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Prof. Dr. Hitay Özbay (Co-Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ömer Morgül
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Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School of Engineering and Science

ii



ABSTRACT

HEART MOTION PREDICTION BASED ON ADAPTIVE
ESTIMATION ALGORITHMS FOR ROBOTIC-ASSISTED

BEATING HEART SURGERY

Eser Erdem Tuna

M.S. in Electrical and Electronics Engineering

Supervisors: Assoc. Prof. Dr. Cenk Çavuşoğlu and Prof. Dr. Hitay Özbay

September, 2011

Robotic assisted beating heart surgery aims to allow surgeons to operate on a beating

heart without stabilizers as if the heart is stationary. The robot actively cancels heart

motion by closely following a point of interest (POI) on the heart surface—a process

called Active Relative Motion Canceling (ARMC). Due to the high bandwidth of the

POI motion, it is necessary to supply the controller with an estimate of the immediate

future of the POI motion over a prediction horizon in order to achieve sufficient

tracking accuracy. In this thesis two prediction algorithms, using an adaptive filter

to generate future position estimates, are studied. In addition, the variation in heart

rate on tracking performance is studied and the prediction algorithms are evaluated

using a 3 degrees of freedom test-bed with prerecorded heart motion data.

Besides this, a probabilistic robotics approach is followed to model and character-

ize noise of the sensor system that collects heart motion data used in this study. The

generated model is employed to filter and clean the noisy measurements collected

from the sensor system. Then, the filtered sensor data is used to localize POI on

the heart surface accurately. Finally, estimates obtained from the adaptive predic-

tion algorithms are integrated to the generated measurement model with the aim of

improving the performance of the presented approach.

Keywords: Active relative motion canceling, signal estimation, medical robotics,

surgical robotics, probabilistic robotics.
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ÖZET

ROBOTİK-DESTEKLİ KALP AMELİYATLARI İÇİN

UYABİLEN TAHMİN ALGORİTMALARINA DAYALI
KALP HAREKETİ TAHMİNİ

Eser Erdem Tuna

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Doç. Dr. Cenk Çavuşoğlu ve Prof. Dr. Hitay Özbay

Eylül, 2011

Robotik destekli atan kalp ameliyatı, cerrahlara atan kalp üzerinde dengeliyiciler

olmadan, kalp sabitmişçesine çalşmaları için olanak sağlamaktadır. Robot, kalp

yüzeyindeki bir ilgi noktasını etkin bir biçimde, yakından takip ederek kalp hareke-

tini iptal eder. Bu yönteme “Etkin Göreceli Hareket Önleyici (EGHÖ)” denilmek-

tedir. İlgi noktasının yüksek bant genişliğindeki hareketi nedeniyle, yeterli takip

doğruluğunu sağlamak için, denetleyiciye ilgi noktasının hareketinin bir tahmin

ufku boyunca yakın bir tahminini sağlamak gerekmektedir. Bu tezde, gelecekteki

konum tahminini oluşturmak için uyabilen süzgeç kullanan iki tahmin algoritması

çalışılmıştır. Buna ek olarak, kalp hızı değişiminin takip performansı üzerine etkisi

çalışıldı ve tahmin algoritmaları 3 serbestlik derecesi olan bir sınama ortamı kul-

lanılarak önceden kaydedilmiş kalp hareketi verileri ile değerlendirildi.

Bunların yanında, bu çalışmada kullanılan kalp hareket verilerini toplayan sezici

sistemin gürültüsünü tanımlamak için olasılıksal bir robotik yaklaşım takip edildi.

Oluşturulan model, sezici sistemden toplanan gürültülü ölçümleri süzmek ve temiz-

lemek için istihdam edildi. Daha sonra, süzülmüş sezici ölçümler, ilgi noktasının kalp

yüzeyindeki yerinin doğru bir şekilde belirlenmesi için kullanıldı. Son olarak, uyabilen

tahmin algoritmalarından elde edilen tahminler, sunulan yaklaşımın performansını

arttırmak amacıyla oluşturulan ölçüm modeline dahil edildi.

Anahtar sözcükler : Etkin göreceli hareket önleyici, sinyal tahmini, tıbbi robotik,

cerrahi robotik, olasılıksal robotik.
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Chapter 1

Introduction

1.1 Coronary Artery Bypass Graft Surgery

Coronary artery bypass graft (CABG) surgery requires surgeons to operate on blood

vessels that move with high bandwidth. This rapid motion of heart makes it diffi-

cult to track these arteries by hand effectively [1]. Contemporary techniques either

stop the heart and use a cardio-pulmonary bypass machine or passively restrain the

beating heart with stabilizers in order to cancel the biological motion of heart dur-

ing CABG surgery. However using on-pump CABG surgery might expose patient

to suffer from long term cognitive loss due to complications that can occur during

or after the surgeries as a consequence of stopping the heart [2]. Off-pump CABG

surgery with stabilizers is limited to the front surface of the heart and significant

residual motion is observed during stabilization [3].

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: System Concept for Robotic Telesurgical System for Off-Pump CABG
Surgery with Active Relative Motion Canceling (ARMC). Left: Surgical instruments
and camera mounted on a robot actively tracking heart motion.

1.2 Robotic-Assisted Beating Heart Surgery

Robotic-assisted beating heart surgery emerges as a novel technology, which replaces

the conventional surgical tools with robotic instruments. Figure 1.1 illustrates the

proposed robotic assisted surgical system. In this system, a camera which is mounted

on a robotic arm follows the heart motion. A surgical robot, which moves simulta-

neously with the heart, is used to track and cancel the relative three dimensional

heart motion. By this way, it allows surgeon to experience the surgical site via stabi-

lized views. Surgeon directly controls the surgical instruments through teleoperation

and surgical instruments track heart motion and cancel the relative motion between

heart and the instruments. Thus, the surgeon operates on heart as if it is station-

ary. This approach is called “Active Relative Motion Canceling (ARMC)”. This

would eliminate the need for stopping the heart and the use of cardio pulmonary

bypass machine (the pump). Hence, robotic-assisted CABG surgery will prevent the

occurrence of risks due to on-pump CABG surgery. It differs from the traditional

off-pump CABG surgery with stabilizers since in the proposed robotic-assisted sur-

gical system, heart motion is canceled with motion compensation. In contrast in the
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traditional off-pump CABG surgery, heart is passively constrained with mechanical

stabilizers [4].

