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Predictive Tracking of Quasi Periodic Signals for Active Relative

Motion Cancellation in Robotic Assisted Coronary Artery Bypass

Graft Surgery

Abstract

by

Jason Rotella

Traditional coronary artery bypass graft (CABG) surgery has undesirable side

effects that range from cognitive loss to increased hospital stay that are believed

to be related to artificial heart pumps. It has been proposed that a robotic surgical

instrument can be developed to perform CABG surgery on the beating heart, therefore

alleviating the need for the heart pump. By tracking beating-heart motion with a

surgical robot, the relative motion between the heart and the robot can be cancelled

and the surgeon can operate on a heart that appears to be stationary. The constraints

on such a tracking system, however, are rigorous as failure to do so in surgery would

be fatal. In this thesis, several control algorithms for high precision tracking of the

heart motion have been developed, implemented, and tested on simulated and real

systems. It was found that a model predictive controller (MPC) can be combined with

estimated future information to produce the most accurate and robust controller. This

novel variation of the MPC algorithm has been developed and tested in order to show

the gain in tracking accuracy.
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Chapter 1

Introduction and Background

In order to perform coronary artery bypass graft surgery, it is often necessary to use

a heart pump and clamps to prevent heart motion during the operation. Using these

surgical tools, however, can cause unwanted long term side effects. If the heart were

able to beat freely during surgery, these tools would not be needed and it is possible

that these effects might be alleviated. It has been proposed that a surgical robot may

be able to maintain a constant distance between the heart and the surgical instru-

ments. This would make the heart appear stationary to the eyes and instruments of

the surgeon and hence make it possible to perform surgery while the heart is beating.

Cancelling the motion allows the surgeon to operate on a relatively stationary heart

and permits the heart to beat freely.

The major difficulty in developing such a robotic surgical tool is that traditional

control methods do not produce high enough precision to effectively cancel out the

motion. Therefore in this study, a novel control algorithm based on model predictive

control is proposed and implemented. To perform tracking, the model predictive

control algorithm calculates optimal gains that utilize the future-known values of a

desired signal. By implementing control that utilizes more information than just the

current position of the heart, it is possible to perform control that will produce higher
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precision over classical methods. This is the basis behind the choice of using a model

predictive control algorithm. Since the future heart signal will not be known and

available to the model predictive control algorithm, an estimate of the future signal

based on past information will be used.

1.1 Thesis Outline

This thesis is divided into 6 different chapters. The introduction will begin by giving

background information on heart disease and the current surgical methods for treating

it. It will continue by speaking of general surgical robotic methods followed by robotic

surgeries done on the heart. Chapter 1 will conclude by discussing different tracking

methods that have been attempted and will speak of others that have tackled the

same problem.

Chapter 2 will give an overview of the subwoofer speaker and PHANToM manip-

ulator systems that were used for testing of the control algorithms. This chapter will

also explain the system-modelling methods as well as supply the general specifications

for each of the systems. It will also give a description of the experimental setups.

Chapter 3 will supply in-depth descriptions of the observer implementation and

the tracking control algorithms attempted. It will also discuss some of the intricacies

involved within the tuning process.

Chapter 4 will discuss the simulations that were conducted before specific con-

trol algorithm testing on the actual systems began and show the results of those

simulations.

Chapter 5 will give the results of the control algorithms on each of the hardware

systems and speak of the general methods attempted for obtaining the best results.

Chapter 6 will discuss the results as a whole and describe future work to be done.

It will sum up the results of the thesis and make a general statement about all of the
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work performed herein.

1.2 Coronary Heart Disease

Coronary heart disease (CHD) affects more then 1 in 4 people around the world [1].

CHD is caused by the build up of plaque within the arteries. Plaque consists of

cholesterol and other fatty deposits that are in the blood stream. As plaque gets

lodged and stuck within the arteries, it hardens and a lesion is formed. Over time

more and more plaque builds up until the artery becomes too clogged to allow the

flow of blood into the needed areas. This concept is very similar to that of a clogged

drain. Initially the drain sides are smooth and unobstructed. As time goes by, dirt

and grime starts to build up on the side until eventually, the flow through the pipe

is inhibited.

When a tissue is denied blood, it cannot obtain sufficient nutrients and oxygen

needed for normal operation. If this tissue is brain tissue, the result is a stroke. If

blood cannot flow into the limbs, loss of functionality and/or gangrene will occur. If

the tissue is the heart, an angina or even a heart attack can occur.

When blood stops flowing to the heart, the deprived heart obtains its nutrients

from locally stored reserves in an attempt to continue functioning. While operating

anaerobically, the tissue begins to produce lactic acid. The lactic acid builds up

because there is no blood flow to remove it. Like muscles that have been overworked,

the heart becomes “sore” and depending on the severity of blood deprivation, a heart

attack can occur. Unlike sore muscles which eventually are allowed to relax and

replenish nutrients from blood flow after being used, the heart must constantly run

and is unable to get blood and return to normal operation once an artery has been

blocked.

An angina or temporary chest pain can occur based on the same principle. If a
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person overworks themselves and the heart does not receive enough oxygen, lactic

acid is temporarily produced and causes some minor chest pain. However, if there is

not a blockage, enough blood will be able to eventually flow to recover and hence the

pain is mild and temporary.

CHD is more prominent in people who smoke, are overweight, have high cholesterol

or high blood pressure, and do not exercise regularly or eat nutritiously. People with

a family history of heart disease are also more susceptible to the disease. By taking

the appropriate measures to keep blood pressure and cholesterol down, a person can

significantly decrease their chances of suffering from CHD.

1.3 Surgical Solutions

In general, heart disease can be caught and treated before a heart attack occurs. The

treatments vary from a change of diet and medications to surgery. There are two

primary types of surgery that can be performed. These are angioplasty and coronary

artery bypass graft surgery.

1.3.1 Angioplasty

Angioplasty is one surgical option for dealing with coronary heart disease [2]. It

consists of feeding a catheter into a clogged or partially blocked artery in order to

open a passageway within the artery. The most common type of angioplasty uses a

balloon inside the artery. The balloon is fed into the artery with a catheter and then

inflated at the location of the blockage in order to compress the plaque and widen the

artery. Generally the balloon must be inflated multiple times in order to accomplish

this task. Another technique for angioplasty involves attaching a laser to the end of

the catheter. The blockage is eliminated by heating the soft tissue surrounding the

plaque and causing it to break down chemically, thereby releasing the plaque from

4



the side of the vessel wall. After the plaque has been detached, it is then removed

with a catheter. This is only one technique that is used to remove the plaque from

the artery. Yet another catheter technique grinds the hardened portions into micro

particles that can safely be washed away by the blood stream.

Balloon angioplasty may sometimes also include a stent. A stent is a metal mesh

that is locked into place around the inside of the artery. The stent is inserted folded

around the balloon and then expands into its locking position when the balloon is

blown up. It holds the artery open and clamps down the plaque. Some of the newer

types of stents have been coated with drugs in order to help assure that the stent

works correctly and that further blockage does not occur. Although a stent can help

improve angioplasty, a stent can still fail and artery blockage can still occur.

No matter how the angioplasty is performed, it is important not to simply break

up the plaque into chunks or dislodge it from the walls of the artery without removing

it. These pieces can become lodged further down the blood stream and cause blood

clots which can lead to heart attack or stroke.

Angioplasty is less traumatic and the recovery time is typically shorter when

compared to bypass surgery. Unfortunately it sometimes acts as only a short-term

solution. Restenosis or reclosing of the artery can often occur after a period of about

6 months. This is caused from the tissue of the artery regrowing after it had been

damaged from the angioplasty. Often restenosis requires an additional surgery to be

performed, whether it be another angioplasty or bypass surgery.

Furthermore, angioplasty is normally performed when there is only one clogged

artery. Bypass surgery will typically be recommended for patients with multiple

blockages. Ultimately the decision is made on a case by case basis.
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1.3.2 Coronary Artery Bypass Graft Surgery

CABG surgeries are used for severe blockages in arteries and often used when multiple

arteries are clogged [3]. CABG can be performed in two different methods, on-pump

or off-pump. Though the details may differ for each of the methods, the intrinsic

process is the same.

The surgeon first obtains a blood vessel from somewhere else in the body. This

is typically from somewhere in the chest but can be from the arm or leg. After the

vessel is obtained, the chest is opened and the blocked artery is cut near the blockage.

The newly obtained vessel is sutured into the side of the cut vessel. A hole is then

punched into the aorta and the other side of the vessel is attached. In order to attach

the blood vessel to the aorta, often the aorta is locally clamped. Upon completion of

this process, the surgeon checks on the blood flow through the newly attached line.

These steps are repeated for every artery that is blocked.

The complications of CABG are damage to the aorta, creation of emboli (un-

wanted particles in blood stream [4]), bleeding, stenosis (closing of artery), arrhyth-

mias (irregular heart beat), myocardial infarction (death of heart tissue due to lack

of blood) and stroke or death.

A successful procedure will suppress symptoms of CHD, alleviate angina and re-

duce further heart problems. Ultimately it will prolong the patient’s life. CABG

surgeries were performed on more then 800,000 people last year alone. With a 90%

success rate this surgery is not only one of the most complicated to perform but one

of the most common major surgeries [3].

On-Pump

The on-pump CABG procedure utilizes a heart-lung machine in a cardiopulmonary

bypass process (CPB). The machine operates by inserting tubes into the aorta and

several of the major incoming veins. The CPB procedure involves taking the blood
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in from the veins and feeding it through pumps within the machine. The heart-

lung machine adds oxygen to the blood and maintains the blood at an appropriate

temperature to renter the body through the aorta.

The heart is effectively turned off and is still during this procedure, which makes

the surgery less complicated for the surgeon. During this process, clamps are used to

restrict the flow of blood into the arteries to be bypassed.

Off-Pump

Off-pump CABG (OPCABG) is performed while the heart is still beating and the

CPB procedure is avoided. The surgeon will locally clamp or stabilize the portion of

the heart being operated upon in order to perform surgery. This off-pump method

makes the surgery more complicated but does have it benefits. Generally in this

process, the bleeding is reduced and the blood flow through the body is more oxygen

rich. This surgery generally caries less risk of side effects. OPCABG is a relatively

new procedure and currently not the primary method used. It is also known as

beating-heart surgery.

CABG Complications

Two of the major risks of on-pump surgery include neurocognitive losses and severe

aortic manipulation.

The neurocognitive effects are a noted decline in the patient’s reasoning and think-

ing skills. This can also include sensory difficulties and cause personality changes of

the patient. These effects generally will extend the needed recovery time. Though

very common among people who have had CABG surgeries, the effects generally wear

off after a period of 6-12 months (for most patients).

It is believed that the neurocognitive effects have a direct relationship with the

amount of time spent on pump. Many studies have been conducted and documented
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this relationship. One such study [5] concluded that cognitive decline had a higher

occurrence in patients who had on-pump surgery rather than off-pump surgery. Fur-

thermore, they said that those that had neurocognitive decline, due to on-pump

surgery, were more likely to have a decline after a six-month period than those who

were off pump.

It is believed that the emboli caused by the removing of the tubes from the heart

after the bypass has taken place is the primary cause of this cognitive dissipation.

For the same reason, severe aortic manipulation is also a cause for concern during

CABG. Since the aorta is clamped, it is possible to damage or loosen any plaque

located in the aorta (creating emboli). Significant damage due to clamping can also

cause aortic dissection (splitting of aorta).

Though OPCABG surgeries are preferable to on-pump CABG surgeries, the off-

pump method is not as well developed and can not always be performed. Robotic

surgery is a viable option to help expand the ability to perform off-pump surgery.

However, currently the surgical methods are still somewhat limited. A team in

Canada was able to perform the first robotic beating heart surgery in 1999 and later

described the need to compensate for the movement disturbances of the vessels near

the heart [6].

1.4 Robotic Surgical Solutions

Robotic surgery has been investigated for more than 20 years and practiced now for

more than 10 years. One of the first surgeries used a robot to aid hip replacement.

This robot precisely bored out a hole in which to fit the replacement hip [7] and hence

minimized many of the problems associated with a poorly drilled cavity.

The ability to precisely place and use tools is just one of the many advantages

that robotic surgery is able to provide. Robot repeatability allows a procedure to
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be performed almost identically every time called upon. Newer robotic techniques

relieve the surgeon of certain tasks such as holding and positioning of cameras [7].

Robots that are used for minimally invasive surgeries, are giving surgeons access to

areas that previously would have required large incisions and openings. The benefits

associated with just the minimally invasive operations include reduction of trauma

and morbidity and shortened operation time as well as recovery time.

Robots for medical practice can be classified into two different subgroups, those

that work along side of the surgeon and those that are working directly with the

surgeon. The two groups are called surgical CAD/CAM and surgical assistants [8].

A surgical CAD/CAM uses information obtained before and during the procedure

to carry out some part of the operation. The surgeon monitors the part of an operation

that the robot performs. The surgeon acts as a “life-guard” during the robotic portion

of the surgery. He can stop and or change the procedure at any time and ultimately

has control over the robot. When using these types of robots, the surgeon and robot

are not directly connected and the robot is actually performing the task under the

eyes of the surgeon [8].

A surgical assistant works directly under the surgeon. The surgeon directly con-

trols what the robot is doing, which includes everything from suturing to camera

placement. The robot acts as more of a medium to facilitate the surgery. This group

of robots is the group researched to perform CABG surgery.

