C for central, T for temporal, P for parietal, and O for occipital) and

numbered so that the Z (for zero) electrodes run down the center, odd electrodes are

on the left hemisphere, and even electrodes are on the right.

Prior to practical analog to digital conversion technologies, EEG recordings were

plotted onto paper and visually examined. But since the 1970s, the norm has become

frequency domain and statistical analysis of EEG signals with computers. Like other

bioelectric signals, EEG waves are quasi-periodic, but for analysis purposes several

frequency band classifications of EEG have been defined by researchers and are named

in the order of their discovery — not by their order in the frequency spectrum. Five

commonly studied ones are: alpha band (8–13 Hz), beta band (14–30 Hz), gamma

band (30–70 Hz), delta band (0.1–3.5 Hz), and theta band (4–7.5 Hz) [9].

2.3 EEG Alpha Band

This study focused on EEG signal characteristics in the alpha band. The alpha band

was one of the earliest identified by Berger and includes waves oscillating from 8–

13 Hz. An increase in the amplitude of alpha waves is best correlated with relaxed

wakefulness for the normal adult. Most notably, amplitudes can be enhanced when

the eyes are closed (such as during meditation). Typical amplitudes of alpha waves

are difficult to define because they vary greatly from person to person, but a typical

range can be from 0–50 uV. Values above 100 uV are uncommon in normal adults

[9]. Attenuation of the alpha waves, which is also called desynchronization, occurs

when the subject is either attentive, anxious, or in a state of expectancy to external

stimuli. Therefore, motor task planning attenuates waves in this frequency band.
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Figure 2.2: Different perspectives of the International 10-20 standard system of elec-
trode placement. (A) Sagittal plane, (B) axial plane, and (C) the locations of the 64
electrode configuration used in this study [3].

2.4 Mu or Rolandic Waves

Mu waves, also known as Rolandic waves, were discovered by Jasper and Andrews in

1938 and are known to exist in the alpha band. Mu stands for motor and in most

healthy adults, the mu wave is attenuated whenever movements (voluntary, passive,

or reflexive) are performed or even imagined. Mu wave attenuation occurs up to, and

sometimes beyond, 2 s before movement onset. It has key, harmonically unrelated

frequency components at around 10 Hz (alphoid component) and at 20 Hz (beta

component). The alphoid component can exist anywhere from 8 Hz to above 11 Hz in

some adults. The alphoid component of the mu wave arises from the somatosensory

7



cortex (Fig. 2.1), so it is usually most active and detectable under the CP EEG

electrodes that overlay the parietal area, which can be seen by comparing Figure 2.1

with Figure 2.2A. The beta component of the mu wave, however, arises from the

motor cortex (Fig. 2.1) and is most active under the CZ, C3, and C4 electrodes

(Fig. 2.2C). Both the alpha and beta band mu components exhibit attenuation, or

desynchronization, prior to and during movements [11].

2.5 Event-Related Desynchronization

Brain activity during sensory processing or motor behavior was first reported by

Berger in 1930 and can be observed in EEG data as the desynchronization, or atten-

uation, of alpha and beta band waves. Event-related desynchronization (ERD) refers

to desynchronization that occurs due to voluntary or involuntary activity. It is also

a reliable correlate of increased cellular excitability in the thalamocortical systems

during cortical information processing [9]. In contrast, when the brain is idling (at

rest), alpha waves are enhanced, reflecting greater amplitudes in the EEG data. One

theory on the cause of desynchronization is that neurons behave like weakly-coupled

non-linear oscillators which synchronize with each other when the brain is idle, but

desynchronize from the weak coupling when processes become active in the brain [12].

Gert Pfurtscheller developed the ERD percentage measure to quantify the amount

of EEG desynchronization, [9]. The measure is formally defined as

ERD%decrease = 100× Powerref − Powerx

Powerref

(2.1)

where Power ref is the average power in a reference interval (typically a period of

time that is a few seconds while the subject is at rest) and Powerx is the average

power in an interval of interest with which we wish to compare the reference interval

for activity in the EEG data. A positive ERD percentage indicates that there is a

8



decrease in power with respect to the reference state and a negative value means there

is an increase in power.

In ERD analysis of motor tasks, the subject is asked to perform multiple trials of

the task so that the mu wave can be identified. This is accomplished by identifying

the frequency in the alpha and beta bands, for which there is a maximum difference

in average power between the rest and motor-planning states. Then, each trial’s

time-domain EEG data is bandpass filtered to include only mu frequency signals,

squared to obtain power, and finally the ERD percentage equation is applied to the

data with Power ref as defined and Powerx as each sample of data in the bandpassed

and squared data. Figure 2.3 gives a graphical example of the calculation and the

resulting time-series ERD% plot.

Figure 2.3: An illustration of an ERD% calculation and the resulting time-domain
plot [4].

9



2.6 Movement-related Cortical Potential

ERD is most noticeable in the 8–12 Hz range, but there is also a movement-related

EEG activity in the slow, 0.1–1 Hz range called the movement-related cortical po-

tential (MRCP). MRCPs are negative potentials that can be seen in the raw EEG

data after averaging many trials of the same motor task together (Fig. 2.4). The

initiation of the MRCP curve occurs before movement onset and is the beginning of

pre-motor planning [9]. The amplitude of the curve is correlated with the amount of

cognitive effort. For example, one would suspect that using the non-dominant hand

to perform a motor task requires more focus or effort, which should be detectable in

the MRCP. And in fact, Tarkka found that the MRCP for moving the non-dominant

index finger starts earlier and rises to higher amplitude than dominant finger move-

ments [13]. Although the MRCP reflects cortical activity, it is not practical as a BCI

input signal because it is discernable only after averaging many trials, unlike ERD.

MRCP and ERD share common timing characteristics, though, so MRCP start times

and duration can be used to help identify periods of cortical activity in which ERD

should be present [14].