1.3 Motion Estimation Algorithms for Model

Based Active Relative Motion Canceling Al-

gorithms

In CABG surgery, surgeon is required to operate on small blood vessels which move

very rapidly. Their diameters vary from 0.5 to 2 mm and they have a quasiperiodic

motion at the rates of 1 to 2 Hz. RMS tracking error for the position of a point of

interest (POI) on the heart surface has to be in the order of 100-250 µm to perform

precise operations on these vessels. The robotic tools need to track and manipulate

a fast moving target with very high precision [5]. Causal error feedback control alone

is not able to reduce the tracking error sufficiently such that surgery can be done

on blood vessels on the heart surface. A predictive controller which implements a

receding horizon model predictive control (RHMPC) in the feedforward path was

found to be necessary [6,7]. The proposed control architecture for designing motion

estimation algorithm for ARMC on the beating heart surgery is shown in Figure 1.2

In the Model Based ARMC Algorithm architecture, the control algorithm fuses

information from mechanical motion sensors which measure the heart motion. Mo-

tion of the point of interest (POI) has two dominant modes of motion, lung motion

and heartbeat motion. These two modes are separated using proper filters. Lung

motion has significantly lower frequency, and it can be canceled by a simple causal

feedback controller. On the other hand, heartbeat motion has more demanding re-

quirements in terms of the bandwidth of the motion that needs to be tracked. Thus

a feedforward controller is required to cancel heartbeat motion.
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Figure 1.2: Proposed control architecture for designing Intelligent Control Algo-
rithms for Active Relative Motion Cancelling on the beating heart surgery.

The confidence level reported by the heart motion model will be used to adap-

tively weight the amount of feedforward and feedback components used in the final

control signal. This confidence level will also be used as a safety switching signal to

turn off the feedforward component of the controller if an arrhythmia is detected,

and switch to a further fail-safe mode if necessary. These safety features will be an

important component of the final system.

The primary goal of this research is to improve the tracking performance of a sur-

gical robot prototype as proof of concept that motion cancelation can be achieved.

To this end, the tracking performance research has primarily been focused on devel-

oping estimation methods for use with a RHMPC. Such a predictive controller needs

an estimate of the future motion of the POI on the heart surface. The estimate needs

to be of a finite duration into the future, referred to as the prediction horizon.
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In this thesis, heart motion prediction methods based on adaptive filtering tech-

niques are studied. The implementations parametrize a linear system to predict the

motion of the POI and rely on recursive least square adaptive filter algorithms. The

presented methods differ as the first one assumes a linear system relation between the

consecutive samples in the prediction horizon whereas the second method performs

this parametrization independently for each point throughout the horizon. The ef-

fectiveness and feasibility of these algorithms are studied by simulations and on a

3-degree-of-freedom (DOF) hardware with constant and varying heart rate data.

The presented one step adaptive filter and the generalized adaptive filter are

initially described by Franke et al. in [8] and [9] respectively. During the course of this

research, these two algorithms are exhaustively and extensively studied. The bugs

and errors in these predictors are fixed and the generalized predictor is completely re-

implemented. As a result of this effort, the prediction performance of the algorithms

and eventually the tracking performance of the intelligent control algorithms are

significantly improved. These two algorithms are explained for the completion of the

work and the results presented in this thesis.

1.4 A Probabilistic Robotics Approach for Sens-

ing

A sensor that is in continuous contact with tissue is necessary for satisfactory track-

ing. The continuous contact sensor used in measuring the heart motion in the current

literature is a Sonomicrometry system manufactured by Sonometrics Inc. (London,

Ontario, Canada). A Sonomicrometer measures the distances within the soft tissue

via ultrasound signals. A set of small piezoelectric crystals attached to the tissue are

used to transmit and receive short pulses of ultrasound signal, and the time of flight

of the sound wave as it travels between the transmitting and receiving crystals are
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Figure 1.3: Piezoelectric crystals (courtesy of Sonometrics Corporation). Left: Stan-
dard piezoelectric crystal in 2 mm diameter that were used on the base plate. Right:
Piezoelectric crystal with suture loops embedded to the crystal head. Loops are used
to suture the crystal onto muscle.

measured (see Figure 1.3) [10].

The Sonomicrometric position sensor has been the sensor of choice in the earlier

studies of this research, but obtaining precise position measurements is essential in

closed loop control for tracking the beating heart. Despite sonomicrometric sensors

are very accurate, they contain noise from ultrasound echoes. [4].

It is crucial to provide good quality of heart motion data to intelligent control

algorithms to make sure that these algorithms follows and cancels motion of POI

on heart surface accurately. In this part of the research, a probabilistic robotics

approach is followed to model the noise of the Sonomicrometry sensor system and

a Bayes estimator is used to filter and clean the noisy measurements collected from

the Sonomicrometry sensor system. Then the POI on the heart surface is localized

using this filtered measurements.

The main reason for following a probabilistic robotic approach is to represent

uncertainty in the sensor system explicitly, using the calculus of probability theory.

In other words, instead of relying on a single hypothesis as to what might be the
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exact effect of the ultrasound echoes on measurements, the applied probabilistic

algorithms represent information by probability distributions over a whole space of

possible hypotheses.

1.5 Contributions

This thesis presents two heart motion prediction methods based on adaptive filtering

techniques. The presented methods differ as the first one assumes a linear system

relation between the consecutive samples in the prediction horizon whereas the sec-

ond method performs this parametrization independently for each point throughout

the horizon.

Although, the presented one step adaptive filter and the generalized adaptive

filter are initially described by Franke et al. in [8] and [9] respectively, the bugs

and errors in these predictors are completely fixed and the generalized predictor is

completely re-implemented.

In the literature these predictors are tested with very limited and short duration

of data. During the course of this research, these two algorithms are exhaustively

and extensively studied with a wide range of different heart motion data. Predictors

are tested with both constant and varying heart rate motion data. This is the first

study that uses real varying heart rate data to perform heart motion tracking. As a

result of this effort, the prediction performance of the algorithms and eventually the

tracking performance of the intelligent control algorithms are significantly improved.

With the presented algorithms, the estimation of future POI motion is no longer

the bottleneck in the heartbeat motion tracking since the necessary amount of RMS

tracking error for the POI on the heart surface is achieved to perform precise oper-

ations.
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In this work, an effective probabilistic robotics approach is applied to model and

characterize noise of the sensor system that is used to collect heart motion data used

in this study. The applied model completely covers the noise of the sensor system and

effectively filters the noisy measurements. In an in-vivo heart tracking experiment,

this preliminary approach will provide an online filtering mechanism for the noisy

sensor measurements and localize point-of-interest on the heart surface accurately.

1.6 Thesis Outline

The rest of this thesis is organized as follows. Related work and analysis of the

experimental heart motion data are given in Chapter 2. Problem formulation, the

prediction methods and how the methods differ from each other to create estima-

tions throughout the prediction horizon are explained in Chapter 3. Implementation

details are also addressed in this chapter. In Chapter 4 simulation and experimental

results are given. Chapter 5 describes the probabilistic approach that is applied the

model noise in the sensor system and explains two different localization algorithms

that are used to filter and clean noisy sensor measurements in order to accurately

localize the Point-of-Interest(POI) on heart. The results of the localization algo-

rithms are given in Chapter 6. Finally, the discussion and conclusions are presented

in Chapter 7.



Chapter 2

Background

2.1 Related Works in Literature

This thesis is concerned with estimating the prediction horizon for RHMPC–a control

scheme that relies on the estimate of the prediction horizon as a reference signal.