The first successful robotic CABG surgery was conducted in May 1998 in France

([9],[10]). This surgery was done using a heart-lung machine in order to facilitate the

procedure, but the first OPCABG was successfully implemented shortly thereafter.

There are currently two systems that have been used successfully for heart surgery

and specifically CABG. These two systems are the da Vinci system from Intuitive

Systems and Zeus from Computer Motion Inc (Note that as of March of 2003 these

companies have merged [11]). Though both of these machines have been used for
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CABG, neither has been approved for such a procedure in the United States at this

time.

Both robots are designed for laparoscopic surgery and have been FDA approved

for a number of procedures. These procedures include but are not limited to mitral

valve repair, gastric bypass surgery, esophageal surgery and radical prostatectomy

[12]. Both machines utilize teleoperation in a master/slave configuration. Neither

however, at this time is capable of doing heart tracking and motion cancellation [13].

They are able to perform OPCABG by using passive stabilizers on the heart such as

the Medtronic Octopus ([9], [14], [13]).

1.5 Current Heart Tracking Methods

Like any new technology, smaller steps were taken in order to accomplish a larger

goal. Before heart tracking was attempted, several groups attacked the problem of

reducing the disturbance due to the respiratory system.

For instance, during radiosurgery, a tumor can move a significant amount due to

breathing. This requires that a larger amount of radiation be applied to the patient

in order to irradiate the tumor. In a pair of studies, an attempt was made to track

the tumor motion and hence shrink down the dose of radiation. In order to lock on

to that tumor, a surgical robot attempted to monitor and compensate for breathing

motion ([15], [16]). Even though the surgical procedure is non contact, the task is

made more complicated by the fact that the internal motion did not directly map

to the external motion. Even as this was the case, both studies still concluded that

robotic compensation could be accomplished.

Riviere et al. [17] attempted to cancel respiratory motion during percutaneous

needle insertion surgery. The procedure consisted of carefully positioning and insert-

ing a needle into a kidney with use of a robotic positioning system. In order for the
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robot to maintain accuracy (even when performed without the robot), the breathing

was suspended. Though the complications from stopped breathing are different from

suspending the heart, the same moral still results: it is not preferable but it is the

only way. The problem hence is parallel to that of this thesis. They used an adaptive

controller that was able to model and predict the breathing motion of the patient.

Their results supported the feasibility of doing respiratory motion cancellation. Fur-

thermore, they speculated that this technology could be extended to heart motion

tracking.

After attempts to cancel breathing motion were successful, others attempted to

track the heartbeat motion. Trejos and Salcudean [18] performed a feasibility study

on the ability to perform tasks on a moving a target versus performing the task on a

motion-cancelled target. This study used human subjects instead of robots and the

motion cancellation was done by attaching the person’s hand to the oscillating target.

The study reported that tasks could be performed using motion cancellation.

A patent was actually issued based on the relative motion idea [19]. A platform

was designed for a surgeon for such a task. This platfrom was controlled in a linear

fashion and forced to track heart beat motion. The surgeon strapped his hands to

the platform then performed surgery. The heart was made periodic through use of a

pacemaker.

Nakamura et al. did a similar heart tracking experiment using a PHANToM

robot utilizing cameras as the visual system to do the heart-motion sensing [20]. The

tracking error was too large to perform surgeries, but the error may have been due to

the camera feedback system in place. Furthermore, Nakamura did not use any type

of advanced algorithm using a future prediction for tracking purposes.

Thakral et al. [21] attempted to recreate the heart signal through online analysis

techniques. They monitored rat heart motion and then used a recreated signal with

adaptive control techniques in attempt to follow the motion. In this experiment, no
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robot was used and only a displacement sensor was mounted onto a moving linear

actuator to monitor the success of the algorithm.

There has been a parallel effort to this work going on in France using a similar

approach to the one presented within this thesis [22]. It used current information

in an attempt to predict the future signal. Their future prediction technique was

very similar to that of [21]. The future signal was fed into a slightly modified model

precitive controller in order to get higher precision tracking. This has been tested

on the AESOP surgical robot [23] and again the heart position was monitored by a

high-speed camera. The error in this case was better then Nakamura’s experiment

and the disturbance due to the organ motion was greatly reduced but not completely

cancelled.

Tracking and subsequent motion cancellation is not purely for medical applica-

tions. Mehra et al. [24] did work towards cancelling out the disturbance due to

the road beneath a vehicle with active suspensions systems. They stated that an

MPC algorithm could be implemented by using future disturbances (knowledge of

the road), and concluded that use of this knowledge made the ride smoother due to

better suspension operation. Furthermore, a similar application attempted to can-

cel disturbance in movement and station keeping of autonomous underwater vehicles

[25]. Again, an MPC algorithm was used that utilized future knowledge of the water

disturbance to accomplish the autonomous tasks.

1.6 Future Prediction

The future prediction task that is associated with the MPC task within this thesis

is also not a new idea. Kalman and Wiener made some of the initial steps to signal

prediction in [26] and [27]. The goal in these works (and the numerous subsequent

works) was to create a model that would among other tasks effectively predict the
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future of a random signal.

1.7 Heart Data

The heart data used for tracking purposes in this thesis was collected using a sonomi-

crometry system. Piezoelectric crystals were placed around a beating heart. These

crystals emitted and received ultrasonic waves. By measuring the time between emis-

sion and reception of the wave between crystals, the distances could be recorded. Note

that it is also necessary to know the medium through which the waves are travelling.

For more information, see [28].

The data was collected from an adult pig at a sampling rate of 257Hz. The peak

displacement from the average value was 12.1 mm while the RMS displacement was

only 5.1 mm. The collection was carried out by M. Cenk Cavusoglu. The desired

heartbeat signal used for tracking can be seem in Figure 1.1.
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Figure 1.1: Portion of heart signal used for tracking
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The signal has two primary modes of operation. The first occurs at a frequency of

0.37Hz. It corresponds to the breathing motion of the patient. The second mode is

the primary heart motion. The heart was beating at 120 beats per minute when the

data was collected (corresponding to a 2Hz mode). These modes can be seen in Figure

1.2. If the breathing motion is removed, the remaining signal consists entirely of the

principle frequency of 2Hz and harmonics of that frequency. These harmonics carry

significant information up to 20Hz. The primary motion however is in the principle

heart beat and the breathing. Figure 1.2 is created in part with the fft() function

in MATLAB.
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Figure 1.2: Power Spectrum Density of Heart Signal

This information is used as specifications for the test bed system and controller

performance. The peak to peak range of the heart motion is around 20mm with

significant frequency information up to 20Hz. Most vessels operated upon in surgery

are 0.5mm - 2.0 mm in diameter. To be able to suture such arteries, accuracy down

to 100 micrometers is needed [13].
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1.8 Thesis Contributions

This thesis studies the effectiveness of different types of control algorithms to perform

tracking on the position of a heart for robotic assisted coronary artery bypass graft

surgery. It proposes and shows that the best algorithm for tracking is a model predic-

tive control (MPC) algorithm. Due to the acausal properties of the model predictive

control algorithm, the exact method cannot be used for surgery. A variation on this

algorithm is presented and tested for accuracy on two different test bed systems. The

systems are also tested by using the original MPC algorithm and classical control

methods such as pole placement and position plus derivative control and the results

are compared. This variation uses past knowledge of the heart motion along with a

correction function in order to estimate a future signal. It will be shown that the

signal estimated MPC algorithm presented here performs better then the classical

algorithms. For this reason, it is believed that it is possible to obtain precision high

enough through control to perform tracking of the heart for surgical applications.
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Chapter 2

Test Bed Systems

In order to develop and test the algorithms it is necessary to obtain and model some

type of hardware testbeds. This chapter discusses the two systems that are used as

test beds in detail and explains the methods of obtaining frequency response models.

To help give a better background for the setups, the operating system used to perform

the control algorithms is also explained.

2.1 System Objectives

The algorithms developed in this project were implemented and tested on two different

test bed systems. They consist of a subwoofer speaker and a PHANToM robot.

The speaker is an intrinsically stable device (meaning it is stable without the use

of feedback) and possesses a highly repeatable nature. Though smaller speakers gen-

erally do not move with great amplitudes, large subwoofers have excursions of several

inches. Speakers are also designed to move with high frequencies. This combination

of high bandwidth and large excursions make a subwoofer speaker an ideal initial test

bed for algorithm development.

The PHANToM robot possesses different characteristics from those of the sub-

woofer speaker and will provide more insight into the effectiveness of the algorithm
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on a “real” system. The PHANToM is more likely to be similar to an actual robot

used for surgery. The PHANToM’s lightweight frame and drive system also allow for

sufficient motion and speed to attempt to track the heartbeat signal.

The following sections will discuss each of these systems in detail and the processes

used to accomplish the above mentioned tasks.

2.2 QNX Notes

The QNX system was chosen as an OS primarily because of its real-time capabilities.

QNX is one of the only true real-time systems and is free for non-commercial research

purposes. These facts made it ideal for the type of control experiments that would

be performed.

The QNX operating system is a Unix-based real-time operating system (OS) that

is distributed freely to students and educators. QNX utilizes a microkernel that

helps reduce driver malfunction and system crashes by only using signals, timers and

scheduling. Scheduling of the programs is based on an interrupt timer and a priority

that is set for each software task. For control purposes, the interrupt timer is set to

interrupt at the desired control frequency and generally the control program is given

the highest priority. Giving the control program the highest priority forces the kernel

to execute the control code before other processes are run and hence assures that the

control is carried out before the next timer interrupt.

The control software has been set up such that the timer is initiated and the

timer interrupt turned on. The code was then set to loop until the user terminated

the program. Commands to start and stop control of the system were available within

the software as well. Upon starting the controller, the interrupt timer became the

control loop timer and the control was executed.

The QNX OS has a number of features to make it more user friendly. These
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features include an X-windows based windowing system and software and libraries to

create graphical user interface’s (GUI). As with any non-Windows operating system,

the number of available drivers for different computer hardware configurations was

limited, but QNX has made extensive efforts to be compatible with basic protocols

and other OS’s. More specific information can be obtained from the QNX website

[29].

2.3 Subwoofer Speaker

With the computer used for control, the subwoofer system was made up of the speaker

itself, an ultrasonic sensor and an amplifier. A diagram of the setup can be seen in

Figure 2.1 and will be described in the following section. After the setup is described,

the specifications for each of the major components mentioned above will be given.

The modeling process and the system model is subsequently reported at the end of

this section.

2.3.1 Assembly

The subwoofer speaker was mounted onto a wooden enclosure that was part of an old

speaker system. The wiring to the speaker was designated as ‘signal’ and ‘return’. A

large inductor was wired in series with the speaker into the signal side of the speaker

cable. This inductor coil acted as a choke to the PWM amplifier and helped smooth

out the incoming signal. The input channel of this amplifier served as the input to

the system.

The ultrasonic sensor was mounted directly onto the speaker enclosure with four

metal bars as can be seen in Figure 2.2. The sensor itself had been attached to a

Plexiglas plate and the plate was attached to the frame. The two horizontal bars

had rails that allow the sensor position to be adjusted in the horizontal plane while
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Figure 2.1: Block diagram of speaker system setup

the vertical bars allowed the sensor height to be adjusted. This setup allowed for the

most freedom in positioning the sensor.

In order to ensure the sensor reading did not fault throughout its excursion, the

following test was conducted. The sensor was positioned such that the ‘target present’

LED was on. Then the speaker cone was manually pressed down (such that the path

between the sensor head and target area was not obstructed). If the ‘target present’

LED turned off or flickered, the sensor head position was readjusted until the LED

remained on. The sensor was adjusted until the entire lower portion of the speaker

excursion registered a reliable value with the sensor. This was repeated for the upper

excursion by connecting the amplifier and commanding positions to move the speaker

towards the sensor.

The 0 to 10V output range of the sensor was shifted to fit into the -5 to 5V range

of the data acquisition card (DAC) (note that the DAC was used to connect the input

and output signals of the system to the computer). This voltage shift was done with
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Figure 2.2: Photograph of speaker setup

a simple subtraction circuit comprised of a LF347 operational amplifier and several

resistors as configured in Figure 2.3 with values of R1,R2,R3 equal to 5kΩ. The

output signal of this circuit served as the output of the system. The circuit simplifies

to Vin − Voffset = Vout. The voltage offset was 5 Volts.

Further offset calibration was necessary due to the sensor outputting a displace-

ment relative to the sensor position. It was more convenient to use a position that had

its origin within the speaker’s range of motion. Therefore, a calibration procedure

was conducted before the commencement of each experiment. The average value of

the sensor output calculated over 100 samples was used as the offset value for the

sensor. The sign of the sensor signal was also inverted due to the fact that as the

speaker moved down, the distance reading of the sensor increased.
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Figure 2.3: Ultrasonic Sensor Offset Circuit

2.3.2 Speaker Specifications

The speaker used for testing was an MTX Audio T8124A subwoofer. The speaker

was 12 inches in diameter and approximately 6 inches deep. The linear excursion as

rated by the data sheet was 12.2 mm. The linear excursion is defined as the maximum

distance the center of cone can move from a center point (this referred to the peak

value and not the peak-to-peak value). The speaker was rated at 4.0Ω and for 400

watts RMS. The frequency response range was between 23Hz and 150Hz. For a full

list of specifications, see the MTX website [30].