2.7 Brain Computer Interface

BCI systems are designed to translate the brain’s activity during imagined move-

ments into computer cursor or prosthesis control. Wolpaw, et al. at the Wadsworth

Center for Laboratories and Research in NY implemented a pioneering EEG-based

BCI system in 1991 [15]. This system measured the amplitude of mu waves to al-

low a well trained subject to control the direction of a cursor in one dimension by

varying the amplitude of their mu waves [15]. In 2004, the same group was able to

make two dimensional control possible using noninvasive EEG, even though it was

widely assumed that only invasive recordings of brain waves can provide the resolu-

10



Figure 2.4: Example of an MRCP curve starting from baseline approximately 4 s
before movement onset.

tion needed to achieve 2D control [16]. These advancements in noninvasive EEG BCI

systems are important for developing a BCI system for stroke survivors because in-

vasive recordings require implanted electrodes under the skull, which is not desirable

for individuals who already have stroke-induced damage to their brains.

Stroke survivors are unique from other types of people who can benefit from BCI

because they can be rehabilitated to a greater degree than those suffering from SCI or

ALS. Therefore, stroke survivors might best use BCI not as a permanent prosthesis-

driving technology, but instead as a rehabilitation tool that might provide therapies

to focus on and take advantage of the plasticity of the brain to regain motor control.

Plasticity is the brain’s ability to reorganize around damaged cortical areas and

recover functions for which those areas were responsible. Using EEG recordings,

Sterns, et al. discovered that increases in task-related coupling between cortical areas

may compensate for brain damage after stroke [17]. They also found that some of

the increased coupling decreases as patients make a functional recovery. Therefore,

if a BCI system is developed to analyze the EEG of stroke survivors, then it can be

paired with a rehabilitation robot to tailor-design therapy sessions which promote

11



plasticity in the brain of the subject.

Since the 1990s, rehabilitation robots have become an effective component of

stroke therapy studies [18]. Unlike a self-evoked motion, robots like the Inmotion2

Shoulder-Elbow Robot (Fig. 1.1) challenge and assist stroke survivors to accomplish

movements they cannot otherwise successfully perform. Lum, et al. even found that

robot-assisted therapy helped stroke survivors improve more (in both biomechanical

and Fugl-Meyer assessment of motor impairment measures) than conventional therapy

did [19]. A combination of robotic rehabilitation and BCI would allow therapists to

actively measure and restore lost motor skills cortically, instead of only functionally.

However, there are currently no studies on the effect of stroke on the EEG of subjects

executing movements that can be assisted with a rehabilitation robot.
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Chapter 3

Literature Review

This section will discuss existing literature regarding two topics relevant to this thesis:

1) EEG characteristics in stroke survivors and 2) the use of EEG as a control signal

in stroke rehabilitation.

3.1 EEG Characteristics in Stroke Survivors

EEG signals during motor tasks have been characterized in normal adults. The

purpose of the current study was to characterize EEG signal in stroke survivors and

determine whether any of the characteristics of the EEG signal would be potentially

useful for BCI in stroke survivors with sensorimotor cortex damage. There was some

doubt about this issue, as sensorimotor cortical damage might render the cortical

signal useless as a control signal or in rehabilitation applications. In fact, Daly, et al.

found that the initiation of cognitive planning in stroke survivors was significantly

delayed versus healthy control subjects (p < 0.05) [20]. Daly, et al.’s study was the

first to report on pre-movement cortical motor planning for a shoulder-elbow motor

task. The outcome measure that was used was an averaged “off-line” (not in real

time) calculation of motor planning time. In order to use EEG signals “on-line”

(in real time) during motor re-training, a characteristic of the raw signal must be

13



identified. BCI systems currently use mu rhythm ERD as a BCI control signal for

normal, ALS, and SCI subjects [15]. The purpose of the current study was to evaluate

the usefulness of ERD in order to identify a real-time measure of brain activity.

Most studies of healthy adults focused on ERD during finger movements [8], [21],

and [11]. Platz, et al. investigated cortical motor planning by using a motor task that

involved the index finger tracing a small triangle. Functional movements involve the

use of shoulder and elbow movements, and stroke survivors often have impairment in

the control of these movements [8]. Therefore, shoulder-elbow movements in stroke

survivors were studied. The only study that examined a shoulder-elbow movement

was Labyt, et al., who studied the ERD of a targeting movement in which subjects

pointed to a target in front of them with their index finger, but the subjects were

healthy young and elderly adults [22]. In contrast, the subjects in the current study

were not required to be able to complete the movement required for the motor task.

3.2 Evaluation of EEG Characteristics for Stroke

Rehabilitation Use

Conventional therapies do not restore normal control to many stroke survivors. There-

fore, it is critical to identify more effective stroke rehabilitation strategies. The use of

mu wave ERD as a control signal has shown some promise in normal adults, locked in

syndrome, ALS, and SCI [15], [7]. BCI users typically train to voluntarily modulate

their mu waves by imagining movement and inducing ERD [15]. These changes in sig-

nal amplitude are then detected and translated into control signals for communication

or prosthetic control [23].

It is not clear whether the EEG signal can be used for stroke survivors as a control

signal or in rehabilitation of motor or cognitive function. There is no literature on

stroke survivors using BCI and Daly, et al.’s discovery that stroke survivors have
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delayed cortical planning periods versus healthy controls raises doubts about whether

stroke survivor EEG is compatible with BCI systems [20].