There has already been several proposed ways to estimate motion of a POI on the

heart surface.

Nakamura et al. [11] performed experiments to track the heart motion with a

4-DOF robot using a vision system to measure heart motion. The tracking error

due to the camera feedback system was relatively large (error on the order of few

millimeters in the normal direction) to perform beating heart surgery. There are also

other studies in the literature on measuring heart motion. Thakor et al. [12] used a

laser range finder system to measure one-dimensional motion of a rat’s heart. Groeger

et al. [13] used a two-camera computer vision system to measure local motion of heart

and performed analysis of measured trajectories, and Koransky et al. [14] studied the

stabilization of coronary artery motion afforded by passive cardiac stabilizers using

9
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3-D digital sonomicrometer. Richa et al. developed a tracking algorithm for the

heart surface based on a thin-plate spline deformable model [15], and an illumination

compensation algorithm which can cope with arbitrary illumination changes on the

heart [16].

Ortmaier et al. [17] used Takens Theorem to develop a robust prediction algo-

rithm, anticipating periods of lost data when a tool obscured the visual tracking

system. Estimates were generated from a linear combination of embedding vectors

of previous heart data. The weights were chosen such that better estimating vectors

are weighted more heavily. The algorithm had a global prediction technique that

correlated ECG signals to heart motion. It was able to estimate the system behavior

when visual contact of the landmark was lost for some period of time.

Ginhoux et al. [7] separated breathing motion from heart motion in the prediction

algorithm. The breathing motion was treated as perfectly periodic, since the patient

would be on a breathing machine. The heart motion was predicted by estimating the

fundamental frequency, as well as the amplitude and phase of the first 5 harmonics.

This prediction was used to estimate disturbance so that the controller could correct

for it.

Rotella [6] used the previous cycle of heart motion data as an estimate of future

behavior. This lead to problems since the POI motion was not perfectly periodic.

Bebek and Cavusoglu [4] improved upon this prediction scheme by synchronizing

heart periods using ECG data and separated heart and breathing motion, predicting

only heart motion. Bebek noted that the prediction method still could be improved.

Bader et al. [18] presented a model-based approach for reconstructing the position

of any arbitrary POI and for predicting the heart’s surface motion in the intervention

area. They model the motion of a POI on heart surface by means a pulsating

membrane model. The membrane motion is described by means of a system of

coupled linear partial differential equations (PDEs) and obtained a bank of lumped
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systems after spatial discretization of the PDE solution space by the Finite Spectral

Element Method. A Kalman filter is employed to estimate the state of the lumped

systems by incorporating noisy measurements of the heart surface.

Yuen et al. [19] developed a 1-DOF ultrasound-guided motion compensation sys-

tem for cardiac surgery. The surgical system integrates 3D ultrasound imaging and

a robotic instrument with a predictive controller that compensates for the 50-100 ms

imaging and image processing delays to ensure good tracking performance. Yuen et

al. [20] used Extended Kalman Filter (EKF) algorithm to predict the future position

of mitral valve annulus motion. The EKF filter is used to feed-forward the trajectory

of a cardiac target in order to compensate time delays occurred due to the acquisition

of motion data by the 3D ultrasound imaging. They tested the performance of EKF

in prediction and tracking in the presence of high measurement noise and heart rate

variability. They reported RMS synchronization errors of 1.5 mm for trajectories

derived from clinical heart rate variability data.

This thesis introduces new estimation algorithms into the controller described

in the earlier work of Rotella [6] and Bebek and Cavusoglu [4]. New prediction

technique using adaptive filters are proposed and used in place of the prediction

algorithm of Bebek and Cavusoglu [4]. Since the new predictors are parameterized

by a least squares algorithm, the predictors are inherently robust to noise. The

predictors only use observations close to and including the present making it less

susceptible to differences between heart periods than the algorithm of Bebek and

Cavusoglu [4]. Where as Ginhoux et al [7] formulated prediction for periodic POI

motion, no assumptions are made towards periodicity of the system a priori, rather

the predictors are unconstrained so that they can best mimic the motion of the POI.

The adaptive prediction algorithms presented in this thesis tested with constant and

varying heart rate motion data. This is the first study that uses real varying heart

rate data to perform heart motion tracking.
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In addition, tracking and prediction performance of the adaptive predictors pre-

sented in this thesis and the EKF predictor used in the study of Yuen et al. [20] are

compared.

2.2 Analysis of Heart Data

In this section of the thesis, the experimentally collected varying heart rate motion

data, which are used in this study, are described. Data were collected from three

calves and all the study is performed with on benchtop with these pre-recorded data.

First the collection of heart motion data will be explained. Then the analysis of

varying heart rate motion data is presented.

2.2.1 Experimental Setup for Measurement of Heart Motion

The prerecorded data used in this study was collected using a Sonomicrometry sys-

tem (Sonometrics Inc., Ontario, Canada). The Sonomicrometry system has also been

the sensor of choice in our previous work for measuring heart motion for robotic

ARMC [4]. A Sonomicrometer measures the distances within the soft tissue via

ultrasound signals. A set of small piezoelectric crystals attached to the tissue are

used to transmit and receive short pulses of ultrasound signal, and the “time of

flight” of the sound wave as it travels between the transmitting and receiving crys-

tals are measured. Using these data, the 3-D configuration of all the crystals can

be calculated [10]. Absolute accuracy of the Sonomicrometry system is 250 µm

(approximately 1/4 wavelength of the ultrasound) [21].

In the experimental set-up one crystal of the Sonomicrometry system was sutured

on the heart . While collecting measurements, this crystal on the heart was placed in

two different locations. The first location, which is referred to as ‘Top’ in the rest of
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Figure 2.1: Experimental setup for measurement of heart motion. Two Sonomicrom-
eter crystals that are sutured on the anterior and posterior surfaces of the heart are
used for data collection. Pacemaker leads and Sonomicrometer base are also visible
in the image.

the thesis, is located on the front surface. Specifically, the Sonomicrometry crystal

was placed at 1 cm laterally from the left anterior descending coronary artery and 8

cm cranially from the LV apex. The second location, which is referred to as ‘Side’,

is the location on the side surface of the heart. Specifically, in this case, the crystal

was placed at 5 cm laterally from the left anterior descending coronary artery and

10 cm cranially from the LV apex. Five other crystals were asymmetrically mounted

on a rigid plastic base of diameter 60 mm, on a circle of diameter 50 mm, forming a

reference coordinate frame. This rigid plastic sensor base is placed in a rubber latex
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balloon which is filled with a %9.5 glycerine solution. The reason of using such a set-

up is to ensure a continuous line of sight between the base crystals and the crystal on

the heart surface through a liquid medium for proper operation of Sonomicrometry

sensor system. Figure 2.1 shows the experimental setup for measurement of heart

motion. The Sonomicrometer crystals that are sutured on the heart can be seen

from the figure. The pacemaker leads that are used to change the heart rate and the

Sonomicrometer base are also visible.