2.3.3 Amplifier Specifications

The amplifier used to output current to the speaker utilized pulse-width modulation

(PWM). To help smooth out the amplifier output, a coil was connected in series with

the speaker input.

The amplifier was rated to output a peak current of 15 Amps with a bandwidth

21



specified at 3kHz. The amplifier switched at 25kHz.

PWM operates by emitting voltage pulses that control the current output of the

amplifier. The duration and polarity of the pulse determine the amount of current

supplied to the motor [31].

2.3.4 Sensor Specifications

The speaker displacement was measured using an ultrasonic non-contact sensor and

specifically a Cleveland Motion Controls Pulsonic Sensor. The sensor was configured

to monitor a 6.35 to 25.4 cm range with a repeatability of 0.0127 cm. The sensor

output an analog voltage proportional to the distance of the target. The voltage

output corresponded to 2.54 cm per volt. The sensor updated at a rate of 800Hz.

The sensor output a voltage that had a range preset according to jumpers on the

side of the sensor controller. Even though the sensor was set for the 25.4 cm range,

it had an upper distance limit of 3.05 meters away. The minimum allowable distance

between the target and the sensor was 6.35 cm.

The sensor operated by emitting a pulse that was reflected off a target surface and

then received back by the sensor. The time taken for the signal to make the trip was

then calculated. By combining this information with the speed of sound in air, the

distance between the sensor and the target was calculated. To compensate for any

change of the speed of sound in air and as a result calibrate itself, the sensor had a

precisely machined part attached directly in front of the surface that emit the waves.

The distance of this part to the emitter was known. The metal part partially reflects

the beam and as a result the speed of sound in air was determined automatically.

Since the sensor operated with reflected waves, it was necessary that the sensor

head be positioned within 5 degrees of the perpendicular of the target surface (given

the surface was already in range of the sensor). To get an accurate reading, the angle

should be within 1.5 degrees of the perpendicular position . An adequate position of
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the sensor head was verified by one of three LED’s on the sensor controller unit.

Further information on the sensor is available from [32],[33].

2.3.5 Modeling and System Identification

Experimental Nonlinear Modeling

When attempting to perform the linear modeling experiment mentioned in the next

section, the output wave was not a true sine wave. The wave was slightly distorted.

In an attempt to map this nonlinearity, a program was created that would issue a

series of sequential step commands to the amplifier and subsequently the speaker.

Note that the command received by the amplifier was a voltage and that the speaker

received a current which was converted into a force. For a step size of v, the program

commanded for the first step v, then 2v then 3v and so on. When the program reached

the upper limit, it started stepping back down until it reached the lower limit. Upon

reaching the lower limit it switched directions again and returned to the zero value

of output. Each step was held long enough to collect a settled position reading from

the ultrasonic sensor. A settling time of about half a second was used. Even though

the signal may not have been entirely settled after the half second delay, the short

settling time helped ensure that the speaker coil would not over heat when subjected

to larger DC values of current.

For purposes of the needed experiments, it was not necessary to create a software

fuse to prevent the speaker coil from over heating. Simply keeping the step time short

was enough to not damage the speaker. During normal operation, the speaker acted

as a fan to itself and as a result could utilize much higher amplitudes of input current.

As long as there was some kind of oscillating signal on the speaker, the movement

of the cone helped the coil to remain cool. Upon completion of the data collection,

the input voltage was plotted against the output position. This plot can be seen in
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Figure 2.4.
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Figure 2.4: Results of DC Step Test On Speaker : Hysteresis Curve

This data suggested two kinds of nonlinearity: hysteresis and saturation. The

curve was centered 0.4 cm away from the speaker’s zero input position. The linear

region of the speaker was originally specified as 1.2 cm (amplitude) in the subwoofer

data sheet [30]. Disregarding the hysteresis, this curve suggested a linear region of

about 0.4 cm. The short linear range was a source of problem as motions up to 1.0

cm were needed for the desired task. Steps were taken in order find the cause of the

nonlinearity and then provide appropriate compensation.

Since the center of the curve was shifted, the lower and upper limits were adjusted

and the experiment was repeated to obtain a symmetric curve (a symmetric curve is

one that has the same amount of distortion on each end of the hysteresis curve). By

finding a symmetric curve, it was possible to maintain a higher amount of operation

in the linear region.

It is possible to code offsets into the input and output of the control code in order
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to center this plot around a “zero output”. Doing this would enable the system model

and all data to be centered around (0,0) in Figure 2.4. However, this was undesirable,

as a constant current would be needed to hold the speaker at the zero position. As

stated before, this would heat the coil and possibly damage the speaker.

There are two possible explanations for the saturation nonlinearity. The voice coil

motor and the speaker cone (which is similar to a spring) both contain linear regions

near the center of their motion and tend to level off for high deflections. Determining

the cause of the nonlinearity is important because, even though the effect looks the

same, the correction techniques are different. The following test was performed in

order to seek the cause of the saturation.

To ascertain the cause of the nonlinearity, it was necessary to isolate one of the

devices (either the spring or the voice coil) and test it individually. Testing of the

voice coil by itself proved difficult as it would require disassembling the speaker and

tearing apart the cone. Testing the cone however could be done while the voice coil

was not activated. To see any nonlinearities of the cone, weights were added while

the position was monitored. A linear spring would have a straight-line relationship

between the force and the displacement. To test the spring, the motion sensor was

turned on and zeroed. A ring was then attached to the speaker cone. The ring

was nearly 16 cm in outer diameter and possessed a 12.7 cm inside diameter. The

ultrasonic sensor used the center of the speaker as a target for position reading. The

ring allowed the weights to be placed on the cone without obstructing the sensor.

The weight of the ring was measured and the deflection that occurred after adding

the ring was recorded. Two blocks of known similar weight were then added to the

ring in a symmetric fashion and the deflection of the speaker was again recorded. The

blocks were added symmetrically in order to distribute the weight more evenly across

the speaker in an attempt to assure a collinear deflection. The process was repeated

by adding heavier blocks until the deflection reached the desired limit. The position
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versus weight data was then plotted and fit to a linear function. This is shown in

Figure 2.5.
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Figure 2.5: Speaker Spring Plot

From observing Figure 2.4, the saturation started to occur after the -0.2 cm portion

of the plot. Figure 2.5, however, appeared very linear all the way out to the desired

limit of motion. The linear fit provided an R2 (square of the correlation coefficient)

value of 0.989. This plot showed that the saturation was not caused by the spring

and hence was most likely entirely from the voice coil.

The voice coil is a ring that carries a current in the tangential direction. The coil

moves axially within an annular air gap. Within this gap, their is a rated magnetic

field, which interacts with the coil current to provide an axial force. As the voice coil

displaces outside the annulus, the B field penetrating the coil decreases, resulting in

decreased force.

The saturation problem can sometimes be ignored in cases where the saturation

occurs outside the desired operating range of the system. The system can be classified
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as locally linear and controlled accordingly. For the purposes of this experiment, this

would not be adequate. The desired range of motion was 2.0 cm peak to peak which

easily overextends any linear region of the plot.

A mapping function was used to correct for the saturation nonlinearity. First the

hysteresis was ignored by just taking an average of the two curves in Figure 2.4. The

resulting plot was a one-to-one function that still had the saturation nonlinearity. For

a given desired position, there existed only one corresponding voltage. Therefore a

desired position (DC) could be achieved by simply feeding in the voltage correspond-

ing to the desired position in the plot. The relationship between the input and output

was compensated for by using this mapping.

In order to obtain a function mapping, the following steps were executed. First

the two axes were flipped and replotted as can be seen in Figure 2.7. The line dividing

these data points was a least-squares polynomial fit. The best fit plot was the one

that was the closest to the average of the upper and lower curves of 2.7.

It was found that a seventh-order fit worked well with this set of data and can be

seen in Eqn 2.1.

y = 0.19209x7 − 0.48985x6 + 0.54312x5 − 0.2454x4

+0.29328x3 − 0.37788x2 + 0.56939x− 0.0001 (2.1)

The results of the stepper test using the constructed inverse function is shown in

Figure 2.8. The resulting relationship with the compensation was

y = 0.9954x + 0.0448. (2.2)

The hysteresis problem still remained but the saturation problem was effectively

removed. The hysteresis seems to be the result of a very large damping time constant.

Currently the specific cause of this effect is not known. Due to sufficient accuracy
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Figure 2.6: Stepper experiment with least-squares 7th-order fit
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Figure 2.7: Flipped axis stepper experiment with 7th-order fit
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Figure 2.8: Stepper experiment with 7th-order inverse mapping function and fit

without the fix, the hysteresis problem was left uncompensated.

Experimental Linear Modeling

The transfer function for the speaker dynamics was obtained experimentally through

a transfer function mapping procedure. The subwoofer speaker is an open loop stable

device. By giving the system a sinusoidal input, the output should also be sinusoidal

at the same frequency as the input wave (true for linear systems). The phase difference

and the magnitude difference between the input wave and the output wave then can

be calculated. By repeating this procedure at different frequencies of the input wave,

the phase and magnitude response of the system can be calculated.

The Matlab invfreqs() function was utilized to fit a transfer function model to

the experimental measured frequency response [34]. The first and second arguments

of this function contain the experimentally obtained system information. The first
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argument is created by combining the magnitude and phase information into one

single vector. This is accomplished with the below equation.

complex = magnitude× exp (iφ
π

180
) (2.3)

The second argument consists of the vector of the frequencies corresponding to

the phase and magnitude information. The last two arguments are the order of the

numerator and denominator respectively of the system transfer function.

It is possible to add a fifth argument to the function which does data weighting.

Weighting causes certain portions of the transfer function to be better fit then other

portions. This extra argument was not utilized in this particular instance but is used

in modeling of the PHANToM robot in the next section. The function returns two

vectors which are coefficients of the numerator and the denominator of the fitted

transfer function.

A transfer function with third-order denominator and zeroth-order numerator was

fit to the experimental data. The order of the transfer function was chosen based on

a physical model of the system constructed.

The order of the transfer function was specified to correspond with a logical model

of the system. A speaker is made up of a cone and a voice coil, which can be construed

as a mass. The mass is acted upon by forces on the coil and connected to ground

through a spring and damper in parallel. The physical model can be seen in Figure

2.9.

The transfer function of Figure 2.9 is

x(s)

F (s)
=

1

(Ms2 + Bs + K)
. (2.4)

Now if this transfer function is combined with the expected amplifier roll off (a

low-pass filter effect), the expected transfer function is:
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Figure 2.9: Physical Block Diagram of Speaker

G(s) =
1

( s
c
+ 1)(Ms2 + Bs + K)

. (2.5)

The parameter c in Equation 2.5 is the amplifier roll off frequency.

To see the accuracy of the fit, the Bode plot of the transfer function was plotted

over the frequency and magnitude information. This subwoofer Bode plot can be

seen in Figure 2.10. The circles represent the experimentally measured magnitude

and phase points while the continuous line is the fitting function.
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Figure 2.10: Subwoofer Speaker Frequency Response and Fit
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The transfer function obtained with the frequency response method had a best fit

of

G(s) =
5.533× 105

s3 + 96.24s2 + 1.339× 104 + 6.313× 105
. (2.6)

The frequency response method of obtaining this transfer function was only valid

if the system was linear over the operating region. This approximation only held true

after the nonlinear modeling was enforced onto the subwoofer.

2.4 PHANToM Robot

The PHANToM robot (from Sensable Technologies [35]) is typically used by two

different groups. The first is researchers using it as a haptic device. The second

group is computer graphics designers who use the PHANToM’s feedback along with

Free Form Concept software to perform digital design. The PHANToM’s design allows

for 3-dimensional force feedback and full back-drivability. This makes it an ideal tool

for anything requiring force feedback. The PHANToM is light weight and possesses a

low inertia, which allows it to move more quickly than conventional industrial robots.

Another advantage is the low friction that is associated with the motor drive system.

Though limited to three degrees of freedom (DOF) to control, an adapter can expand

the PHANToM’s workspace to 6 DOF. A picture of a PHANToM setup can be seen

in Figure 2.11.

In the area of haptic research, the PHANToM is used for algorithm development

and position control, performing haptic training ([36] [37]), and measuring force for

psychophysics experiments [38].

As in the previous section, the robot and amplifier will be discussed in detail

followed by an explanation of the modeling procedure, and finally the model will be

presented.
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Figure 2.11: PHANToM Haptic Device

2.4.1 Robot Specifications

The primary novelty of the PHANToM robot is its motor drive system, which is based

on the rotary mechanism design of Carson and Preonas [39]. It eliminates the use

of gears through a cable pulley system. Each of the motors has a threaded capstan

attached to its shaft. These threads have large enough grooves to hold a cable which

is wrapped around the capstan several times. The motor is then positioned such that

it is very close to a larger diameter cylindrical base. The cable from each end is then

pinned tightly on each side of the larger cylinder. The effect is that spinning the

motor causes the cable to pull and hence rotates the larger metal cylinder and allows

the PHANToM to move.

The PHANToM possesses three joints that will be referred to as Joints 1, 2 and

3. These labels correspond to the θ1, θ2, θ3 respectively in Figure 2.12. Joint 1 rotates

in a plane that is horizontal with the ground. The motors for Joint 2 and Joint 3

are actually attached to the same upper cylinder which is stationary. As a result
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the rotation occurs in the same plane for each of these joints. The motors rotate

themselves around this cylinder in order to move the outer segments of the robot.