This study also investigated whether the effect of hand dominance on the EEG

signal characteristics for shoulder-elbow movement is consistent with literature on

finger movements. Tarkka studied the healthy adults performing finger movements

on different hands and found that the MRCP began significantly earlier and with

elevated intensity for subjects moving their non-dominant hand versus dominant-side

movements (p < 0.05) [13]. Consistent with this finding, Stancak reported an earlier

start and greater percentage of ERD for non-dominant finger movements compared

with dominant hand movements [24]. Finally, Bai et al. provided the most recent

findings on this topic in a 2005 study investigating hand dominance using ERD cor-

related with EMG signals [21]. They reported that, compared to the non-working

side of the brain during dominant hand finger movements, there is more activity on

the non-working side of the brain when fingers of the non-dominant hand are moved.

To date, there is no available information regarding ERD for dominant versus non-

dominant upper limb during shoulder or elbow movements for either healthy or stroke

subjects.

Another gap in the literature is that there are currently no published studies

on the EEG signals of subjects operating rehabilitation robots. Daly’s study was

the first, to date, to look at EEG signal activity during cognitive pre-movement

planning in stroke subjects using a rehabilitation robot, and this thesis extends those

findings [20]. This thesis analyzed ERD measures rather than MRCP measures in

order to evaluate whether real-time EEG signal characteristics can accurately reflect

pre-movement cortical activity.
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Chapter 4

Methods

Event-related desynchronization was the EEG signal characteristic analyzed for this

study because it is a reliable correlate of increased cortical activity during information

processing [9]. Also, the intensity of ERD relative to a cortical rest interval can be

computed in real time to reflect the amount of cortical activity that is responsible for

motor task planning. This section describes the methods used to analyze ERD in this

thesis. The contents include a description of the subjects recruited for the study, the

experimental paradigm and data recording methods, and the data analysis techniques

that were used (spatial filtering, noise rejection, and computation of ERD).

4.1 Subjects

Twenty right-hand-dominant subjects were selected and gave consent to enroll in

this study. This study was conducted according to the Declaration of Helsinki and

oversight was provided by the Internal Review Board of the Louis Stokes Cleveland

Veterans Affairs Medical Center. Ages ranged from 48–72 years old, with a mean age

of 61. Twelve of these subjects had chronic (> than 12 months) arm coordination

deficits following stroke and eight subjects were age-matched, healthy individuals.

16



4.2 Experimental Paradigm

All of the subjects were seated before a computer screen with either their right or

left hand gripping the end-effector of an Inmotion2 Shoulder-Elbow Robot. Control

subjects were randomly assigned to use their left or right arm while stroke survivors

used the arm suffering coordination deficits. As illustrated in Fig. 4.1, the subjects

were then presented with a motor targeting task that required an accurate 14 cm,

linear movement in the horizontal plane beginning at the center of the workspace and

moving to a target in a direction directly in front of the subject. This motor task

required shoulder flexion and elbow extension, which each subject performed fifty

times with a two-minute recess between every 10 trials. Not all stroke survivors could

accomplish the normal movements required of the motor task, but all of them made

their best effort to do so.

Figure 4.1: Illustration of the experimental paradigm in which the diagram to the
right represents what was seen on the subject’s screen. The subject was to move from
the ‘start’ circle to stop at the ‘end’ circle in as straight a line as possible.
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4.3 Data Recording

Simultaneous data recordings were obtained for EEG, electromyography (EMG), and

movement onset. EEG data were obtained using Compumedics NeuroScan Ltd. (El

Paso, TX) devices and software. The data were recorded using NeuroScan Acquire

4.3.1 software, a 64-electrode Quick-Cap EEG cap (Fig. 4.2), and a NeuroScan

Synamps amplifier system with a gain of 500, sampling rate of 1000 Hz, and bandpass

filter set to pass 0.1–40 Hz (Fig. 4.3). All electrodes on the EEG cap were 8 mm in

diameter with a 5 mm cavity depth and were arranged on the scalp in compliance with

the International 10-20 standard [25]. Each recording was referenced to the common

linked left and right mastoid surface electrodes. All electrode-to-scalp impedances

were reduced to less than 10 kΩ using electrically conductive gel and real-time elec-

trode impedance measurements provided by the NeruoScan Acquire software.

Figure 4.2: Photograph of the NeuroScan 64-electrode Quik-Cap used to make EEG
recordings in this study.
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Figure 4.3: Photograph of the NeuroScan Synamps amplifier system used to make
EEG recordings in this study [5].

4.4 Preliminary Data Processing

The EEG data were first examined and filtered for noise. Then, the signal-to-noise

ratio (SNR) of the EEG data were optimized by using spatial filtering and searched for

any contamination by scalp or facial muscle EMG signals. The locations of greatest

brain activity and the corresponding amounts of peak ERD% were identified during

pre-movement motor planning.

4.4.1 Noise Rejection

Filtering techniques were applied to the data in order to eliminate noise from the

EEG data. The EEG data were first visually inspected by an expert to reject trials

containing blink artifacts or abnormalities in the baseline data. Upon further analysis,

an unknown noise source with a center frequency at 20 Hz was observed in all of the

subjects’ data. The noise existed roughly between 19–21 Hz and was non-uniformly

distributed across the electrode locations, as seen in Fig. 4.4. To suppress the noise, a

48 dB/octave bandstop filter was applied between 19 and 21 Hz. However, because the
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beta band component of mu waves in normal adults are most active at approximately

20 Hz, the noise prevented accurate analysis of the beta band for cortical activity [9].

Therefore analysis was performed only on the alpha band for this study.

4.4.2 Spatial Filtering

Spatial filtering was performed to improve the signal-to-noise (SNR) ratio of the EEG

data being analyzed by removing any noise common to all of the electrodes. Using

NeuroScan Edit 4.3.1, a common average reference (CAR) was performed on all 64

electrodes in order to produce a ‘reference-free’ version of the EEG data. CAR was

chosen based on its superior SNR characteristics as reported in a study performed

by McFarland, which compared several spatial filtering techniques for improving the

SNR of EEG signals for BCI use and concluded that the CAR had the best SNR [26].