Data were processed offline using the proprietary software provided with the

system to calculate the 3-D motion of the POI. The only filtering performed on the

data produced by the Sonomicrometry system was the (very limited) removal of the

outliers, which occasionally occur as a result of ultrasound echoing effects. Although

the Sonomicrometry system can operate at 2 kHz sampling rate for measuring the

location of the POI crystal relative to the fixed base, in our test experiments, we have

collected data at sampling rates of 257 Hz and 404 Hz in order to collect redundant

measurements.

2.2.2 Analysis of Varying Heart Rate Motion Data

The motion of the heart surface is quasi-periodic in nature. The motion of the POI

on the heart is primarily the superposition of two effects: motion due to the heart

beating and motion due to breathing. Each of these signals closely resemble periodic

signals.

In practice, the statistics of heart motion is likely to change during surgery. Such

a change will result in variations in the underlying dynamics of the POI’s motion. In

order to explore the effects of these slow variations on the tracking performance and

investigate how the adaptive algorithms will adjust to these changes, two distinct

types of experimentally collected heart data is used in this study. The first type



CHAPTER 2. BACKGROUND 15

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

Frequency [Hz]

P
S

D
 [l

in
ea

r 
un

its
]

A−Power spectal density of the heart motion with constant heart rate

 

 

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

Frequency [Hz]

P
S

D
 [l

in
ea

r 
un

its
]

B−Power spectal density of the heart motion with varying heart rate

 

 
PSD of the motion in z−direction
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Figure 2.2: Power Spectral Density (PSD) of the heart motion in the z direction. (A)
PSD of heart motion with constant heart rate. Tall, narrow peaks with the absence
of intermittent frequencies indicate largely periodic motion of the heart. (B) PSD of
heart motion with varying heart rate.

includes constant heart rate data whereas the second type includes varying heart

rate data. From each calf a duration of 736-s, 472-s and 340-s of data are processed

and used in this study.

Fourier analysis of the heart signal data with constant heart rate reveals how this

periodic nature is prevalent (see Figure 2.2-A). The first peak corresponds to lung

motion, which has the lower frequency with a fundamental period of approximately
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Figure 2.3: Variation of heart rate in the heart motion in x-direction.

0.17 Hz with first harmonic at 0.33 Hz is appearing significant. The heart motion it-

self has a fundamental frequency of 1.66 Hz, corresponding to 100 bpm, with the first

four harmonics clearly visible in the figure. The peak displacement of the POI from

its mean location was 8.39 mm, with a root-mean-square (RMS) value of 3.55 mm.

The sharpness of these peaks indicate that the harmonics decay very little in time,

meaning that the overall motion of the POI is similar to a superposition of periodic

signals.

In order to change the heart rate, an artificial pacemaker is employed which uses

electrical impulses to regulate heart rate, generated by electrodes contacting the
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heart muscles. Initially heart is allowed to beat 40 seconds at 95 bpm. Then, the

heart rate is gradually increased from 95 bpm to 152 bpm by approximately 10 bpm

steps and then decreased in the same way, where heart is allowed to beat for at

an average 15 seconds at a particular heart rate. Figure 2.3 shows the variation in

heart rate with respect to time for the heart motion in x-direction. In the Fourier

analysis of varying heart rate data, Figure 2.2-B, the first observable dominant mode

at 0.17 Hz corresponds the breathing motion, similar to constant heart rate data,

with a significant first harmonic at 0.33 Hz. The remainder of motion which is due to

the beating of heart shows the fundamental frequencies of heart motion for different

heart rates. The peaks at 1.58 Hz, 1.81 Hz, 2.03 Hz, 2.18 Hz, 2.42 Hz and 2.54 Hz

correspond to heart rate of 95 bpm, 110 bpm, 120 bpm, 130 bpm, 145 bpm and

152 bpm, respectively. The peak displacement of the POI from its mean location

was 7.43 mm, with a RMS value of 3.38 mm.



Chapter 3

Problem Definition and Methods

3.1 Problem Formulation

The control algorithm establishes the most essential part of the robotic tools for

tracking heart motion during CABG surgery. Rapid motion of heart possesses de-

manding requirements on the control architecture in terms of the bandwidth of the

motion that needs to be tracked. This necessity resulted in utilizing a feedforward

algorithm in the control architecture in order to cancel high frequency components

of heartbeat motion. In this study RHMPC (originally developed in [4]) was used

as the feedforward control algorithm, requiring an estimate of the immediate future

of the POI on the heart surface. If the feedforward controller has high enough pre-

cision to perform the necessary tracking, then the tracking problem can be reduced

to predicting the estimated reference signal effectively [4].

The following notion will be used for formulating the motion estimation problem.

Let zi represent an observation at time i. In this case, zi is a three dimensional

column vector representing the location of the POI in Cartesian coordinates. At a

18
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Figure 3.1: A schematic of the prediction problem. The circles represent past ob-
servations, now in memory, the ‘X’ is the current observation, and the short curve
originating from there is the horizon estimate. The predictor takes the past obser-
vations and produces the horizon estimate from past observations.

given time step n, the observation zn indicates the current 3D position of the heart.

Then, the observation zn−1 represents the previous position of heart at the time n;

and the older observations will be referenced by decreasing subscript index, e.g., zn−5

is the observation from five samples ago. In a similar fashion, zn+1 represents the

next observation at time n. Yet, this observation has not occurred, and will not be

known until it becomes the present value. The estimate for the next observation at

time n is introduced as ẑn+1.

Using this notation, the prediction problem can be posed as follows: Given the N -

dimensional vector of known samples leading up to time n, [zn, zn−1, . . . , zn−N+1]
T ,

find the best estimate of the M-dimensional horizon, [zn+1, zn+2, . . . , zn+M ]T . Fig-

ure 3.1 provides a graphical schematic of this problem. The best estimate is defined
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to be the one that minimizes the square of the estimation error, where the estimation

error is the difference between the prediction and the observed value at that time.

Once a method is established to predict the next observations, a sequence of future

observations can be estimated. However, heart dynamics are nonlinear, which makes

it quite challenging to parameterize a valid heart model in order to generate future

predictions of POI from known samples.

Two adaptive filter based motion estimation algorithms are presented in this

thesis to estimate reference signal, namely one step adaptive filter based motion

estimation algorithm and a generalized adaptive filter based motion estimation al-

gorithm. These two methods formulate and then parameterize the model of heart

motion differently as described in the following two sections, Section 3.2 and Section

3.3.

3.2 One Step Motion Estimation Algorithm

An N th order predictor has memory of past N − 1 observations together with ac-

cessing to current observation. It generates the next expected observation in the

prediction horizon based on these N observations. In order to generate the next fu-

ture observation, what was just estimated is evaluated as if it was actually observed

in the current time step and is added to the set of observations. Then the next value

in the horizon is the next prediction that is obtained from this set. Proceeding in a

similar fashion, any number of future estimates can be generated recursively till all

the predictions for the horizon have been made.