Figure 2.12: Stick Diagram of PHANToM in home position with appropriate joint
labels

The encoders used for feedback are attached to each of the motors. For the large

base rotation of the PHANToM, each encoder tick corresponds to 0.00117 radians.

This fine resolution is because of the gear ratio between the motor and axis of rotation.

The PHANToM’s design requires a low-weight frame and connecting pieces. These

parts are made thinner and as a result, are not as strong. The actual position of the

end-effector is distorted because of the inherent flexibility of the structure and hence

not necessarily where the encoder value reads. This compliance of the PHANToM’s

beams is one source of dynamic complexity in the PHANToM.

The compliance can be easily seen by performing the following experiment. Joints

2 and 3 are clamped into place and hence not permitted to move. Joint 1 is activated

with some type of sinusoidal motion. The end effector will oscillate within the Joint

1 range of motion and slightly in the vertical direction. Even though vertical motion
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is seen, the encoders on each of the clamped motors will not have changed.

The encoder resolution on the motors of the PHANToM are 4000 counts per

revolution. With the gear ratio between the Joint 1 motor and the actual Joint 1

angle of the PHANToM, this encoder count corresponds to a resolution of 0.000117

radians. Note that the gear ratio is different for Joint 2 and 3 which each have a

resolution of 0.000137 radians.

Though not specifically specified by Sensable Technologies, the PHANToM’s mo-

tors appear to be Maxon DC motors [40]. The motors are able to supply a torque of

0.1287 Nm maximum, with a 0.0293 Nm continuous torque limit. A form of software

fuse was implemented in order to protect the motors against overheating while still

allowing them to reach the maximum torque value.

2.4.2 Amplifier Specifications

The amplifiers used in conjunction with the PHANToM robot were Glentek Model

GA4555P linear current amplifiers [31]. The auxiliary input channel was used for

inputs in the range of +/- 13 Volts. The output signal of the amplifier was a propor-

tional current with a peak current of 12 Amps and an RMS continuous current of 4

Amps.

The amplifier was protected with two safety devices. The first was a low speed

electronic circuit breaker. This operated by integration of the output current over

time. When this integrated value passes a setting determined by the user, the ampli-

fier automatically switched off. The second device was a DC power fuse. This fuse

blew if the output was shorted or excessively loaded (GA4555P Manual) [41].

The DC and frequency responses were tested on each of the amplifiers. These

tests were conducted using identical setups. A power resistor was connected to the

amplifier output while the input was connected to a voltage source. The voltage over

the resistor was monitored with a DAC card and QNX OS.

35



The DC response test was coupled with setting the amplifier gain. First the output

was monitored while inputting zero Volts to the amplifier command. The DC offset

potentiometer was adjusted until the corresponding output voltage over the resistor

was also zero. One Volt was output to the amplifier and the gain value was set by

adjusting the auxiliary gain potentiometer until the desired amount of DC current

was obtained on the output. Note that since the reading on the DAC and QNX

machine was a voltage over the resistance, the actual current value was scaled by the

resistor value. Once the gain value was set, several DC values over the range (+ and

-) of the input were fed into the amplifier. The input/output plot can be seen in

Figure 2.13 for the first amplifier.

This particular DC gain function shows that the amplifier was not symmetric.

The negative gain was less then that of the positive gain, which gives the piecewise

linear plot seen in Figure 2.13. This nonlinear DC gain relationship was linearized

by simply using a different amplifier constant for multiplication of negative values of

the first amplifier.

The frequency response was obtained with the same method as the speaker transfer

function. A time-varying signal with a known frequency was input to the amplifier,

and the voltage across the load resistor was monitored. The magnitude and phase

of the output wave were then compared to that of the input wave. The Bode plots

obtained from amplifiers two and four can be seen in Figure 2.14 and 2.15 respectively.

These Bode plots are typical for amplifiers. They start with nearly constant gain

and then begin to roll-off at higher frequencies (similar to a low-pass filter). The

second plot does have some irregularities at higher frequency components, but as the

bandwidth required from the system was well below these frequencies, they did not

have a significant effect. Both amplifiers had their roll-off start near 50Hz, and both

started with very similar values of dc gain.
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10
0

10
1

10
2

10
3

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

10
0

10
1

10
2

10
3

−120

−100

−80

−60

−40

−20

0

P
ha

se
 (

de
gr

ee
s)

Frequency (Hz)

Figure 2.14: Amplifier 2 Bode Plot
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2.4.3 Modeling and System Identification

Cavusoglu et al. in [42] have done work previously in order to create a model and

transfer function for the PHANToM. This was a small-signal model in Cartesian

coordinates. Though for very small signals, the joint angles could be approximated as

Cartesian displacements, a new model was obtained in joint space utilizing a variation

of the frequency-response method mentioned previously. This model was simpler due

the fact that performing the tests on a single joint would help reduce the coupling

dynamics that were seen between joints. In an attempt to further assure only the

dynamics of Joint 1 were seen in testing, Joints 2 and 3 were clamped into position.

The robot was clamped in the home position (seen in Figure 2.12).

The major difference between the speaker modeling and the PHANToM modeling

was that the PHANToM was not a stable open-loop system. Therefore, using a strictly

feedforward term as an input was not an option for this experiment. A proportional-

plus-derivative feedback term was added to the input to stabilize the system response

about the home position. The input equation then took the form of Eqn 2.7.

u = A sin (ωt)− kpy − kdẏ (2.7)

The ẏ term was estimated using a first-order backwards-difference approximation.

The gains were selected so that the system was stable but would not reject the

sinusoidal term. The entire input term was recorded and then fit with a sinusoid.

The same was done for the output.

The amplitude of the sinusoidal input term was chosen carefully depending on the

frequency. For a linear system, the transfer function should not have any dependence

on the magnitude of the input. This means that any amplitude sine wave should

produce the same transfer function. At small frequencies the amplitude of the input

needed to be small so as not to hit the mechanical stops of the system. However,
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at the higher frequencies, a small amplitude is not sufficient to pull out meaningful

information. There are simply not enough encoder readings per wave oscillation. To

make the waveform fits more accurate, a minimum of 8 different values were desired

in order to recreate the wave. Therefore, several data sets were taken at different

values of amplitude in an attempt to get a good model of the system. A selection of

these sets can be seen in Figure 2.16.

For frequencies under 50Hz the Bode plot was very consistent for different values

of amplitude. However at frequencies above the 50Hz dip, the response became

somewhat clouded and only a general outline could be obtained.

A complicating nonlinearity is Coulomb friction. Coulomb friction is the frictional

force of the motor or gearing that opposes the motion of the robot. When a motor is

in motion, this force or torque equivalent is a constant value that alters the effective

force on the motor. While the motor is positively accelerating, the friction opposes

that accelerating force and the effective force is the commanded force minus the

friction term. If the motor is negatively accelerating, the friction term will be added

to the commanded force. When the motor is not in motion, the Coulomb friction is

equal and opposite to the amount of force supplied. It then follows that, in order for

the motor to move, a force greater than Coulomb friction must be applied.

The friction term can be calculated using Newton’s second law. The sum of forces

for a non-accelerating system must be zero. If the motor is operating at a constant

velocity, the only forces acting on it are the commanded force and the Coulomb

friction. Therefore (in the absence of Viscous friction), simply recording the torque

required to keep the PHANToM moving at a constant speed will give the Coulomb

friction constant.

The following test was conducted in order to determine the Coulomb friction term

of the PHANToM. The friction term as stated before can be easily measured by com-

manding a constant velocity to the motor. In order to command a constant velocity,
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Figure 2.15: Amplifier 4 Bode Plot
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Figure 2.17: Motion trajectory used to measure Coulomb friction value of the PHAN-
ToM. The velocity has a trapezoidal profile.

a three-part displacement profile was created. The first and third part contained

uniform acceleration from and to zero velocity. These portions ended and began at

desired constant velocity that was set in code. After going forward through the pro-

file, the code was set to return to the zero position through the reverse trajectory.

This total profile will be described as a trapezoidal profile due to the shape of the

velocity versus time curve (see Figure 2.17). The PHANToM was driven to track this

motion trajectory using a PD controller.

Throughout the trajectory, the position and torque were recorded. The Coulomb

friction term was calculated by taking the average force applied over any one of the

constant velocity portions show in Figure 2.18. Averages were calculated for the posi-

tive and negative portion to assure accuracy of the experimental value. The particular

trapezoidal profile seen for this torque plot had a longer constant velocity cycle with

very quick accelerations. The Coulomb friction value was 0.045 Nm. Regardless of
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Figure 2.18: Coulomb Friction

the direction and the set speed, the Coulomb friction value should be the same (note

again this is true for zero Viscous friction). This was tested by using several different

top speeds, and the results were consistent.

If the Coulomb friction term was small enough, it was possible that it could be

ignored within the control loop. To ascertain the total effect of this nonlinearity,

a simulation was created where the Coulomb friction was included within the plant

model. In order to simulate the plant while including the Coulomb friction, it was

necessary to alter the control effort applied to the plant. As stated, the Coulomb

friction term always opposed motion and thus the sign of the velocity of the plant

defines the sign of the Coulomb friction. The sign of the velocity would always be in

the direction of motion. In code, subtracting the sign of the velocity multiplied by the

magnitude of the Coulomb friction would produce the desired effect for simulation.

On the actual plant, the compensation would be done in reverse. The Coulomb

friction would be added to the already calculated control and then applied to the
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plant. This would have a linearizing effect on the plant.

The model used for testing was the frequency response model that related input

torque to output angle of the Joint 1 actuator. By examining the data from Figure

2.16, the plot appeared to have an immediate drop of -40dB/decade. This was the

standard transfer function of a motor or

G(s) =
1

Js2
, (2.8)

where J is the rotational inertia of the motor. With this presumption, a pair of poles

at s = 0 was forced onto the current data by dividing out a complex 1/s2 and then

performing the fit. The fit with the 1/s2 removed can be seen in Figure

2.19.
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Figure 2.19: Fit to PHANToM Bode Plot without 1/s2

After the fit was obtained this model was then multiplied by 1/s2 and the Bode

plot in Figure 2.20 and the transfer function below resulted.
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G(s) =
983.6s4 + 3.037× 104s3 + 1.154× 108s2 + 1.502× 109s + 2.402× 1012

s6 + 214s5 + 3.544× 105s4 + 1.036× 107s3 + 9.179× 109s2

(2.9)
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Figure 2.20: Fit to PHANToM Bode Plot with 1/s2

Initial testing with this model yielded inadequate results. The controllability

matrix of the system was calculated, and it was observed that the system was only

weakly controllable. This was causing poor conditioning of the state space matrices

and as a result instability and poor control. A reduced realization was obtained using

Matlab that produced a 4th-order transfer function, as detailed below.

First, the two poles at s = 0 were removed from the transfer function realization.

When performing a model reduction such as the Schur reductive method, it is required

that the plant model be stable. The Matlab function schmr() was then utilized to

perform the reduction [43]. This function takes in a system and the number of states

to be removed. It calculates the weakly controllable eigenvalues and then uses that

44



information to eliminate them and produce a new system.
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Figure 2.21: Reduced Fit to PHANToM Bode Plot. This plot includes the 1/s2 term.

From Figure 2.21, it can be seen that the small spike near 30Hz was causing the

issues. The new system was much better conditioned and as a result produced better

results. The reduced transfer function is

G(s) =
983.6s2 + 1.784× 104s + 8.691× 107

s4 + 200.2s3 + 3.234× 105s2
. (2.10)

This was the model used for control purposes and was subsequently used with the

different tracking algorithms.

45



Chapter 3

Control Algorithms

With the system models in place, the next task to perform was to implement and

test the different tracking algorithms. In order to understand the operation of each

of these algorithms, they are described one by one within this chapter.

This chapter starts by describing some general information about the observer

used for the controllers. Subsequent sections include details of each of the tracking

algorithms.

The overall setup for each algorithm is as follows. Generally, a desired signal will

be present and included in the calculation of a feedforward gain for the algorithm.

The feedback gain will be based on the system output. The system to be controlled

is characterized by a discrete state-space realization as can be seen in Eqns. 3.1 and

3.2.

3.1 Observer Implementation

With the exception of PD control, all control algorithms were implemented using

state-space realizations and utilized state feedback. Only positions were directly

sensed. An observer was implemented for each of the plant models to obtain the full

state vector for state feedback.
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As the control algorithms were designed in discrete time using state-space differ-

ence equations, the observer was also implemented in discrete time. The predictor

form of the observer was implemented [44], taking in the sensor value and calculating

the next cycle’s state based on the current state, the control effort and the error of

the observer output. The observer poles were typically placed to avoid oscillation and

in most cases the observer pole values were placed between 0.5 and 0.9. The actual

corresponding observer bandwidth varied on an experiment to experiment basis.

The actual gains and corresponding time constants are presented in the results

section in Chapter 5 and Section 4.4. See Figure 3.1 for a discrete block diagram

of the observer. Note that in this diagram, the system model parameters are Phi,

Gam and H corresponding to Φ, Γ and H, respectively, in the discrete state-space

representation seen in Eqn 3.1 and Eqn 3.2.

x[k + 1] = Φx[k] + Γu[k] (3.1)

y[k] = Hx[k] (3.2)

For an nth order system, the dimensions of of x and y are n×1 and 1×1 respectively.