In the calculation of the CAR, the average value of all 64 electrodes was subtracted

from the channel of interest for each sample of data. Specifically, the formula for

CAR was

V CAR
i = V ER

i − 1

64

64∑
j=1

V ER
j (4.1)

where Vi
ER is the potential between the ith electrode and the reference electrode.

The effect of the CAR spatial filter was that any noise common to all the electrodes

was reduced from the EEG data.

4.4.3 Scalp EMG Noise Detection and Rejection

EEG recording systems are sensitive to EMG signals produced by the scalp muscles, so

any trials affected by EMG signals were removed. Some of the stroke survivors exerted

considerable effort while attempting the motor task and there was a possibility that

their facial muscles were strained or teeth were clenched. These muscle contractions

20



Figure 4.4: A)Frequency-domain plots of the range 8–30 Hz of EEG recordings at
64 electrodes for a randomly selected subject in this study. The vertical axis is
magnitude in uV. The effects of the unknown noise source at 20 Hz are clearly visible
as the vertical spike in the center of each electrode recording. B) A more detailed plot
of electrode C3 reveals that the 20 Hz noise signal (darkened bar) is approximately 4
uV in amplitude and greater than all the other frequency components.
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have the potential to introduce EMG activity that could be sensed by the EEG

electrodes and subsequently recorded along with cortical activity.

The following methods for EMG detection are largely based on the results of a

study by Goncharova on the characteristics of facial and scalp muscle EMG signals as

measured through EEG recording equipment [6]. The EMG detection and rejection

were performed for both the pre-movement planning interval and the rest interval

of each trial, because EMG noise in either interval would have affected the accuracy

of ERD calculations. The planning state was defined as the 3 s interval preceding

movement onset and the rest state was a separate 3 s interval preceding the planning

state. A time interval larger than that used by Goncharova [6] was used since stroke

survivors had longer motor planning intervals [20]. The procedures that were followed

for the EMG noise detection were consistent in all respects to Goncharova’s [6].

EMG from the frontalis and temporalis muscles can be a source of noise when

examining EEG signals because the range of frequencies spanned by EEG and EMG

overlap. Clinically relevant scalp EEG signals range from 0.1–100 Hz, but EMG

ranges from 0 to > 200 Hz [9]. The frontalis muscle (which moves the forehead skin

and eyebrows) shows maximum EMG activity from 20–30 Hz and the temporalis

muscles (which clench the teeth) have maximum EMG activity from 45–70 Hz. Even

with weak contractions, EMG data is detectable at the vertex of the scalp in the

8–12 Hz frequency band (exactly our frequencies of interest), so it was important to

reject any trial that might be contaminated with EMG signals from the frontalis or

temporalis muscles.

To determine whether a trial contained EMG noise, data were analyzed from four

electrode locations that were most susceptible to EMG contamination, which will be

referred to as the ‘primary’ electrodes for EMG rejection, as shown in Fig. 4.5. AF7

and AF8 were most affected by the frontalis muscles, and FT7 and FT8 were most

affected by the temporalis muscles. At these electrodes, the 45–70 Hz frequency band
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Figure 4.5: Shaded electrodes were the locations where EMG from the scalp muscles
showed greatest activity when recorded from EEG electrodes. AF7 and AF8 were
affected by the frontalis muscles, while FT7 and FT8 were affected by the temporalis
muscles [6].

power was first computed in each trial because scalp muscle EMG exhibits peaks in

this frequency band, but EEG signals do not. The power was calculated using the

formula

Power45−70Hz =
1

N2

70N
fs∑

k= 45N
fs

(|X(k)|2 + |X(N − k)|2) (4.2)

where N is the total number of samples in the rest or planning state and X(k) is the

kth FFT coefficient, and fs is the sampling frequency.

In any of the 50 trials, if the 45–70 Hz band power for a primary electrode exceeded

one standard deviation above the 50-trial mean for each respective electrode, then

five immediately adjacent electrodes were analyzed. The goal was to determine if the

45–70 Hz power value from the same trial at adjacent electrodes also exceeded the

mean plus one standard deviation. Finally, if three of the five adjacent electrodes

had power values that exceeded one standard deviation above the mean, then the

suspected trial was rejected from analysis.

For instance, if trial number 4 was suspected of having EMG noise during the
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Figure 4.6: If a trial at electrode AF7 was suspected of EMG contamination, then
the same trial from 5 neighboring electrodes were also examined.

rest interval at electrode AF7, the same trial were analyzed at electrodes FP1, AF3,

F3, F5, and F7, as shown in Fig. 4.6. If three of these five electrodes also exhibited

power values for the suspected trial that exceeded one standard deviation above the

50-trial mean for each respective electrode, then trial number 4 was eliminated from

analysis.

The decision to use three adjacent electrodes as the decisive criterion was based on

the results from an experiment that I conducted. In this experiment, I collected EEG

data from a normal adult who performed the experimental motor task 50 times with-

out any intentional frontalis and temporalis muscle contractions, and then 40 times

with intentional muscle contractions. Then, a data set of 50 trials was constructed to

approximate the same ratio of noisy to clean trials that were visually detected by an

expert on the data from our studied subjects. The expert found that approximately

28% (approximately 14 trials) of the 50 total trials of each subject were noisy, so the

constructed data set contained 36 EMG-free trials and 14 frontalis and temporalis

EMG-contaminated trials, all of which were randomly selected. The constructed data

set was then used to test the EMG detection algorithm described above.

I found that the greatest number of EMG-contaminated trials was identified by

using the criterion of the data from 3 adjacent electrodes. Six of the 14 contaminated

trials were rejected. When four and five adjacent electrodes were used as the criterion,
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only 4 of the same 14 contaminated trials were detected. Therefore, the criterion of

using data from three adjacent electrodes was chosen.