In order to generate predictions in this way, the one step prediction function must

be known. The motion of the POI interest is a continuous-time dynamic system,

which is nonlinear as mentioned in the previous section. To establish a method

for predicting future positions of POI, an equivalent discrete-time system has to be
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used. Yet, neither the state space nor the dimension of the heart is obvious. So to

simplify prediction method, a finite and low order state vector must be employed in

the heart model. The state transition function for this approximate heart model is

also nonlinear due to nonlinear dynamics of heart motion, which makes it difficult

to parameterize.

The Fourier analysis of the heart signal data, presented in Section 2.2, reveals

the quasiperiodic nature of the heart motion (see Figure 2.2-A). It shows that the

heart position signal is composed of a main mode and additional harmonic where

the motion is subject to small disturbance. This nature of heart motion allows the

nonlinear state transition function to be approximated as linear by the following

intuition.

The sharpness of the peaks of significant harmonics indicate that the harmonics

decay very little in time, meaning that the overall motion of the POI is similar to

a superposition of periodic signals. A linear system can easily be constructed that

has a frequency response that mimics the heart signal’s Fourier representation. The

transient response would then resemble the observed heart data. Thus, given the

current state of the actual heart signal as initial values for the system, the transient

response would follow the actual heart motion−giving a prediction.

Finally, if the state was formulated as a stacked vector of past observations, then

the determination of the initial state would be trivial. A linear system of the above

specifications would meet the requirements for the heart model transition function.

However, the model would still need to be parameterized in a way to statistically

minimize the error of the prediction.
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3.2.1 Model of Heart Motion

The heart position data consists of 3-dimensional vectors representing position.

These vector samples are assumed to be generated from a vector autoregressive model

(VAR). A VAR process has multiple output signals which are correlated with each

other. The model is given by following equation [22]:

~zk =
N∑

i=1

Ai~zk−i + ~γk (3.1)

In this case, it is an N th order VAR model. Each observation is given by a weighted

sum of past observations, and is perturbed by noise given by ~γk. Noise vector ~γk is

assumed to be zero mean white noise. Since the linear combination of past obser-

vations account for correlation between observations, for any two noise vectors ~γk

and ~γi, ~γk is uncorrelated with ~γi for i 6= k. Since the noise vector is assumed to

be white, it is not useful when generating predictions of future values. Therefore,

when parameterizing the equation for the purpose of prediction, only the weighting

matrices need to be estimated.

The VAR model given in (3.1) can be reformulated in state space canonical form

as
~Xk = Φ ~Xk−i + Γ~vk

~σk = C ~Xk

(3.2)

This system can be reformulated using an arbitrary state vector, however a

stacked vector of past observations simplifies the determination of the initial state,

parametrization of the state transition matrix Φ, and generation of the prediction



CHAPTER 3. PROBLEM DEFINITION AND METHODS 23

horizon. In this case, Φ is in canonical form and can be written as:

Φ =










A1 A2 · · · AN

I 0 · · · 0

0 I
...

...
. . . 0










(3.3)

Future observations of the system are given by solving the state space solution

at time n. In order to find the expected trajectory, we take the expectation of (3.2)

and find that the solution takes the form

E{zn+k} = CΦk ~Xn (3.4)

where the above formula gives the horizon estimate made at time n for a value k

steps into the future. Note that since Φk is only computed for k < M , where M

is the horizon length, Φk always remains finite. Therefore, stability of Φ is not a

concern. Since ~v is unknown, but its expected value is zero by construction, it does

not appear in the solution to the expected trajectory.

3.2.2 Adaptive Filter

The adaptive predictor consists of two principle parts: a linear filter and an adap-

tion algorithm (see Figure 3.2). The input-output relation of the adaptive filter is

determined by the linear filter. The adaptive filter’s response is the response of the

linear filter to the system’s input. In this case, the linear filter will be a transver-

sal filter. The adaptive algorithm changes the filter’s weights in order to make the

filter’s output match the desired response in a statistical sense. The adaptive algo-

rithm changes the filter’s weights, so the filter is in fact not linear time-invariant.

However, when the adaptive filter is adapting to a stationary signal, it will converge
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Figure 3.2: Adaptive predictor concept; the adaptive filter is arranged to minimize
the error between the estimate for the current observation, calculated in the last
iteration, and the actual observed value. In this way, the weights of the filter are
statistically optimized to estimate one step ahead.

to a steady state, after which point it can be treated as being linear time-invariant.

If the adaptive algorithm is able to forget the past, just as it was able to converge

to a stationary signal, it can track a signal with changing statistics [23]. In the special

case that the statistics change slowly relative to the algorithm’s ability to adapt, then

the filter can track the ideal time-varying solution. Further, if the statistics change

slowly relative to the length of the prediction horizon as well as the length of the state

vector, then the adaptive filter can be considered to be locally linear time-invariant.

The two afore mentioned conditions are the case with modeling the heart motion

during most normal situations.

The adaption algorithm uses an exponential window to weight past observations

so that more recent observations carry more weight. The exponential window was

chosen because it can easily be implemented recursively. Due to this windowing, the

adaptive predictor is able to track the heart signal even if the statistics of the heart

signal change slowly with time.
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3.2.3 Parametrization

Traditional system identification problems using adaptive filters arrange the filter

such that the input to the filter is the system’s input and the desired response is the

system’s desired response. In this way, the filter converges towards an approximation

of the system’s input-output relation. However, (Equation 3.2) is driven by white

noise input vector ~v. This input is unknown and unable to be predicted for future

observations. Thus, deriving an input-output relationship for the heart motion would

be impractical. Instead, the adaptive filter is arranged as a one-step predictor. The

desired response is the heart position’s current observation and the input to the

adaptive filter is the previous heart observations. The adaptive filter adjusts its filter

weights such that it generates the statistically best estimate for the next observation,

given only the current and past observations.

In order to generate the predictions, the coefficient matrices, Ai, from (3.1), equiv-

alently, the matrix Φ from (3.2) need to be estimated. The state transition matrix,

Φ, is in controllable canonical form, so estimating Ai is sufficient to parameterize the

estimated state transition matrix, denoted Φ̂. As can be seen from (3.1), the matrices

Ai correspond to tap weights in a transversal filter. In a one-step predictor, when

it has converged to a solution, its filter weights are precisely the matrices needed to

parameterize Φ̂. In this way the adaptive algorithm estimates the matrix Φ̂.

3.2.4 Recursive Least Squares

Recursive least squares (RLS) was chosen as the adaptation algorithm to update

the filter weights. RLS is a method that updates a least squares solution when a

new piece of data is added. In practice, the RLS solution will approach the actual

solution, even if the initial estimates for the solution were wrong. To formulate the

RLS algorithm for vector samples, the one step prediction problem needs to be stated
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as a least squares problem.

[zTn−1 zTn−2 · · · zTn−N ] W
T = zTn (3.5)

where the objective is to find W such that the square of the error between the two

sides of the equation is minimized. At any time step zn is the current position of

POI on heart surface and [zTn−1 zTn−2 · · · zTn−N ] is the N dimensional vector of past

positions. From this representation it is clear that

W = [A1 A2 · · · AN ] (3.6)

where Ai are the weighting matrices from (3.1).