3.2 Position Plus Derivative Control

The classical control method, position-plus-derivative (PD), was the first of the four

control algorithms tested. The control effort was calculated according to Eqn 3.3.

u = kp(ydes − yact)− kdẏact (3.3)

The control effort is characterized in Eqn 3.3 by u. The output of the system is yact

and the desired output is ydes. The position and derivative gains are notated by kp

and kd respectively. A continuous block diagram representation can be seen in Figure
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Figure 3.1: Observer Block Diagram

3.2.

Since the speed was not available through a sensor from the plant, it was calculated

using the plant state-space model. The state-space plant model is represented using

A, B, and C matrices. The A and B matrices relate the states and the control

respectively to the derivative of the states. The C matrix relates the state to the

system output. Note that all of the systems were strictly proper or forced to be

strictly proper and hence did not contain a D term.

ẋ = Ax + Bu (3.4)

y = Cx (3.5)

ẏ = Cẋ = C(Ax + Bu) (3.6)

By taking a time derivative of the output equation, the output speed can be

related to the state speeds. For a given state and control effort, their derivatives were
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Figure 3.2: Continuous PD Controlled Block Diagram

known from the state equation.

The states maintained their values and meaning through the continuous-to-discrete

transformation. It was necessary to obtain the discrete state-space realization from

the continuous time state-space realization. Changing realizations would give differ-

ent states and the speed calculation method would break down. The total process

summed up to calculating the state using a discrete observer and then plugging that

state into the continuous state-space functions. By obtaining the speed in this form,

the noise that resulted from taking the first-order approximation to calculate the

speed, diminished. Effectively, it was a filtered result.

The gains for this algorithm were tuned instead of calculated. The process of

tuning the gains started by simply increasing the position gain until the ringing in

the system was the primary cause of tracking error. At this point, the derivative

gain was set such that the ringing was reduced. These two steps were repeated until

adequate tracking was obtained or the system was on the verge of instability.
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The gains were fine tuned by looking at the RMS control and RMS error between

the desired and actual position. See the results section for the details of this tuning.

3.3 Pole-Placement Control

PD control can be seen as a variation of pole-placement control. In general, pole

placement has m degrees of freedom to do control (where m is the order of the

system). In other words, it is possible to move all the poles of the system to any

specific locations in the unit circle. PD control, however, is limited to two degrees of

freedom. For systems of order m > 2, PD is not exercising all the degrees of freedom

possible to do control. PD control will often find an acceptable set of poles, but it is

likely that the controller is suboptimal.

The pole-placement algorithm utilized state feedback with the states obtained by

the observer. The poles were placed using the discrete plant transfer function and

Ackerman’s formula. (used by way of the Matlab function acker()).

The feedforward gain of the algorithm was calculated by extracting states that

corresponded to the desired trajectory. These desired states are compared to the

actual states in feedback. Both of these gains are calculated from the system model.

The pole-placement system block diagram can be seen in Figure 3.3. Note that

this algorithm was taken directly from [44].

Steady-state error will occur with this algorithm for systems of type 0 or those

systems that contain no poles at s = 0. The type of the system is defined as the

number of poles at zero. Therefore, a feedforward steady-state term was added to the

basic PP controller. To get the desired states, a vector exists that when multiplied

by the desired signal, will yield an approximation of the states.

Nydes = xdes (3.7)
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Figure 3.3: Pole-Placement Controlled Block Diagram

The output is determined by the states from

yact = Hx. (3.8)

For tracking, the desired signal should be identical to the actual and hence the desired

states should be the same as the actual states. By making a substitution from Eqn

3.7 to Eqn 3.8, it can be seen that N is actually a pseudo-inverse of H.

yact = HNydes (3.9)

HN = I (3.10)

The steady-state term is defined by

uss = Nfydes. (3.11)
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When in steady state, the control should be tracking and hence the component

from the state feedback will be completely eliminated by the state feedforward portion.

This makes the state equation for steady state

xss = Φxss + Γuss. (3.12)

The Φ and Γ matrices are the discrete state-space equivalent of the A and B

matrices (respectively).

By making substitutions into the steady-state equation,

(Φ− I)N + ΓNf = 0. (3.13)

Using Eqn 3.13 in conjunction with Eqn 3.10, a system of equations is constructed

from which N and Nf can be obtained.




N

Nf


 =




Φ− I Γ

H 0




−1 


0

I


 (3.14)

Once Nf and N have been solved, the feedfoward control is simply

uff = Nfydes + KNydes (3.15)

The matrix K is the set of feedback gains that are acquired through the acker()

function. The complete control equation takes the form of

u = (Nf + KN)ydes −Kxobs (3.16)
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3.4 Model Predictive Control

Model predictive control (MPC) is an acausal algorithm used for trajectory tracking.

The MPC algorithm uses the system model to predict future outputs. The future

outputs are compared to a desired reference signal and used to calculate gains. Note

that generally the reference signal is known a priori. MPC has been successful because

of its ability to be applied to a number of different applications. Several variations

have been developed and implemented to the extent where MPC has become a family

of algorithms. However, all of the algorithms contain three characteristics: a model is

utilized to predict future outputs of a system, the control sequence is calculated based

on minimization of a cost function and the gains are calculated utilizing a receding

horizon where the furthest point ahead considered moves one step ahead for every

control cycle [45].

MPC has a wide range of industrial applications. Clark conducted studies using

MPC to control a cement grinding mill, a spray drying tower and a compliant robotic

arm [46]. He concluded that MPC is an effective method to use for all types of plants.

The typical applications for MPC have been industrial processes (for a short history

of the MPC algorithm see [45]).

As in the other tracking algorithms, there exist two parts to the algorithm, a

feedback term and a feedforward term. These terms can be calculated separately

from one another, yet depend on many of the same parameters. The following MPC

algorithm was obtained from [47].

The block diagram for this controller shown in Figure 3.4, resembles that of the

pole-placement algorithm. The major difference between the two is in the complexity

of calculating the gains.
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Figure 3.4: Coarse Block Diagram of MPC Control

Feedback

To help better explain the feedback portion of MPC, optimal control (or linear

quadratic regulation) will first be explained. Optimal control can be seen as a sub-

class of MPC. An optimal controller is a model predictive controller where the desired

trajectory is zero. The idea behind the optimal controller is to find a control effort

that will minimize a cost index equation. This equation takes the form of a quadratic

in the control effort and in the state vector of the system. The goal for this type of

control is to minimize Eqn 3.17 with respect to the control u[k].

J∗[k] = min
u[k]

(x[k + 1]Qx[k + 1] + u[k]Ru[k] + J∗[k + 1]) (3.17)

J∗[n] is the optimal index at time n. Q and R are matrix weighting parameters.

By altering the ratio between Q and R, the emphasis of the optimization problem

is shifted. Using a higher Q to R ratio will accentuate the state and hence regulate
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more quickly. Using a lower Q to R ratio penalizes higher control values, so the

regulation is slower but uses a smaller control effort. The Q and R matrices should

be positive semi-definite and positive definite, respectively. Often for simplicity, the

matrices are created as multiples of the identity matrix. For systems with many states

and multiple inputs, this simplifies the tuning process to two parameters. However,

it is possible to weight more heavily different indices of each matrix in an attempt to

penalize particular states or inputs.

For any regulation problem the actual control equation takes the form

u[k] = K[k]x[k]. (3.18)

The optimal index equation can be written in terms of a quadratic of the state

and the next optimal index by substituting in the control equation.

Recall also that this representation is discrete so the state-space equation is a

difference equation. More directly this means, an equation for x[k + 1] exists that is

written in terms of x[k] and u[k]. By making this substitution, the cost equation can

now be written completely in terms of the current state, x[k] and the next cost index.

Note that the u[k] term is again eliminated through the control equation.

J∗[k] = (3.19)

(Φx[k] + ΓK[k]x[k])′Q(Φx[k] + ΓK[k]x[k]) + (K[k]x[k])′R(K[k]x[k]) + J∗[k + 1]

In an attempt to solve Eqn 3.19, Eqn 3.20 is assumed to be a solution.

J∗[k] = x[k]′P[k]x[k] (3.20)

Upon plugging in Eqn 3.20, nearly every term of Eqn 3.19 is a quadratic in terms

of the current value of the state. By repeating the two substitutions used to create
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Eqn 3.19, the J∗[k + 1] term can be written in terms of the current state as is seen

in Eqn 3.21.

J∗[k + 1] = x[k + 1]′P[k + 1]x[k + 1]

= (Φx[k] + Γu[k])′P[k + 1](Φx[k] + Γu[k])

= (Φx[k] + ΓKx[k])′P[k + 1](Φx[k] + ΓKx[k]) (3.21)

When eliminating the state from both sides of the equation, it can be seen that

P[k] is actually a solution to a difference matrix Riccatti equation. This Riccatti

equation can be solved by backwards iteration where the final value is P[T ] = 0. All

the parameters in Eqn 3.19 are known except K. It is necessary to solve algebraically

for this gain in order to solve numerically the Riccatti equation.

The optimal gain K is solved for by taking the derivative of J [k] with respect to

the control effort u[k] and setting it equal to zero. In order to take the derivative of

the J [k + 1] term, it is replaced by x[k + 1]′P[k + 1]x[k + 1] and then subsequently

the x[k +1] is exchanged with the state equation. Solving for u[k] then produces Eqn

3.22.

u[k] = −(R + Γ′(Q + P[k + 1])Γ)−1(Γ′(Q + P[k + 1])Φ)x[k] (3.22)

K[k] = −(R + Γ′(Q + P[k + 1])Γ)−1(Γ′(Q + P[k + 1])Φ) (3.23)

This derivation shows the optimal gain as a function of time. The Riccatti equa-

tion is now

P[k] = Φ′{Q + P[k + 1]− (3.24)

(Q + P[k + 1])Γ[R + Γ′(Q + P[k + 1])Γ]−1Γ′(Q + P[k + 1])}Φ

This Riccatti equation is dependent only on the system model and the weighting
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matrices Q and R. As stated before, the value of the Riccatti equation at the horizon

value (P[T ]) is equal to 0. This equation is independent of the system state/output

value and the control value. This means that the gain is based only on static matrices

and iterative parameters. The equation (and in turn the gains) can be solved before

control is exercised on the plant using backwards iteration. The iteration is backwards

in the sense that the starting point of the iteration is some horizon into the future

and the calculation occurs backwards in time to the present.

Feedforward

The feedforward portion of the MPC algorithm again is what separates MPC from

optimal control.

An auxiliary system is defined for the desired input signal such that it possesses

the same states as the plant. The relationship between this desired state and the

desired output can be described with a difference equation and an output equation.

xdes[k + 1] = Fxdes[k]

ydes[k] = Gxdes[k] (3.25)

For tracking purposes, the cost index should attempt to minimize the error be-

tween the newly defined desired state and actual system state. The equation would

hence take the form

J∗[k] = min
u[k]

((x[k + 1]− xdes[k + 1])TQ(x[k + 1]− xdes[k + 1]) + u[k]Ru[k] + J∗[k + 1])

(3.26)

This form can be forced into the original form (Eqn 3.17) by creating a new state

vector and carefully choosing the weighting parameter Q.

A new state vector is defined that augments the current state vector with the
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states of the auxiliary system. The new state vector now looks like

xnew =




x

xdes


 . (3.27)

By choosing Q as seen below, the cost index equation can attempt to regulate

x − xdes and mimic the form of the regulator problem which already has a solution.

Note the subscripts are dropped for simplification. The matrix Q is originally an

n×n matrix where n is the order of the system. The augmented system is now 2n×1

and hence Q̃ is a 2n× 2n matrix.

(x− xdes)
TQ(x− xdes) = xTQx− xTQxdes − xT

desQx + xT
desQxdes (3.28)

Q̃ =




q̃11 q̃21

q̃12 q̃22


 (3.29)

(
xT xT

des

)
Q̃




x

xdes


 = xT q̃11x + xT q̃21xdes + xT

desq̃12x + xT
desq̃22xdes (3.30)

Q̃ =




Q −Q

−Q Q


 (3.31)

Since the state has been augmented, it will be necessary to define a new state

equation. Using Eqn 3.25, the below augmented state-space is obtained.

xnew[k + 1] = Φ̃xnew[k] + Γ̃u[k] (3.32)
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Φ̃ =




Φ 0

0 F


 ; Γ̃ =




Γ

0


 (3.33)

At this point the tracking problem can be treated as the regulator problem. The

control effort equation will also retain the form of u[k] = K̃[k]x[k], where x[k] is now

the augmented state. The gain K̃[k] can be written as seen below.

K̃[k] = −(Γ̃′(P̃[k + 1] + Q̃)Γ̃ + R)−1Γ̃′(P̃[k + 1] + Q̃) (3.34)

The P̃[k] is the Riccatti equation parameter. For simplification the Q̃ weighting

matrix will be combined with P̃[k] to form a new Riccatti parameter which is defined

by the equation below.

S[k] = P̃[k] + Q̃ (3.35)

S[k] = Φ̃′(S[k + 1]− S[k + 1]Γ̃(R + Γ̃′S[k + 1]Γ̃)−1Γ̃′S[k + 1])Φ̃ + Q̃ (3.36)

The control effort equation can be broken down into block form using 4 terms to

make up the Riccatti parameter and expanding each of the state-space terms.

S[k] =




S11 S12

S21 S22


 (3.37)

Note that all of the matrix blocks within S are functions of k but have been written

with subscripts alone. Then,

K̃[k] = (3.38)

−




(
Γ 0

)



S11 S12

S21 S22







Γ

0


 + R




−1 (
Γ 0

)



S11 S12

S21 S22







Φ 0

0 F



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By multiplying out the matrices, Eqn 3.38 is simplified into the equation below.