Mean plus one standard deviation was selected as the optimal threshold in the

algorithm because I found that rejecting trials outside this threshold preserved roughly

85%of uncontaminated data, 20% of frontalis contaminated data, and 0% of frontalis

and temporalis contaminated data. This threshold was chosen because of its superior

performance compared to other threshold values that were evaluated.

4.4.4 ERD Data Processing

Event-related desynchronization in the alpha band mu waves was analyzed using

Matlab and Compumedics NeuroScan Edit 4.3.1 using procedures consistent with

existing literature [9]. First, the electrode with greatest alpha band pre-movement

activity was identified. Subsequently, the frequency component in the alpha band

with the greatest change in amplitude was identified as the mu frequency. Next, the

data were bandpass filtered at the mu frequency ± 1 Hz, all the accepted trials of data

were averaged, and the ERD percentage value was calculated for each sample of data.

Analysis of variance (ANOVA) models were then analyzed to make the following

comparisons according to the greatest amount of ERD: stroke versus control and

dominant versus non-dominant arm. Peak ERD was analyzed because the percentage

of ERD reflects the level of cortical activity [9].

The electrode with the greatest pre-movement planning activity was identified

by comparing the average power of a subject’s cortical rest (baseline) state to their

planning (active) state for the alpha band. For control subjects, the motor planning

state was defined as the period two seconds preceding movement onset while the rest

state was a two second interval that began five seconds before the active interval.

These time periods were selected in light of findings that ERD and MRCP share

common timing features [14] and that the mean sensorimotor MRCP onset time for
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the control subjects used in this study occurred 1.466 ± 779 ms (roughly 2 s) before

movement onset [20]. For the stroke survivors in this study, however, Daly, et al.

found that the average sensorimotor MRCP start time (2.734 ± 1.205 ms) varied

much more than that of the control subjects. In light of this fact, the active state for

stroke subjects was defined as the time between the start of the MRCP and movement

onset [20]. This definition was based on actual EEG data and for this reason, was

potentially more accurate than the approximation methods used by others [6]. The

rest interval was chosen as an interval equal in length to the active interval and ended

3 s before the start of the active interval, as seen in Fig. 4.7.

Figure 4.7: Illustration of the cognitive rest and planning intervals identified for stroke
subjects.

Matlab’s periodogram.m function was used to compute the power spectral density

(PSD) in the alpha band (8–12 Hz). The periodogram function uses the equation

Power8−12Hz =
1

N2

12N
fs∑

k= 8N
fs

(|X(k)|2 + |X(N − k)|2) (4.3)

where N is the total number of samples in the rest or planning state and X(k) is

the kth FFT coefficient, and fs is the sampling frequency, which was 1000 Hz in this

study. The PSD for each of the 50 trials was computed and then averaged for each
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subject. The level of activity at an electrode was computed by subtracting the rest

PSD from the active PSD and integrating the differences for the 8–12 Hz frequency

band. Fig. 4.8 shows an example of the difference between the PSD of the motor

planning and rest states. The electrode with the greatest difference in power was

identified as the one with peak activity. Electrodes over the sensorimotor frontal and

parietal cortices (FCZ, FC1–6, CZ, C1–6, CPZ, and CP1–6) were all analyzed for

peak activity.

Next, the individual frequency component at which activity peaked was identified

at the peak electrode locations. This was accomplished by finding the frequency in

the alpha band that exhibited the greatest change in amplitude between the cognitive

rest and active states. This is illustrated in Fig. 4.8.

Figure 4.8: The dashed line represents the power spectrum of motor planning state
EEG while the solid line represents the power spectrum of rest state EEG. The peak
mu frequency was identified at the frequency where there is the greatest difference
between the power spectrum values of the two states.

ERD% values were then calculated for the alpha band mu frequency ± 1 Hz

using the Event Related Band Power (ERBP) function in NeuroScan Edit 4.3.1. The

ERBP function computed ERD percentage using complex demodulation (CD), an
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alternative to the classical methods described in the Background section.

Complex demodulation essentially treated the frequency of interest as a carrier

wave and preserved only the amplitude variations of that frequency by producing a

shifted and filtered version of the original signal centered at the frequency of interest

[27]. As an elaboration, it can be assumed a times series signal Xt contains a compo-

nent xt that varies in amplitude around a frequency f0. The signal can be expressed

as

Xt = xt + zt = At cos (f0t + φt) + zt =
At

2
(ejf0t+φt + e−jf0t+φt) + zt (4.4)

where At and φt are the changes of amplitude and phase of the frequency of interest

f0, and zt represents all other frequency components in Xt. The first step of the CD

algorithm is to multiply Xt by a complex exponential at f0, which results in

Yt = Xte
−jf0t =

At

2
ejf0t+φt +

At

2
e−jf0t+φt + zte

−jf0t (4.5)

The first term on the right hand side of the equation in Fig. 4.5 contains the

amplitude and phase variations at the frequency of interest and can be separated

from the rest of Yt by low pass filtering to obtain

yt =
At

2
e−jf0t+φt ⇒ At = 2|yt| (4.6)

Once At was computed, a reference interval was identified and the average amplitude

over that interval Aref was used in the ERD equation

ERD%decrease = 100× Aref − Ax

Aref

(4.7)

ERD was computed for each sample of data Ax in a trial. Complex demodulation was

performed on each trial of data and the data from all trials were averaged together

to form one ERD time-series dataset for each subject, as shown in Fig. 4.9. Finally,
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because the percentage of ERD correlates to the level of cortical activity, the peak

percentage of ERD that occurred within the motor-planning period was recorded and

analyzed.

Figure 4.9: Illustration of what a normal adult’s ERD% time series plot would look
like if they were recorded while performing a movement. The peak ERD% correlates
to the greatest amount of cortical activity.