Using the statement of the least squares problem for the one step estimator in

(3.5), the RLS algorithm can be derived. The derivation of the vector valued RLS

algorithm is analogous to Haykin’s derivation of the scalar case [23]. Since W is

updated at every time step, the estimator is able to adapt to slowly changing heart

behavior. Further, an exponential weighting factor can be introduced to produce a

weighted least squares problem. This factor, λ is multiplied to each observation at

each iteration, producing an exponential weighting of observations.

The RLS algorithm was formulated with past observations exponentially win-

dowed such that the algorithm has the ability to forget the distant past. The ex-

ponential window parameter λ is referred to as the forgetting factor. When λ = 1,

the RLS algorithm does not forget old observations, instead it has infinite memory.

When λ < 1, observations are reduced in importance such that the least squares

solution places a greater importance on minimizing error for the more recent obser-

vations and their prediction than on older ones. From the combination of weighted

memory and convergence to the optimal solution, if the statistics of the heart motion

change in time, the RLS algorithm is able to adapt to the new heart behavior.
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3.2.5 Prediction

Following from (3.4), the one-step prediction is:

W










zn

zn−1

...

zn−N+1










= ẑn+1 (3.7)

Once W is determined by (3.6), the stacked past observations vector is shifted

down by one observation size and making the first past observation the current

position, zn. Then by matrix multiplication the one step prediction, ẑn+1, on the

horizon is computed, which is is precisely the expected value of zn+1 from (3.1).

The prediction horizon of length M starting at time n is the solution to (3.4)

with initial condition vector being the stacked vector of the past N observations.

In the actual implementation, predictions over the horizon length are generated

by iterating this function several times. This avoids the computational complexity

of calculating Φk and using it directly to compute the predictions. The calculation

of ~Xn = Φ ~Xn−1 is simplified by calculating ẑn+k by (3.7), shifting the stacked obser-

vation vector ~X down by one observation size and making the first observation the

current estimate. In this way, the computational complexity of iterating the state

variable increases proportional to N , opposed to N2. Since the observation matrix

C from (3.2) simply retrieves the first observation from ~X, multiplication by C is

not necessary because the observation can be directly indexed and removed.

This recursive relationship can be written explicitly. If W is factored as W =
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Figure 3.3: The generation of the horizon by the adaptive filter. The one step
estimate is generated by use of a transversal filter weighting the past observations to
produce an estimate for the next expected observation. When generating predictions
for the horizon, the path is closed as the last estimate is treated as the current input.
The prediction sequence is the collection of the estimate output each time the filter
is iterated.

CΦ0,1 where

Φ0,1 : [zn, . . . , zn−N+1]
T → [ẑn+1, zn, . . . , zn−N+2]

T

C : [zn, . . . , zn−N+1]
T → zn; C = [I 0 · · · 0],

then it is possible to define a matrix U such that it maps the memory of past

observations to the expected horizon. In this case,

U =










CΦ0,1

CΦ2
0,1
...

CΦM
0,1










U : (zn, zn−1, . . . , zn−N+1) → (ẑn+1, ẑn+2, . . . , ẑn+M).

(3.8)
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Using the above described method for obtaining an estimate, the horizon is gener-

ated by collecting the next M estimates of the POI trajectory. Each time the process

starts, the current state vector is composed of N-1 past observations together with

the current observation. The first one-step prediction is generated by this state vec-

tor. Then, the state vector is shifted down by one observation size and the new

prediction is used as the current observation. By following this procedure the next

M estimates in the prediction horizon are generated (see Figure 3.3). This collec-

tion of M estimates is the expected POI trajectory given the N-1 past observations

and the current observation. In order to generate next prediction horizon at the

following time step, the aforementioned procedure is applied to the new state vector

where the new state vector is composed of the new actual heart position data and

corresponding N − 1 past observations.

3.3 Generalized Linear Prediction

In Section 3.2, the optimal linear one step predictor, in the sense of prediction er-

ror magnitude, was formulated and used recursively to generate predictions. This

method approximates the heart dynamics as being a linear discrete time system and

leads to sub-ideal predictions, as the POI motion has nonlinear dynamics. In the

generalized prediction method that is explained in this section, the assumption of

a linear system relation between consecutive time samples is abandoned. Instead,

a linear estimator for each point in the horizon is independently estimated. This is

done by extending (3.7) as follows:

V










zn

zn−1

...

zn−N+1










=










ẑn+1

ẑn+2

...

ẑn+M










(3.9)
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Where V is the estimation matrix that maps from the collection of observations

to the expected horizon. In the same way as W was parameterized, RLS is used

to determine V online and adaptively. However, since (3.9) contains the estimated

values that are being solved for, it is unsuitable for implementation via RLS as is.

This can be solved by assuming POI statistics to be stationary, or at least slowly

varying, which makes V approximately constant. The assumption of time invariance

of the heart statistics is utilized to introduce M delays so that all quantities have

been observed when solving for V .

V










zn−M

zn−M−1

...

zn−N−M+1










=










zn−M+1

zn−M+2

...

zn










(3.10)

The analogy can be made between (3.10) and an adaptive filter. The right hand

side is the desired output and the observation vector on the left hand side is the

input. Further, introducing the estimation matrices

Φ0,i : [zn, . . . , zn−N+1]
T → [ẑn+i, ẑn+i+1, . . . , ẑ−N+n+i]

T

for 1 ≤ i ≤ M , then V can be decomposed similar to U in (3.8) as

V =










CΦ0,1

CΦ0,2

...

CΦ0,M










(3.11)

The generalization of this prediction method results from the fact that, unlike

in (3.8), Φ0,i are parameterized independently and not, in general, equal to Φi
0,1.
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The removal of this constraint allows for the nonlinear dynamics throughout the

prediction horizon to be better predicted by a linear estimator.

The predictor is implemented in a similar way to the previous vector RLS adap-

tive filter. The adaptive filter is formulated to solve the delayed estimation equation

(3.10). This is equivalent to using a bank of n-step predictors, but is more computa-

tionally efficient. The largest cost in the RLS algorithm involves updating the inverse

covariance matrix of the inputs. The generalized predictor is an improvement on to

the one-step predictor, since in generalized predictor each estimate is using the same

input vector. As a result the updating only needs to be done once, providing a dra-

matic reduction in computational complexity of one-step predictor when predictions

are being made at many points throughout the horizon.



Chapter 4

Experimental Results

In this chapter, we evaluate the performance of the prediction methods that we pre-

sented in the previous chapter. In the literature these predictors are tested with very

limited and short duration of data. In this research, these algorithms are extensively

studied with a wide range of different heart motion data. This is the first study that

uses real varying heart rate data to perform heart motion tracking.