K̃[k] = −(Γ′S11Γ + R)−1

(
Γ′S11Φ Γ′S12F

)
(3.39)

Note: Sxx for Eqn 3.38 and Eqn 3.39 are all functions of k + 1.

S11 and S12 need to be calculated in order to find the optimal gains. As was

done for the gain matrix in Eqn 3.39, the Riccatti equation can also be expanded and

simplified. The results of this simplification can be seen below.

S[k] = Q̃+ (3.40)


Φ′(S11 − S11Γ[Γ′S11Γ + R]−1Γ′S11)Φ Φ′(S12 − S11Γ[Γ′S11Γ + R]−1Γ′S12)F

F′(S21 − S11Γ[Γ′S11Γ + R]−1Γ′S21)Φ F′(S22 − S21Γ[Γ′S11Γ + R]−1Γ′S21)F




Note: Sxx on the right hand side of Eqn 3.40 is a function of k + 1.

By examining index (1,1) of Eqn 3.40, a quick substitution back to P makes

the equation identical to the optimal control Riccatti equation, which was already

calculated (Eqn 3.25). However, the gain matrix K̃ is still dependent on S12 and F,

which have not been defined or derived.

Fortunately, both of this unknown parameters can be eliminated with a single

substitution. A new parameter M is defined as

M[k] , S12[k]xdes[k] (3.41)

A simple multiplication of xdes will accomplish the task of obtaining the M term

within the S12 equation.

S12[k] = Φ′(S12[k + 1]− (3.42)

S11[k + 1]Γ[Γ′S11[k + 1]Γ + R]−1Γ′S12[k + 1])F−Q
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S12[k]xdes[k] = Φ′(S12[k + 1]Fxdes[k]− (3.43)

S11[k + 1]Γ[Γ′S11[k + 1]Γ + R]−1Γ′S12[k + 1]Fxdes[k])−Qxdes[k]

M[k] = Φ′(M[k + 1]− (3.44)

S11[k + 1]Γ[Γ′S11[k + 1]Γ + R]−1Γ′M[k + 1])−Qxdes[k]

The only unknown parameter of Eqn 3.44 at this point is the relationship between

the desired state and desired output. This relationship can be obtained by taking a

pseudo-inverse of the output equation.

y = Hx

x = Ly

L = H′(HH′)−1 (3.45)

xdes = Lydes (3.46)

Eqn 3.44 can now be calculated iteratively in the same way as the feedback Riccatti

equation using the final condition M[T ] = 0. The final condition for S11[T ] is equal

to Q.

The parameter describing the number of iterations used to calculate M and S11

is called the horizon value. Every iteration corresponds to one control cycle set of

gains. In effect, calculating T iterations is like calculating time-varying gains up to T

steps ahead even though the only gain that is used is one for the current time value.

This type of control is also known as receding horizon control [45]. With every new

control cycle, a new point on the desired signal is used and an old point is dropped

in the gain calculation. The calculation is meant to be redone for every control cycle.

In the feedback Riccatti equation, the iteratively calculated matrices are not de-

pendent on any time-varying values save the previous iteration matrix. If the iteration

is executed every control cycle, the numerical results will be identical. As a result,
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the feedback gains are not time dependent and instead are constant values for a given

horizon. Therefore the horizon can be set for this calculation and the iteration can

be carried out off line, before attempting any control. Hence the feedback gains are

known before the control ever starts and do not need to be calculated for every control

cycle.

The feedforward Riccatti equation however is dependent on a time dependent

input signal (in this case the desired heart trajectory). As a result these gains must

be iteratively calculated on the fly every control cycle. Furthermore, it is necessary

to save the S11 matrix values for each time increment up to the horizon as they are

needed for the feedforward calculation.

The horizon along with the weighting matrices are the parameters that can be

used to tune the algorithm. Though rather intuitive to tune, altering the horizon does

make a difference in the results. A larger horizon generally results in more accuracy

of the feedfoward term (primarily because of greater foresight into the future and

more iterations to calculate gains). Because of the larger number of iterations, the

calculations now take longer. Therefore, a horizon must be chosen such that the

gains can be iteratively calculated within one cycle of the control loop. If the gains

require more calculation time than the length of the control-loop cycle, the control

effort value will be emitted not precisely at the end of the cycle and the next gain

calculation will start late. This inadvertently changes the sample rate of the control

loop and throws off the control algorithm calculation which causes instability in the

system.

This MPC algorithm can handle time-varying systems and weighting matrices. For

the applications used herein, the problem was not particularly complicated. Constant

weighting matrices were used along with constant state-space models. The only true

time-varying gain within the algorithm is the feedforward term, which is calculated

from the heart-beat data.
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3.5 Signal Estimated Model Predictive Control

The particular MPC algorithm described in the previous section contains one flaw.

The algorithm requires the future of the trajectory signal to calculate its feedforward

gains. For some processes, this is not a problem as the desired trajectory is known

before the control ever takes place. However, this is not the case for the heart tracking

problem. The MPC algorithm has high enough precision to perform the necessary

tracking if the signal is known. As a result, the problem is reduced to effectively

predicting the future desired signal.

The heartbeat is a quasiperiodic signal that varies slightly from beat to beat in

actual motion (disregarding arrhythmias and other irregularities). If one cycle of the

heartbeat is known, it can be used as an estimate of the next cycle.

Every time a value is read in from the heart position, that value can be approxi-

mated forward one cycle as long as the period is known. One cycle of heart motion

ahead is more then enough information to perform tracking with the MPC algorithm.

The problem however is still that the hypothesized cycle ahead is not near enough

to the actual signal. An attempt to control using MPC with a one heartbeat cycle

guess ahead has been attempted in Figure 3.5. The error is unacceptably large.

However, comparing the current cycle to the previous delayed cycle shows that the

major features of the waves do in fact line up. Hence, aside from small differences in

the actual signal, the largest error can be attributed to an offset, which is due to the

breathing motion within the data. This offset is just the error between the current

heart position and the guessed heart position for values in the near future. For values

in the distant future, the current error is probably not a good estimate of the future

error. Therefore, only a percentage of the current error is added to distant future

values of the estimated signal. In Eqn 3.47, m is the number of steps ahead that the

signal is calculated, while k is the current time. The function f(m) is the percentage
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Figure 3.5: Attempting MPC control with a one cycle delay prediction after waiting
for one cycle

of the error to be added.

yest[k + m] = yest[k + m] + f(m)yerror[k] (3.47)

This calcualtion is carried out for all indices up until the k + M index is reached

where M is the error horizon value.

The percentage can take the form of a function with respect to the number of

error horizon steps ahead. Several different profiles of percentages were attempted

for different error horizons. The profile needed to slope down to zero percent in order

to avoid discontinuities in the guessed signal. The reason for the percentage to fall

to zero is as follows. The estimated signal is being constantly updated. If 100% of

the error were added to the entire signal, the new signal would be offset from the old

signal. On the next control cycle, the estimated signal would be extended forward
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in time by augmenting the end of estimated signal with the current actual signal

(one heartbeat cycle difference). This augmented point would not include the offset

additions from the previous cycle and hence a discontinuity would be introduced.

By adding a smaller percentage of error offset for the distant-future points, the

discontinuity between the last and next-to-last point becomes smaller, and extra noise

is not introduced into the estimated signal. Several different percentage profiles were

attempted in code and will be reported on in the simulation results section (Section

4.3.4). The signal estimated MPC not only takes care of the offset issue that is present

from cycle to cycle but also forces the estimated signal to converge onto the actual

signal for a small horizon ahead.

In figure 3.5, the actual signal and the estimated signal can be seen as the control

executes. The current time for which the control is being executed, is noted by the

circle in the plot. The asterisk shows the final horizon value that is being used for the

MPC controller. Ideally the estimated signal should be exactly on top of the actual

signal but the estimate is not very accurate for distant values into the future. For

near future values (those which are within the MPC horizon), the horizon or asterisk

in the plot needs to be on top of the actual signal line in order for the MPC to reliably

operate.
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Figure 3.6: Estimated Signal and Actual Signal
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Chapter 4

Simulation and Results

All the control algorithms mentioned in the previous section were initially developed

and tested in simulation. These simulations were conducted in Matlab and written

using the executable .m Matlab files. Simulations were conducted for two primary

reasons. The first was to test the algorithms to see if the proposed control method

actually gave improved performance over the traditional approaches. The simulation

results section presented later in this chapter will divulge these findings. The second

reason was for hardware implementation. By using the .m files, code could be more

easily ported over to the eventual test bed that utilized C code. This made debugging

easier and reduced translation errors.

Experimental Description

The diagram in Figure 4.1 shows the experimental setup for all of the algorithm

testing. The heart signal in some capacity is fed into the controller along side of the

system output. The control is calculated based on these two inputs and hopefully the

hardware position will match the heart position.
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Figure 4.1: Diagram of Experimental Setup

Heart Data Resampling

All controllers were implemented with either a 2Khz and or 1Khz controller. The

original heart motion data collected as described in Section 1.7 was sampled at ap-

proximately 257 Hz. Resampling this data by using a zero-order hold would add

unnecessary noise and most likely cause larger error for tracking.y As a result, a sec-

ond data set was written that used a first-order approximation between the original

sampled points.

The original data was sampled at 257Hz and produced values y(t) where y(t) is

the position at time t. The time step corresponding to 257Hz is defined as δt. A

straight line can be fit between the two points y(t) and y(t + δt). This straight line

fit is then sampled at a higher rate for values of time between t and t + δt instead of

using just y(t).

The plot in Figure 4.2 shows the effects of resampling. The line without steps

is the desired signal while the line with larger steps is the resampling with just a
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Figure 4.2: Resampling Effects

zero-order hold approximation of the original data. The smaller-step line is using the

resampled first-order approximation data. This method produced position data that

was utilized in the Matlab simulation as well as the hardware implementation.

To further promote stability, the heart signal was ramped up to its actual value.

This means that the first half-second of the reference signal was linearly scaled up in

amplitude to the signal full value. Instantly tracking the signal proves to be difficult

as it is already “moving” and the sytem starts at rest. This implementation came

later as a precaution for the robot and was not implemented with the speaker or in

simulation. It does not effect the results because the calculations were only carried

out on the portion of the data that would be considered steady state.

4.1 Algorithm Implementation

A brief description of how each of the algorithms was implemented in Matlab follows.
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4.1.1 PD Control

The simulated system was implemented using the state-space model. The derivative of

the system was calculated by doing a first-order backwards difference approximation

(the current output subtracted by the previous output over the time step of the

simulation). The gains were directly tuned as stated in Section 3.2, and as a result,

no prior loop calculations were necessary. The actual simulation code can be seen

below.

T = 1/control_frequency;
y = 0; y_old = 0; y_dot = 0; y_vec =[];
x_old(1:length(phi)) = 0;

for k = 1:total_time/T-1;
%Create time vector
time(k) = (k-1)*T;

%Calculate Control
u(k) = k_p*(y_desired(k) - y) - k_d*y_dot;

%Simulate in Plant
y = h*x_old + j*u(k);
y_vec = [y_vec; y];
x_new = phi*x_old + gamma*u(k);
x_old = x_new;

y_dot = (y-y_old)/T;
y_old = y;

end

4.1.2 Pole Placement

For this algorithm, the simulated system utilized the state-space representation. The

feedforward gains were calculated by breaking down the N and Nf from Eqn 3.14.

The systems being used are all single-input, single-output (SISO) systems. Therefore,

the identity matrix from Eqn 3.10 is a 1×1 matrix. The vectors corresponding to Eqn
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3.14 are then (n+1)×1 matrices. More directly, the steady state gain Nf is 1×1 and

N is n×1 (Note that n is the order of the system). This code can be seen below.

%Feedback Gain Calculation
KK = acker(phi,gamma,desired_poles)

%Feedforward Gain Calculation
Nmatrix = [[phi-eye(length(phi)) gamma];[h 0]];

temp(1:length(phi)) = 0; temp(1:length(phi)+1) = 1;

N = inv(Nmatrix)*temp’;

Nx = N(1:length(phi)); Nu = N(length(phi)+1); N_bar = Nu + KK*Nx;

T=1/control_frequency;
y = 0; y_vec =[]; x_old(1:length(phi)) = 0;

for k = 1: total_time/T-1;
%Create time vector
time(k) = (k-1)*T;

%Calculate New Control
u(k) = N_bar*y_desired(k) - KK*x_new;

%Simulate in Plant
y = h*x_old + j*u(k);
y_vec = [y_vec; y];
x_new = phi*x_old + gamma*u(k);
x_old = x_new;

end

In order to alleviate some of the difficulties that were encountered with the PHAN-

ToM, another type of pole placement simulation was set up that utilized Simulink.

Simulink is a platform for multidomain simulation and model-based design of dy-

namic systems. It provides an interactive graphical environment and a customizable

set of block libraries that lets the user accurately design, simulate, implement, and

test control, signal processing, communications, and other time-varying systems [48].

Using Simulink allowed effects such as the saturation of the actuators and the
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Coulomb friction terms to be incorporated easily into the model and to test for

implementation accuracy. The diagram used in the simulation can be seen in Figure

4.3.
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Figure 4.3: Simulink model of PHANToM and PP controller used to determine effects
of Coulomb friction and saturation on control

The constants and gains used by Simulink were set by using a Matlab executable

file. The poles were placed using the acker() function for the observer and feedback.