4.4.5 Statistical Analysis

Each subject’s maximum percentage of ERD during the motor planning period was

recorded and used as the dependent variable for ANOVA. The subjects were grouped

into four categories for analysis based on the arm tested: dominant side (right arm

tested) control subjects, non-dominant side (left arm tested) control subjects, domi-

nant side stroke survivors, and non-dominant side stroke survivors. Analysis of vari-

ance was used to compare stroke to controls and dominant arm to non-dominant arm

tested subjects. For comparing stroke versus controls, the independent variable was

category (stroke or control) and for comparing handedness, the independent variable

was the arm tested.
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Chapter 5

Results

The Results section will follow the same order as the ERD signal analysis procedures

I described in the methods section. The first section reports the electrode locations

where the most pre-movement brain activity occurred. The second section identifies

the frequencies at which the greatest brain activity occurred. The third reports the

ERD characteristics observed in the subjects.

5.1 Identification of Brain Region With Greatest

Activity

5.1.1 Dominant Arm Control Subjects (Right-Arm Tested)

Of the four subjects in this category, all but subject number 4 had the most active

electrode on either the working side (odd numbered electrodes) or at medial locations

of the brain (CZ and CPZ) (5.1). It is unknown why subject number 4 did not follow

this trend and exhibited the greatest activity on the non-working side of the brain

(even numbered electrodes) at electrode C6. Subject numbers 1 and 2 had peak

activity at working side CPZ and CP5 electrode locations, respectively, and subject

number 8 had peak activity at C5. The peak activity at CP electrodes is expected in
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normal adults [9]. C5 is not expected to have peak activity due to motor tasks, but

since C5 is on the working side of the brain, it is possible for activity to peak there

and subject 8 cannot be considered an outlier.

Table 5.1: Right Arm Tested Control Subjects
Subject Peak Electrode Alpha Band Power Difference (uV2)

1. CPZ 2.75
2. CP5 2.17
4. C6 3.08
8. C5 4.05

Table 5.2: Left Arm Tested Control Subjects
Subject Peak Electrode Alpha Band Power Difference (uV2)

3. CP2 104.70
6. FC5 5.20
7. CP6 26.22

These tables report the control subject electrode locations with the greatest difference
in alpha band power for the rest versus motor-planning intervals and the difference val-
ues for subjects tested with their dominant (right) arm (Table 5.1) and non-dominant
(left) arm (Table 5.2).

5.1.2 Non-dominant Arm Control Subjects (Left-Arm Tested)

There were three subjects in this category. Two of them, subject numbers 3 and 7,

had peak activity on the working side at CP2 and CP6, respectively. However, one,

subject number 6, had peak activity on the non-working side at FC5 (Table 5.2).

5.1.3 Dominant Arm Stroke Subjects (Right-Arm Tested)

Table 5.3 shows the six post-stroke subjects in this category. Three of them (subject

numbers 10, 18, and 19) had the most active electrodes on the non-working side of

the brain, while the remaining three showed the most activity on either the working

side or center of the brain. The locations of the most active electrodes for all six
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subjects were C or FC electrodes. C electrodes were the most active electrodes for

three subjects, and FP electrodes were the most active for two subjects.

Table 5.3: Right Arm Tested Stroke Survivors
Subject Peak Electrode Alpha Band Power Difference (uV2)

10. C6 11.42
12. FC1 15.29
16. FC6 3.08
18. CZ 4.05
19. C6 5.12
20. FC5 49.37

Table 5.4: Left Arm Tested Stroke Survivors
Subject Peak Electrode Alpha Band Power Difference (uV2)

9. CP3 11.17
11. FC5 1.74
13. CP5 1.77
14. FC5 284.45
17. FC6 7.87

For right-arm tested stroke survivors (Table 5.3) and left-arm tested stroke survivors
(Table 5.4), the tables contain the electrode locations with the greatest difference in
alpha band power for the rest versus motor-planning intervals and the corresponding
difference values.

5.1.4 Non-dominant Arm Stroke Subjects (Left-Arm Tested)

Five subjects were in this category and four of them had the most active electrode

on the non-working side. As seen in Table 5.4, subject number 13 was the only one

in this group who had the most active C or CP electrode on the working side of the

brain. All of the left hand tested stroke subjects showed FC and CP electrodes as

the most active; two of them had the most activity at CP electrodes and three at FC

electrodes.
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5.1.5 Outlier Results

Two of the 20 subjects had unusual results and were therefore excluded from the final

analysis. Data from subject numbers 5 (control) and 15 (stroke) were excluded from

the analysis due to unusual results observed after comparing the average power of

the subjects’ rest state against the average power during the motor-planning state.

In normal adults, the desynchronization of alpha band EEG waves is expected to

occur during the motor-planning state [9]. This can be seen in the EEG data as less

alpha frequency band power during the motor-planning state than during the rest

state in the alpha and beta frequency bands. Since this phenomenon in the alpha

band is utilized to find the electrode with the greatest activity during motor planning

(by subtracting the average motor-planning state power from the average rest state

power), the resulting value should be a positive number if desynchronization occurred

in the motor-planning state and the brain is truly relaxed during the rest state.

Table 5.5: Data from Outliers
Subject Peak Electrode Alpha Band Power Difference (uV2)

5. CP2 -0.17
15. FC6 -6.94

Unlike the other subjects, subjects number 5 and 15 had negative alpha band power
difference values.

However, none of the electrodes in the data from subject numbers 5 and 15 have

positive values. Table 5.5 shows the electrodes for these two subjects with the least

negative alpha band power differences. Without a positive difference between rest and

motor-planning states, it cannot be concluded that there was activity of the brain

during motor planning, nor can a peak mu wave frequency be defined. Hence, these

two subjects were excluded.
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5.2 Identification of Frequency with Greatest Brain

Activity

The mu frequency is defined as the frequency at which there is the greatest difference

in rest versus pre-movement power. In normal adults, a mu frequency of around 10

Hz is expected [9].