We start by introducing our testbed and the performance metrics we use. Next,

we compare the performance of existing methods in terms of these metrics on both

constant and varying heart rate data. Finally, we compare the presented results

with the reported values in the literature and show that the presented generalized

predictor outperforms existing methods for heart motion tracking.

32
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Figure 4.1: Zero Configuration of the PHANToM manipulator, also showing the axes
movements and spatial and tool frames.

4.1 Experiments and Results

4.1.1 3-DOF Robotic Testbed

The proposed estimation algorithms were tested on a PHANToM Premium 1.5A

haptic device, which is a 3-DOF robotic system. The nonlinearities of the system

(i.e., gravitational effects, joint frictions, and Coriolis and centrifugal forces) were

canceled independently from the controller. In order to maintain the accuracy of the

experiments, the manipulator was brought to a selected home (zero) position, in the

center of its workspace (more details can be found in [24]), before every experiment.

The controller used by Bebek and Cavusoglu [4] was modified to include the new

prediction algorithms. The trials used the prerecorded heart motion data described

in Section 2.2. The robot was made to follow the combined motion of heartbeat

and breathing. The system was run using online streaming position data in place
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of real-time measurements. The controller was implemented in xPC Target and

run in real time with a sampling time of 0.5 ms on a Intel Xeon 2.33 GHz Core

PC. The linearized robot model was controlled using RHMPC. The RHMPC was

formulated to track the horizon estimate weighted by a quadratic objective function.

The encoder positions on the PHANToM were recorded and these positions were

transformed into end effector positions. The reported RMS errors are calculated

from the difference between the prerecorded target point and the actual end effector

position calculated from joint angles.

4.1.2 Simulation and Experimental Results

The same control method and reference data were used while running simulations and

experiments. During the trials, a 16th order correlated signal one-step estimator and

a 10th order generalized estimator predicting 4 different future points in the 25 ms

horizon were used and quadratic interpolation was accounted for the intermittent

points. The experiments were carried out using two different constant heart rate

data and four different varying heart rate data.

Experiments were run 10 times with the estimation algorithms and again with

the actual heart motion data as future signal reference for the prediction horizon.

The later case represents a ‘perfect’ estimation, providing a performance base of the

robotic system’s capability. It was noted that the deviation between the trials are

very small. Among these results, the maximum values for the End-effector RMS

and Maximum Position Errors in millimeters in 3D and RMS Control Effort in

millinewton meters are summarized in Table 4.1 for simulations and in Table 4.2

for experiments to project the worst cases. The results shown in Tables 4.1 and 4.2

are grouped with respect to type of the heart rate data collected from the animals.

The position of the Sonomicrometer crystal on the heart surface, which are named

as ‘Top’ position and ‘Side’ position are also stated.



CHAPTER 4. EXPERIMENTAL RESULTS 35

SIMULATION AND EXPERIMENTAL RESULTS: The fixed heart rate data

from animal 1 is 235 s long with a sampling rate of 257 Hz and from animal

2 is 472 s long with a sampling rate of 404 Hz. The sampling rate of all

data sets with varying heart rate are 404 Hz. The duration of the varying

heart rate data from animal 1 is 251 s for top position and 250 s for the

side position. The duration for the varying heart from animal 3 is 200 s for

top position and 140 s for side position.

Table 4.1: Simulation Results for End-Effector Tracking
A - RMS Position Error and MAX Position Error for the Control Algo-

rithms

End-effector Tracking

Results

RMS Position Error [mm]

(Maximum Position Error [mm])

Heart Rate Fixed Varying

DataSet Animal 1 Animal 2 Animal 1 Animal 3 Animal 1 Animal 3

Crystal Position Top Top Top Top Side Side

RHMPC with Exact Reference
Information

0.488 0.237 0.231 0.197 0.194 0.231

(1.428) (1.236) (0.777) (0.650) (1.542) (1.033)

RHMPC with One-Step
Adaptive Filter Estimation

0.524 0.255 0.247 0.206 0.201 0.237

(1.953) (1.460) (1.098) (0.917) (2.163) (1.195)

RHMPC with Generalized
Adaptive Filter Estimation

0.481 0.235 0.229 0.195 0.191 0.230

(1.399) (1.173) (0.767) (0.861) (1.540) (1.059)

B - RMS Control Effort for the Control Algorithms

End-effector Tracking

Results

Control Effort [mNm]

Heart Rate Fixed Varying

DataSet Animal 1 Animal 2 Animal 1 Animal 3 Animal 1 Animal 3

Crystal Position Top Top Top Top Side Side

RHMPC with Exact Reference
Information

18.873 14.589 16.647 11.719 13.675 14.137

RHMPC with One-Step
Adaptive Filter Estimation

26.685 21.801 37.991 18.010 30.402 20.027

RHMPC with Generalized
Adaptive Filter Estimation

19.865 17.294 16.786 12.242 13.840 13.909
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Table 4.2: Experiment Results for End-Effector Tracking
A - RMS Position Error and MAX Position Error for the Control Algo-

rithms

End-effector Tracking

Results

RMS Position Error [mm]

(Maximum Position Error [mm])

Heart Rate Fixed Varying

DataSet Animal 1 Animal 2 Animal 1 Animal 3 Animal 1 Animal 3

Crystal Position Top Top Top Top Side Side

RHMPC with Exact Reference
Information

0.344 0.162 0.163 0.171 0.161 0.165

(1.238) (0.912) (0.780) (0.559) (0.538) (0.906)

RHMPC with One-Step
Adaptive Filter Estimation

0.404 0.176 0.181 0.199 0.173 0.188

(2.236) (1.395) (1.576) (1.084) (0.960) (1.022)

RHMPC with Generalized
Adaptive Filter Estimation

0.351 0.174 0.168 0.178 0.164 0.167

(1.291) (1.022) (0.827) (0.615) (0.572) (0.972)

B - RMS Control Effort for the Control Algorithms

End-effector Tracking

Results

Control Effort [mNm]

Heart Rate Fixed Varying

DataSet Animal 1 Animal 2 Animal 1 Animal 3 Animal 1 Animal 3

Crystal Position Top Top Top Top Side Side

RHMPC with Exact Reference
Information

54.379 28.512 25.350 21.593 24.390 27.260

RHMPC with One-Step
Adaptive Filter Estimation

55.686 33.785 46.820 24.346 52.640 29.592

RHMPC with Generalized
Adaptive Filter Estimation

54.948 29.699 25.760 22.082 24.635 27.830
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Tracking results for a constant heart rate data with the one-step estimator in two

different scales is shown in Figure 4.2 and results for varying heart rate data with

the generalized adaptive filter estimation is shown in Figure 4.3. When Figure 4.2-A

and Figure 4.3-A are compared, the variations in the heart rate can be observed

from the pattern of the reference signal for x-axis in Figure 4.3-A. In Figure 4.2-B

and Figure 4.3-B, magnitude of the end effector position error superimposed with

the reference signal for the x-axis is shown.
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Figure 4.2: Tracking results for 157-s constant heart rate heart motion data in two
different scales with RHMPC with One-Step Adaptive Filter Estimation. (A) The
reference signal for the x-axis. (B) Magnitude of the end effector error (below)
superimposed with the reference signal for the x-axis.