4.1.3 MPC

The Matlab simulated MPC was calculated in a slightly different method than actu-

ally implemented. As presented, the feedback gains of the algorithm can be calculated

before the control loop, while the feedforward portion was iteratively calculated dur-

ing the control. The feedback and feedforward portion both use the same parameters
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in their respective calculations. In the Matlab simulation, these parameters were cal-

culated before the control was executed and then multiplied together to get gains and

the control effort during the control loop. The parameter b seen in the code below is

analogous to the defined matrix M in Eqn 3.41. The difference between the two is

a matrix multiplication in the iteration calculation. In hardware implementation, all

calculations that could be done outside of the control loop were performed outside of

the control loop.

The indexing for this algorithm can become particularly complicated because of

the backwards iteration. In order to compensate for this irritation, an interim counter

was created within the iteration loops. As was presented, the parameter S was used

in place of the Riccatti parameter P (where S = Q + P) to simplify the code. The

actual code used can be seen below.

L = h*inv(h’*h);

%Iteration of Optimal Parameters
Q = (eye(length(phi))-L*h’)*Q1*(eye(length(phi)) - L*h’)’ +

h*Q2*h’;
S(:,:,horizon) = (eye(length(phi))-L*H’)*Q1*(eye(length(phi)) -

L*h’)’ + h*Q2*h’;
b(:,horizon) = zeros(length(phi),1);

for counter = 1:horizon-1
a = horizon - counter;

S(:,:,a) = phi’*(S(:,:,a+1) - S(:,:,a+1)*gamma*inv(gamma’*S(:,:,a+1)
*gamma + R)*gamma’*S(:,:,a+1))*phi + Q;

K(:,a) = (-inv(gamma’*S(:,:,a+1)*gamma + R)*gamma’*S(:,:,a+1)*phi)’;

end
T=1/control_frequency;

x_old(1:length(phi) = 0; u = 0; y_vec = [];

for k = 1: total_time/T-1;
%Iteration of b
b(:,horizon) = zeros(length(phi),1);
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if (length(y_desired) >= (horizon-1+k))
for counter = 1:horizon-1

a = horizon - counter;
b(:,a) = (phi’ + K(:,a)*gamma’)*b(:,a+1) - Q*L*y_desired(k+a);

end
end

%Create time vector
time(k) = (k-1)*T;

%Calculate Control
u(k) = -inv(gamma’*S(:,:,1)*gamma + R)*gamma’*(S(:,:,1)*phi*x_old

+ b(:,1));

%Simulate in Plant
y = h*x_old + j*u(k);
y_vec = [y_vec; y];
x_new = phi*x_old + gamma*u(k);
x_old = x_new;

end

4.1.4 Signal Estimated MPC

The signal estimate code has two parameters that can be used for tuning. The first

parameter was how far ahead to start correcting the estimate or the error horizon

parameter. The second was for setting the power of the error-percentage function.

The error-percentage function is the function that showed the percentage of cur-

rent error of the guessed signal to be added versus the number of steps ahead. This

function passed through two points. The first was 0% and the error horizon value.

The second was 100% and 0 steps ahead. This second parameter is the order of the

fit between these two points. A first-order fit is just a straight line between the two

points. A second-order fit is a parabolic function between the two points and so on

for higher order fits. Fits one through ten can be seen in Figure 4.4. Note that they

are labelled from left to right 1-10 and in this particular plot, the error horizon value

was 150.

The code for the signal estimater can be seen below. One extra vector was set up
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Figure 4.4: Error correction functions with a 150 step error horizon. The furthest left
function is 1st-order while the furthest right is 10th-order.

to execute this code.

%Calculate Current Error
y_error(k) = y_actual(k) - y_guessed(k);
for i = 1:error_horizon

y_guessed(k+i-1) = y_guessed(k+i-1) +
(1 - ((i-1)/error_horizon)^nth_order )*y_error(k);

end

%Put in actual Heart Value as next cycle
y_guessed(k+heart_period/T) = y_actual(k);

The nth_order and error_horizon variables are the tuned parameters. As in the

previous coding examples, k is the current state and T is the control algorithm period.

The parameter heart_period refers to the period of the heartbeat. This code was

directly inserted into the MPC control code with the addition that the y_guessed

variable seen here was used as the y_desired variable in the iteration of b.
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4.2 C Simulations

Simulations in C were conducted for the sole purpose of minimizing coding errors.

The computations often required matrix calculations which are not always simple cal-

culations when coding in C. These simulations mirrored those executed in Matlab and

the resulting control signals, plant response and even system state were compared for

correctness. Identical outputs assured that the code was transferred from MATLAB

to C successfully.

To facilitate the coding, functions were made that performed different tasks of the

simulation. Functions that simulated the plant, observed the plant, and calculated

the control effort were all implemented. Constants and gains that could be calculated

before the control loop were set as static variables within their respective functions.

The observer function, simulated state function and MPC and pole placement

algorithms required matrix calculations that were easily executed in Matlab. To

do these calculations in C, a freely distributed linear algebra library was used. The

Meschach library is a linear algebra toolbox that allows users to call the general matrix

manipulations. The open-source code is intended to be used by C developers to make

more complicated matrix calculations by providing basic matrix functionality. The

code executes particularly quickly and for the purposes of this project, possessed all

the required functionality. For a complete reference and more information on the

library, see [49].

4.3 Simulation Results of Algorithm Testing

Each of the algorithms described was tested and tuned in simulation. This section

describes the results of those tests.

The results in this section and all of the following sections have been measured

in the following fashion. The desired accuracy of tracking will be presented in the
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appropriate units and suffice as a metric for comparison of all of the algorithms.

All errors in tracking have been reported as RMS errors. The maximum error may

be reported but is not considered in algorithm effectiveness. For the purposes of this

project, the control effort is generally not considered. The original goal was to acquire

accuracy at the cost of any control. However, in simulation, it is possible to drive

errors down to very small levels while the control becomes unreasonably large (often

regardless of the algorithm being tested). When this occurs the differences in errors

are insignificant and as a result, nothing can be determined. The control in this case

must be considered for comparison purposes. As a result, the algorithms were tested

for accuracy while monitoring the RMS control used. Minimizing the error at a given

control for each of the algorithms would be the optimal method for comparing the

effectiveness of each of the algorithms and would probably be a necessary task when

comparing small improvements between algorithms.

The transfer function used in the initial simulations was a small-signal Cartesian

model obtained by Cavusoglu et al. [42] of the PHANToM manipulator. The model

related the x-direction position to the force. The transfer function can be seen in Eqn

4.1.

x(s)

F (s)
=

s2 + 5.716s + 9.201× 104

3.329× 10−6s4 + 0.001226s3 + 1.536s2
(4.1)

The units of the model are in mm/N. The desired accuracy is within 100 µm RMS.

4.3.1 PD Control

The tuning process for this control method was straightforward. Using the continuous

state-space model to approximate the velocity term (as discussed in Section 3.2)

allowed higher gains to be chosen for the algorithm and better results were achieved

over the first-order velocity approximation method. The algorithm however still broke
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down and became unstable for excessively high gains.
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Figure 4.5: Simulated PD controlled system output and desired output

Figure 4.5 is a plot of the desired trajectory and the simulated output. The

tracking appears to be effective. However, the RMS tracking error was 0.17 mm,

which is not below the desired specification of 0.10 mm. The control required for this

algorithm was 0.70 N RMS.

By examining Figure 4.5 more closely, it appears as if the simulated plant output

oscillates over the heartbeat signal while attempting to track. In the later beats, the

plant output settles down and performs better. This oscillation is due to the initial

position of the desired trajectory. The simulated plant starts at a position of zero

while the desired trajectory starts near -3.5 mm. In an attempt to track this step,

the simulation overshoots and then oscillates onto the desired signal. Some of this

oscillation can be seen in Figure 4.6.

It would be possible to push the gains higher had this initial step been removed.

This could be done by starting the simulation of the plant at -3.5 mm or choosing a
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desired trajectory that started at zero. This was not done for any of the algorithms,

however, and the first beat was not considered when calculating error and control

effort.

4.3.2 Pole Placement

The presence and location of zeros has a direct effect on the system response. A

transfer function with dominant effects in the numerator will adversely affect the

system output [50].

In general, the zeros of a system cannot be placed, so the inherited dynamics must

be compensated for using some other technique. For stable zeros, a common option is

to simply cancel out the zero dynamics by placing a pole in the same position. With

the zero’s dynamics out of the way, it is possible to design a much better controller

where the dominant effects can be directly controlled.

Upon attempting to place the poles at the zeros of the transfer function and then

placing the remaining poles on the positive real axis (in the z plane), the following

results were obtained. The RMS error was 0.15 mm and the control was 0.97 N RMS.

The tracking response and error plots can be seen in Figures 4.7 and 4.8 respectively.

After the poles and zeros effectively cancelled each other out, the new bandwidth of

the system was at the remaining placed pole location. These poles had a bandwidth

of 180Hz.

4.3.3 MPC

Using a future known signal for the MPC algorithm is equivalent to having nearly

perfect tracking. It is similar to driving in fog versus driving on a clear day. It is

much easier when the driver can see what is coming. As stated, using a future known

signal is not feasible in this particular scenario but this algorithm was used to show

the baseline performance.
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Figure 4.6: Simulated PD error between desired signal and system output
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Figure 4.7: Simulated PP controlled system output and desired output
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This was quite evident upon simulation testing of the algorithm. Figure 4.9 is

actually the plant output superimposed on the desired trajectory. The only portions

where the two plots differ are at the beginning of the simulation and near some of

the high frequency regions of the desired signal. In this simulation, the gains were

tuned particularly tightly, yet the RMS control was only 0.93 N. The RMS error was

0.023 mm. Tightly tuned gains in this algorithm mean that the ratio of Q to R was

particularly high.

Figure 4.10 shows the same simulation results with weaker gains. There is a small

noticeable difference near the peaks of the desired waveform, but the plots again

match up better than in the previous two algorithms. The RMS control here was

0.30 N, with an error value of 0.080 mm RMS. These results show that this algorithm

has a control on par with the pole-placement method while possessing three times

better accuracy.

4.3.4 Signal Estimated MPC

The signal estimated MPC was able to produce very favorable results. From Figure

4.11, the tracking appears to be very accurate. The actual numbers support this with

an RMS error of 0.09 mm. The corresponding control effort was 0.78 N RMS. This

algorithm was the only causal algorithm that was able to get the error below the

desired specification while maintaining a reasonable control level.

The horizon value and weighting matrices used for tuning were the same as those

that were used for the tightly tuned MPC algorithm. Recall that the tuning parame-

ters for the error correction function utilized a fit order and error horizon value. The

error correction function utilized only a 200 step look-ahead with a second-order fit.

It is possible that the function could have been made better with a higher-order fit

and possibly a larger error horizon, but the control and RMS error were within the

desired specifications.
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Figure 4.8: Simulated PP error between desired signal and system output
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Figure 4.9: Known-future high-gain MPC tracking results
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Figure 4.10: Known-future low-gain MPC tracking results
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Figure 4.11: Signal estimated MPC tracking signal superimposed over the desired
heartbeat signal
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Chapter 5

Results of Hardware Experiments

The hardware results are presented in the same order as the previous control and

simulation sections. Again, the error specification is quantified for each of the two

test beds before presentation of results. Each experiment was run for at least 12 heart

beat cycles and a portion of those cycles can be seen in plots for each section. The

heart signal used as a reference for tracking is spoken about in detail in Section 1.7.

5.1 Speaker Results

The results for this speaker are given within this section along with any subsequent

discussion of the results. The target RMS error is 0.1 mm again for the subwoofer.

Recall that the speaker model was obtained using the frequency-response method.

As was stated earlier, a voltage was output from the DAC into the system, causing

the speaker to move. The resulting transfer function relates voltage input to posi-

tion output. Therefore, the control is quantified in Volts while the position will be

presented in mm.
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5.1.1 PD Control

The PD control produced the worst results of all the algorithms tested and was only

able to produce accuracies with 1.4 mm RMS error. This result is more then ten

times larger the desired specification of 0.1 mm. The RMS control did remain low

with a value of 0.23V. A plot of the tracking results can be seen in Figure 5.1.

The system output was never able to reach the desired trajectory maximum and

minimum values. The control corresponding to this experiment (Figure 5.2) shows

the system attempting to reach these high peaks. From the large amount of noise seen

on the control effort signal, it is likely that the velocity approximation still limited the

system’s ability to track more accurately. Recall that in this instance, the velocity

was estimated using the observer and state space approximation. It is possible that

observer gains were tuned too tightly for a good filtered approximation of the velocity.

In either case this algorithm performed particularly poorly and even a better velocity

approximation may not have been enough to make the results comparable to the

other algorithm results.

5.1.2 Pole Placement

The pole-placement algorithm was able to obtain an RMS error value of 0.82 mm

with a corresponding control of 0.37V. Even though the control was much higher for

this method relative to PD control, the value still was well within the operating range

of the speaker. A plot of the desired signal and actual system output can be seen in

Figure 5.3.

Recall that in simulation the PP algorithm approached instability for very high

gains, but when the gains were reduced, a persistent delay existed. This is clearly

seen through implementation on the speaker. Being on the verge of instability in

simulation, however, corresponded to instability in the real system. As a result,

the gains were reduced until a stable system was acquired, which resulted in the
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Figure 5.1: PD controlled system output and desired output
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Figure 5.2: Speaker PD Control Effort
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Figure 5.3: Speaker PP Controlled System Output and Desired Output

unwanted delay. This delay comprises a large portion of the error for most of the

tracking process.