5.2.1 Dominant Arm Control Subjects (Right-Arm Tested)

As seen in Table 5.6, within the alpha band, the highest mu frequency detected was

10 Hz and the lowest was 8 Hz. The mean mu frequency for this group was 9.13 (±
1.3) Hz.

Table 5.6: Right Arm Tested Controls
Subject Mu Frequency (Hz)

1. 8.5
2. 10.0
4. 8.0
8. 10.0

Mean 9.1
Std. Dev. 1.3

Table 5.7: Left Arm Tested Controls
Subject Mu Frequency (Hz)

3. 9.0
6. 8.0
7. 10.4

Mean 9.1
Std. Dev. 1.2

Frequencies at which there is greatest pre-motor planning activity for right-arm tested
control subjects (Table 5.6) and for left-arm tested control subjects (Table 5.7).
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5.2.2 Non-Dominant Arm Control Subjects (Left-Arm Tested)

As seen in Table 5.7, the highest mu frequency detected was 10.4 Hz and the lowest

was 8 Hz. The mean mu frequency for this group was also 9.13 (± 1.2) Hz.

5.2.3 Dominant Arm Stroke Survivors (Right-Arm Tested)

From Table 5.8, the highest mu frequency detected was 11.4 Hz and the lowest was 8

Hz. The mean mu frequency for this group was 8.9 (± 1.3) Hz.

Table 5.8: Right Arm Tested Stroke Survivors
Subject Mu Frequency (Hz)

10. 11.4
12. 8.2
16. 8.0
18. 8.5
19. 9.0
20. 8.5

Mean 8.9
Std. Dev. 1.3

Table 5.9: Left Arm Tested Stroke Survivors
Subject Mu Frequency (Hz)

9. 11.2
11. 9.5
13. 9.7
14. 8.0
17. 8.2

Mean 9.3
Std. Dev. 1.3

Frequencies at which there is greatest pre-motor planning activity for right-arm tested
control subjects (Table 5.8) and for left-arm tested control subjects (Table 5.9).

5.2.4 Non-dominant Arm Stroke Survivors (Left-Arm Tested)

From Table 5.9, the highest mu frequency detected was 11.2 Hz and the lowest was 8

Hz. The mean mu frequency for this group was 9.3 (± 1.3) Hz.
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Both control and stroke subjects had average peak mu frequencies of approxi-

mately 9 (± 1.3) Hz, which is consistent with normal adults according to literature

[9]. Since the individual mu frequencies can vary from 8 to 12 Hz, these results were

within the expected norms.

5.3 Peak ERD% at the Mu Frequency

The peak ERD percentage at the mu frequency was determined by examining the

times-series ERD data and finding the maximum ERD value in the interval of time

between the onset of the MRCP and movement onset. Because the onset of the MRCP

reflects the start of motor planning and the timing of ERD and MRCP coincide, the

EEG desynchronization occurring in this time interval reflected cortical activity most

relevant to motor planning of the motor task [14].

5.3.1 Control Subjects

The mean peak ERD value for right arm tested controls was 59.7 (± 10.5 standard

deviation)% and the range was 41.4–71%. For left arm tested controls, the mean peak

ERD was 96.7 (± 7.7)% with a range of 81.9–96.7%. These results showed that the

ranges of the left and right arm tested controls do not overlap and the ANOVA model

of the values in Table 5.10 and 5.11 confirmed that they were significantly different

(p = 0.008). The difference can be seen in Figure 5.1.

5.3.2 Stroke Survivors

From Table 5.12, right arm tested stroke subjects had a mean peak ERD of 46.4

(± 11)% and a range of 42.8–64.8%. From Table 5.13 shows that left arm tested

stroke subjects had a mean peak ERD of 66.4 (± 12.3)% with a range of 52.2–80.1%.

ANOVA model analysis revealed a statistically significant difference between the left
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Table 5.10: Right Arm Tested Controls
Subject Peak ERD (%)

1. 72.0
2. 63.6
4. 47.4
8. 55.8

Mean 59.7
Std. Dev. 10.5

Figure 5.1: Boxplot of peak ERD for control subjects. For each boxplot, the box is
centered about the mean, the upper edge of the box represents the 3rd quartile and
the lower side represents the 1st quartile. The vertical lines span the range of the
data. They were significantly different (p = 0.008).

37



and right arm tested stroke survivors (p = 0.01). Fig. 5.2 illustrates the difference

between these two groups.

Table 5.11: Left Arm Tested Controls
Subject Peak ERD (%)

3. 96.7
6. 81.9
7. 93.2

Mean 90.6
Std. Dev. 7.7

Figure 5.2: Boxplot of peak ERD for stroke survivors. a statistically significant
difference between the left and right arm tested stroke survivors (p = 0.01).

5.3.3 Controls vs. Stroke Survivors (Right-Arm Tested)

Next, the right-arm tested controls and right-arm tested stroke survivors were com-

pared. An ANOVA model on the values shown in Table 5.10 and Table 5.12 revealed

that the controls and stroke survivors were not significantly different (p = 0.09).

However, a statistical power analysis was performed and showed that a significant
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difference (alpha = 0.05, p < 0.05) could have been detected if there had been a total

of 30 dominant arm subjects. Fig. 5.3 illustrates the data for these two groups.

Table 5.12: Right Arm Tested Stroke Survivors
Subject Peak ERD (%)

10. 45.1
12. 30.6
16. 48.1
18. 47.1
19. 64.8
20. 42.8

Mean 46.4
Std. Dev. 11.0

Figure 5.3: Boxplot of peak ERD for right-arm tested subjects. Controls and stroke
survivors were not significantly different (p = 0.09).