5.1.3 MPC

The computer (used for this experiment) could execute code at a maximum of ap-

proximately 40 steps ahead within the control sample period of 0.5 msec. No tests

were attempted above that horizon. It is possible that with a faster computer, the

results could have been improved with a larger horizon.

The known-future MPC algorithm again produced the best results, as expected.

Through tuning of each of the weighting parameters, a combination was found that

produced an RMS error value of 0.28 mm and a corresponding control of only 0.33 V

RMS. Though the tracking error is still larger then the required response, the speaker

system is not meant to perform surgery. This particular test serves more as a relative

performance evaluation. It is likely that the best this particular system could track
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Figure 5.4: Speaker PP Control Effort

would be near 0.3 mm RMS error. The actual output can be seen in Figure 5.5.

Since the error is difficult to see between the two plots, the error plot is provided

(Figure 5.6).

5.1.4 Signal-Estimated MPC

The signal-estimated MPC algorithm again allowed for better results than obtained

in either PD control or PP control. Consistent with simulation, the results were worse

than those found using the known-future MPC.

The error-correction function was tuned with virtually the same values of the

gain parameters and the horizon used in the known-future MPC. The error horizon

worked best when looking 750 steps ahead. This corresponds to a look-ahead of 0.375

seconds. Along side of the 750 step error horizon, the function was raised to the

8th power. With this combination of parameters, the RMS error was 0.46 mm. The

control was 0.33V RMS.
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Figure 5.5: Known-Future MPC System Output and Desired Output
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Figure 5.6: Speaker error between known-future MPC output and desired signal
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Figure 5.7: Signal-Estimated MPC System Output and Desired Output

The signal-estimated MPC method works by extrapolating forward one heartbeat;

it would be possible to extrapolate forward more than one beat but this may lead to

larger errors as consecutive cycles are likely more similar then every other cycle. For a

sampling frequency of 2kHz, one heart beat ahead corresponded to a maximum error

horizon of 1000 steps (0.5 seconds). The error horizon was attempted at that level;

however, the results were close to but not quite as accurate as those using just the

750-step method. Though this method is not overly time consuming, it makes sense

to attempt to keep the overall algorithm execution as short as possible. If there is no

gain in accuracy for more computation (as was the case in this instance), it makes

sense to save the computation time for the MPC gain calculation.

The signal-estimated MPC error plot is shown in Figure 5.8 for comparison to the

known-future MPC algorithm.
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Figure 5.8: Speaker error between signal-estimated MPC and Desired Output

5.2 PHANToM Results

The PHANToM results have been measured and recorded in radians. The input has

been recorded as a torque with units of Newton-meters. In order to get an equivalent

experiment in the circular domain, the desired trajectory signal was modified by

dividing it by the length of the arm. Using Eqn 5.1, the desired RMS error can also

be calculated.

s = rθ (5.1)

The parameter s is the arc length in mm while r is length of the robot arm. A

desired RMS error of 0.1 mm corresponds to an angle of 0.465 mrad. Though this is

not a straight-line length, the arc length of rotation does traverse the correct amount

of distance for the experiment.
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5.2.1 PD Control

As was done in the previous two experimental setups, the PD control was tested first.

The best PD results were able to produce an RMS error of 1.217 mrad (0.2617 mm)

and a corresponding control of 0.3274 Nm RMS. This error is nearly three times the

desired specification. A plot of the control effort and the error signal can be seen in

Figure 5.9.
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Figure 5.9: PHANToM PD-Controlled Tracking Error and Control

5.2.2 Pole Placement

Initial results and tuning of the pole placement algorithm were worse than those of

the PD control. The poles were placed on the positive real axis as close to z = 0 as

possible while still maintaining stability. The system became unstable for poles that

were placed closer than z = 0.8. Poles at this location correspond to a bandwidth of

approximately 70Hz, which should be adequate to track a 20Hz reference signal. The

results of this pole placement can be seen in Figure 5.10.
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Figure 5.10: PHANToM PP controlled tracking results

The experiment in Figure 5.10 utilized poles placed at z = 0.85 and had an

RMS error of 3.1 mrad (0.6665 mm) and a control RMS of 0.1561 Nm. Results with

poles placed at z = 0.8 produced a similar value for error but a much larger control

value. For those gains, the system was nearly unstable and hence the results were

not improved.

An approach to finding better poles was to look to the PD control. By using

the experimentally-determined gains and experimentally-obtained system model, the

closed-loop response can be obtained. In this instance, the closed-loop response pro-

duced poles that were relatively close to the system zeros. In an attempt to match

the results obtained by PD control, a pole placement design was performed with poles

specified identical to those resulting from the tuned PD controller. Theoretically, the

performance will be very similar to the PD controller.

Figure 5.11 shows the position-plus-derivative and pole-placement responses for

calculated identical feedback gains. From this plot, it is evident that the controls
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are, in fact, similar. The response is not exactly the same primarily because the

algorithms differ in feedforward gains (explained later in this chapter).
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Figure 5.11: PD and PP algorithms controlled system output utilizing identical feed-
back gains

The RMS error was 1.400 mrad (0.30 mm) for PD and 1.437 mrad (0.31 mm) for

pole placement. The control efforts differed by a larger margin with the PD being

0.3566 Nm RMS and pole placement only using 0.1844 Nm RMS. The difference in

the controls is evident from Figure 5.11 as the PD plot has more noise associated

with the signal than in the pole-placement output.

Since nearly identical results were obtained in this test (as anticipated), attempts

to improve the results were taken by editing the position of the poles relative to these

seed locations. The PHANToM transfer function contained four poles, which PD

control placed as two sets of complex poles.

Another attempt was to place the dominant poles over the zeros of the numerator

of the transfer function. This was augmented with a movement of the faster poles to
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the real axis and towards the origin. The results of this design were similar to those

obtained by PD; the RMS error was 1.406 mrad (0.3 mm).

5.2.3 MPC

Experimentally on the PHANToM, the MPC was able to out-perform the other al-

gorithms. The results of the known-future MPC were 0.683 mrad RMS (0.1468 mm)

and a corresponding control of only 0.0526 Nm RMS. The results and figures are seen

in Figures 5.12 and 5.13.
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Figure 5.12: PHANToM MPC tracking results and error

These results serve as the relative figure of merit. The 0.683 mrad RMS is 50%

more than the desired specification. This may be the best that this particular robot

could perform. In addition to achieving the best tracking, this algorithm also had a

low control effort. The tracking response was virtually silent for this algorithm and

particularly stable.

Oddly, the closed-loop poles that result from this algorithm are not the same as

96



7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time (sec)

C
on

tr
ol

 (
N

m
)

Figure 5.13: PHANToM MPC control effort

those that produced the best results in the pole-placement and PD control methods.

The closed-loop poles for the MPC were calculated and these poles were used as

the poles to place in the pole placement algorithm. The resulting system output error

and control resembled the results seen in Figure 5.9. The overall response was much

more oscillatory and generally undesirable. Since the feedback gains were identical,

the major influence must come from the feedforward terms in the algorithms.

A plot of the closed-loop (CL) poles of the control algorithms, relative to the

open-loop poles and zeros, is shown in the z plane in Figure 5.14.

Singer et al. performed input-shaping experiments in the early 90’s [51]. The idea

was to model the system and produce open-loop feedfoward control components that

would eliminate unwanted oscillation. Therefore a specific control input is shaped

in order to get a desired response. This has been successful in practice [52] and

shows that with sufficient system information, it is possible to improve the controlled

response without altering the system response through feedback. This in part explains
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Figure 5.14: Pole Placement By Algorithm

why the MPC algorithm produces such accurate results with the calculated gains. It

is taking the system dynamics into consideration along with the desired output and

prescribing an appropriate feedforward control.

5.2.4 Signal-Estimated MPC

The signal-estimated MPC in this instance did not produce significantly better results

than that of the other causal algorithms. The RMS error was 1.088 mrad (0.23 mm)

with a corresponding RMS torque of 0.1961 Nm. Plots of these results can be seen

in Figure 5.15.

The error-correction parameters for these results corresponded to an error hori-

zon of 350 steps and the error function raised to the 8th power. In general, the same

weighting matrices and horizon values were used when switching control algorithms

from MPC to Signal-Estimated MPC. In this case, the known-future MPC weight-

ing matrices and horizon did not produce the best results for the Signal-Estimated
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Figure 5.15: PHANToM signal-estimated MPC Results

MPC and as a result, an alternate set of MPC parameters was tuned for the Signal-

Estimated MPC. An MPC horizon of 13 steps was used in conjunction with a state-

error weighting matrix that was three times the size of previous weighting parameter.

The choosing of parameters in the error-correction function (the error horizon and

power of error function) turned out to be much more difficult as well. Several local

minima were found before a satisfactory solution was obtained. These minima did

not follow an obvious pattern, so any changing of the MPC gains resulted in large

changes in the error-correction function parameters.
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Chapter 6

Analysis and Conclusion

6.1 Results Revisited

The complete results of the algorithms have been organized into Table 6.1. The

known-future MPC produced the best results in all cases. It was able to maintain

a reasonable control effort while showing accuracy below or very near the desired

specification. Furthermore, the estimated signal MPC method also produced results

better than those of traditional pole placement and PD control methods.

Tracking Results Simulation Speaker PHANToM
Error Control Error Control Error Control

Units mm N mm V mrad Nm
Desired Specification 0.10 - 0.10 - 0.465 -

PD 0.17 0.70 1.4 0.23 1.22 (0.262mm) 0.327
PP 0.15 0.97 0.82 0.37 1.37 (0.295mm) 0.304

MPC 0.023 0.93 0.28 0.33 0.683 (0.147mm) 0.0526
Estimated Signal MPC 0.090 0.78 0.46 0.33 1.09 (0.234mm) 0.196

Table 6.1: Complete Results of Simulation and Hardware
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6.2 Conclusion

The feasibility of motion cancellation during heart surgery has been studied. Though

current methods are still raw, it is very likely that an algorithm and system exists

that will be able to produce the accuracy restraints needed in order to perform motion

cancelled heart surgery.

The estimated signal MPC algorithm showed that it was able to work better than

the other algorithms while using an acceptable amount of control. The improvement,

though significant in simulation was only “just better” when tested on the actual

hardware. The PHANToM improvement could even be considered marginal and as a

result, implementation of the algorithm would not be worth the extra effort.

The estimated signal MPC algorithm as a whole proved to be difficult to tune,

being sensitive to changes in the MPC horizon or weighting parameters. An in-depth

study needs to be conducted in order to optimize such a method for general use. The

guess-and-check method implemented was able to produce the desired results, but it

is unlikely that these results were optimal. Furthermore, a more theoretical approach

to the problem may divulge some insight into the tuning process.

What is undeniable however, is that the known-future MPC algorithm was signifi-

cantly better than the alternatives tested, both in simulation and in experiments. By

using future information about the desired signal, it is possible to obtain improved

accuracies.

6.3 Future Work

Unfortunately it is not known if the estimated signal MPC algorithm would work with

a real surgical setup. The error was low but not as low as what was possible with the

MPC method. Generally the accuracy can be attributed to the system first and then

the control second. A responsive system will produce good results regardless of what
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type of control is used; while a poorly designed system may have trouble producing

even reasonable results when the best control algorithm is used.

The MPC algorithm obviously can not work by itself, as it can not produce the

future desired trajectory. The estimated signal MPC may be one answer to such a

problem, but specific tests on a real surgical system would have to be conducted to

determine its overall effectiveness and usefulness.

It is likely that some more information needs to be included in order to produce

a better signal prediction for the MPC algorithm. An inclusion of ECG data would

be one possible solution. The ECG data is an electric signal passed to the heart,

which often indicates when the heart will beat. This information generally can be

obtained before the heartbeat occurs and as a result provide some future information

about the heart beat signal. Research into this area will provide more insight into

this alternative.

As far as the estimated signal MPC algorithm is concerned, as stated previously,

the tuning needs to be improved. The method does seem to have some promise and its

simplicity in concept is appealing. Likely a mapping between results and the tuning

parameters could be developed, which would enable more effective control design.

Another setup could be implemented where the speaker was used in a feedforward-

only setup and was treated as a hardware simulated heart. The speaker excursion

could be read in by the ultrasonic sensor and then used for trajectory tracking with

the PHANToM. This would constitute a more realistic emulation. The tracking and

different algorithms could be physically seen. Since the heart signal may not be

as good when implemented entirely feedforward, other aspects such as a slight ran-

domness in the signal is added which would probably help see the robustness of the

algorithm.

The process could be made more realistic by doing the tracking on the robot on

the same axis as the subwoofer. Attaching a camera onto the end of the PHANToM
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looking towards the speaker would give some idea to how good the tracking actually

is and provide some insight into how difficult the surgery with motion cancellation

might be.

With regards to the algorithm, advancements could be made using µ analysis

[53] or H∞ controllers [54]. These control methods may be able to provide more

robustness to the algorithm.

6.4 Wrap up

This thesis has presented control system simulations and experiments to evaluate

prospects for future motion cancellation surgical systems. The results suggest that

the dynamic requirements may be within reach of current technology with careful

attention to design of the electromechanical system and the control algorithm.
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