5.3.4 Controls vs. Stroke Survivors (Left-Arm Tested)

An ANOVA model on the values shown in Table 5.13 and Table 5.11 revealed that the

left-arm tested stroke survivors had significantly less peak ERD versus the left-arm

tested control subjects (p = 0.023). Fig. 5.4 illustrates the data for these two groups.
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Table 5.13: Left Arm Tested Stroke Survivors
Subject Peak ERD (%)

9. 57.5
11. 52.2
13. 77.8
14. 80.1
17. 64.2

Mean 66.4
Std. Dev. 12.3

Figure 5.4: Boxplot of peak ERD for left-arm tested subjects. Left-arm tested stroke
survivors had significantly less peak ERD versus the left-arm tested control subjects
(p = 0.023).

5.3.5 All Stroke Survivors vs. All Control Subjects

An ANOVA model was analyzed on a group consisting of all 7 healthy subjects (both

left and right-arm tested) and a group consisting of all 11 stroke survivors (both

left and right-arm tested). From Table 5.14, the mean peak ERD% for all control

subjects was 72.9 (± 18.7)% and 55.5 (± 15.1) % for all stroke survivors. There was a

statistically significant difference between the control and stroke groups (p = 0.002).

Fig. 5.5 illustrates this difference.
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Table 5.14: Comparison of all Subjects by Category
All Control Subjects All Stroke Survivors

Mean Peak ERD%: 72.9 Mean Peak ERD%: 55.5
Standard Deviation: 18.7 Standard Deviation: 15.1

The peak ERD averages for a group consisting of all the control subjects and a group
consisting of all the stroke subjects, regardless of the arm tested.

Figure 5.5: Boxplot of peak ERD for right-arm tested subjects. There was a statis-
tically significant difference between the control and stroke groups (p = 0.002).
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Chapter 6

Discussion

This section reviews the main findings of the study with regard to existing literature,

covers the extensions to literature and discusses some limitations of the study. Finally,

future study directions are discussed.

6.1 Extensions to Literature

The main findings from this study extend the literature in two ways: first in the

effects of handedness on shoulder-elbow movement planning and second, in the effects

of stroke on shoulder-elbow movement planning.

There was a statistically significant difference in the peak ERD% of control versus

stroke subjects (p = 0.002). Also, for both stroke survivors and healthy controls,

there was a statistically significant difference in the peak ERD% between those who

used their dominant versus non-dominant arms (p = 0.008 for controls and p = 0.02

for stroke survivors).

This finding extended the literature regarding the effects of hand dominance on

pre-movement brain activity. These results are consistent with the findings of others

who studied finger motions in healthy controls. Prior studies showed that there was

more pre-movement cortical activity in healthy adults for non-dominant hand finger
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movements versus the dominant hand [13], [24], and [21]. Specifically, Stancak [24]

and Bai [21] both found that ERD occured at significantly higher percentages for

healthy adults moving fingers on the non-dominant hand versus the dominant hand.

In the current study, the effect of hand dominance on ERD% during shoulder-

elbow movement was consistent with literature for both control and stroke subjects on

finger movements, showing significantly higher peak ERD% when the non-dominant

arm was tested versus the dominant arm (p < 0.05). This observation showed that

handedness significantly influenced pre-movement brain activity for arm motion in

stroke survivors and highlights hand-dominance as an important dependent variable

in the design of future experiments on stroke survivors.

6.2 Limitations

This study was limited by noise and EEG data acquisition methods. Even though

measures were taken to electrically isolate the EEG recording system, the data from

all subjects in this study was affected by an unknown noise source that introduced

signals ranging from 19–21 Hz into all channels of the EEG data record. This noise

prevented the accurate analysis of beta frequency mu waves, which are also known to

reflect pre-movement cortical activity.

Also, no eye blink detection electrodes were used for the data collections so blink

contaminated data was rejected by visual inspection. Finally, the detection of facial

and scalp muscle EMG contamination of the EEG data was made difficult because

all EEG data beyond 40 Hz was filtered out by the amplifier settings. EMG in the

scalp and facial muscles can peak anywhere in the range of 45–70 Hz, so it would be

most beneficial for EMG detection if frequencies below 70 Hz are not filter out.
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6.3 Conclusion

The peak ERD% of stroke survivors was significantly lower than that of healthy

subjects. Also, subjects who used the non-dominant arm had significantly greater

ERD% than those who used their dominant arm.

6.4 Future Work

Because of the limitations of this study, the beta band component of mu waves could

not be studied, but it is known to exhibit ERD during pre-motor cortical planning

in the hand movements of healthy adults and in stroke survivors [9], [8]. Therefore,

an investigation into the behavior of beta band mu wave pre-movement ERD is one

area of future study. In addition to mu waves, high-frequency EEG waves are also

known to reflect cortical activity, but have yet to be studied in stroke survivors.

A study on monkeys by Heldman has reported that waves of frequencies ranging

from 31–200 Hz (high frequency waves) contained signal characteristics that can be

used to predict arm velocities during a circle drawing task (high frequency waves

were not studied in this thesis because amplifier filters were set to cutoff frequencies

above 40 Hz) [28] . Heldman’s study used intracortical electrodes, which have much

higher frequency resolution than scalp-mounted electrodes, but scalp electrodes are

routinely used to study frequencies up to 100 Hz and even higher-frequency recordings

are recommended by the emerging Full-band EEG (FbEEG) recording standard [9],

[29]. Investigations of high-frequency EEG characteristics in stroke survivors do not

exist in literature, but this is an area of future study that can potentially provide

important findings.

Also, by virtue of the experimental paradigm, our study did not produce measures

directly comparable to conventional BCI measures (which correlate brain rhythm

control to target accuracy). Therefore, additional work needs to be performed to
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directly relate the current study to BCI applications.
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