We believe that, the maximum error values are affected from the noise in the

data collected by Sonomicrometry sensor as it is unlikely that the POI on the heart

is capable of moving 5 mm in a few milliseconds. The data has been kept as-is

without applying any filtering to eliminate these jumps in the sensor measurement

data as currently we do not have an independent set of sensor measurements (such

as from a vision sensor) that would confirm this conjecture.

As it can be seen from the results presented in Table 4.1, in our simulations the

generalized estimator out performed the exact heart signal in terms of RMS Position

error. This is likely due a combination of two factors. First, the simulation model

is a linearized, reduced order model of the actual hardware. Second, the estimator

has a robustness characteristic that makes its output less noisy than the actual
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Figure 4.3: Tracking results for 200-s varying heart rate heart motion data in two
different scales with RHMPC with Generalized Adaptive Filter Estimation. (A) The
reference signal for the x-axis. (B) Magnitude of the end effector error (below)
superimposed with the reference signal for the x-axis.

heart data. The combination of these two factors yields better results in the linear

case. However, when the experiment is performed on the hardware, the effects of

the nonlinearities are seen when the performance of the estimator-driven controller

decreases. It should be noted that although the simulation provides valuable insight

to the effectiveness of the controller, it is the experimental trials that are the best

indicator of performance.

When the tracking results of the adaptive predictors are compared with each

other, the generalized predictor outperforms the one-step predictor both in simula-

tions and experiments. These results show that the nonlinear dynamics of the POI

throughout the prediction horizon are better predicted by a generalized estimator.
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From the results presented in Table 4.2, it can be observed that, in the ex-

periments the controller with exact heart signal reference performs better than the

one-step estimator and the generalized estimator in term RMS end effector error for

both constant heart rate data and varying heart rate data. Maximum error and the

control effort results for the exact heart signal are also smaller than the tracking re-

sults of one-step and generalized estimators, because the controller with exact heart

signal reference represents the perfect estimation for heart motion tracking.

4.1.3 Discussion of the Results

At this point, it would be informative to compare the presented tracking results with

the reported values in the literature.

Ginhoux et al. [7] used motion canceling through prediction of future heart motion

using high-speed visual servoing with a model predictive controller. Their results

indicated a tracking error variance on the order of 6-7 pixels (approximately 1.5-

1.75 mm calculated from the 40 pixel/cm resolution reported in [7]) in each direction

of a 3-DOF tracking task. Although it yielded better results than earlier studies

using vision systems, the error was still very large to perform heart surgery.

Bebek and Cavusoglu used the past heartbeat cycle motion data, synchronized

with the ECG data, in their estimation algorithms. They achieved 0.682 mm RMS

end-effector position error on a 3-DOF robotic test-bed system [4].

Yuen et al. used an Extended Kalman Filter (EKF) algorithm with a quasiperi-

odic motion model to predict the path of mitral valve motion in order to compensate

the time delay occurred from the 3-dimensional ultrasound (3DUS) measurements.

They achieved 1.15 ± 0.004 mm RMS tracking error for a 1-DOF motion compensa-

tion instrument (MCI) in an in vitro 3DUS-guided servoing test. They stated that

employing the EKF based predictor in time-delay compensation restores the tracking
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Table 4.3: Experimental Results for End-Effector Tracking: RMS End-Effector and
Maximum Position Errors for the Controller with EKF Predictor. The results for
RLS-Based Adaptive Algorithms from Table 4.2-A also presented for comparison.

End-effector Tracking

Results

RMS Position Error [mm]

(Maximum Position Error [mm])

Heart Rate Fixed Varying

DataSet Animal 1 Animal 2 Animal 1 Animal 3 Animal 1 Animal 3

Crystal Position Top Top Top Top Side Side

RHMPC with Exact Reference
Information

0.344 0.162 0.163 0.171 0.161 0.165

(1.238) (0.912) (0.780) (0.559) (0.538) (0.906)

RHMPC with One-Step
Adaptive Filter Estimation

0.404 0.176 0.181 0.199 0.173 0.188

(2.236) (1.395) (1.576) (1.084) (0.960) (1.022)

RHMPC with Generalized
Adaptive Filter Estimation

0.351 0.174 0.168 0.178 0.164 0.167

(1.291) (1.022) (0.827) (0.615) (0.572) (0.972)

RHMPC with EKF Estimation
1.148 0.386 0.515 0.523 0.433 0.449

(5.157) (2.863) (3.006) (2.859) (2.475) (2.796)

performance of MCI to baseline tracking conditions in cases of delay. They reported

that EKF gives better predictions than the AR filtering algorithms and last cycle

method used by Bebek and Cavusoglu [4] in the presence of high noise and heart

rate variability. Yuen et al. concluded since EKF explicitly models the quasiperi-

odic motion of heart it can adjust to rapid changes in heart rate better than other

algorithms [20].

In order to compare the tracking performances using the proposed one-step and

the generalized predictors with the EKF algorithm developed by Yuen et al. [20], the

same hardware experiment described in Section 4.1.2 was repeated by employing the

estimates generated by EKF in the RHMPC controller. The experimental results

of these experiments, which include end-effector RMS position errors and maximum

end-effector position errors, are presented in Table 4.3. The results for RLS-Based
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Adaptive Algorithms from Table 4.2-A are also presented in Table 4.3 for compari-

son. The results of the experiments showed that the proposed adaptive algorithms

outperformed the EKF-based algorithm in terms of tracking performance.

Simulation studies similar to the ones in [20] were conducted to compare the

prediction performances of the one-step predictor, generalized predictor, EKF and

last-cycle methods, in order to further investigate the tracking results presented in

Table 4.3, which seemed to contradict the results reported by Yuen et al. [20]. In

these simulations, the prediction performances of the algorithms were explored in

the presence of measurement noise and heart rate variations.

In the first simulation study, the effect of measurement noise on the predictor

performance on a constant heart rate motion data was evaluated. The motion data

of POI on heart surface was downsampled to 28 Hz and corrupted by a additive

zero-mean Gaussian noise with standard deviation 0.3 ≤ σr ≤ 3 mm to match the

conditions used in [20]. Similarly, the performance was evaluated for 1-step ahead

prediction for a 10 s of data after 30 s of initialization time for each predictor. The

EKF based predictor from [20] was also implemented with the parameters presented

in that study for comparison. The RMS measurement error for each predictor ob-

tained by averaging across 100 Monte Carlo trials are shown in Figure 4.4. Results

show that EKF performs the best in the presence of high measurement noise when

compared with the other algorithms.

In the second simulation study, the performance of the predictors in the presence

of variations in heart rate were evaluated. The motion data was constructed similar

to the way described in [20]. First part of the data included heart motion at a

constant rate of 103 bpm with a duration of 30 s and the second part was a 10 s of

motion data at a different heart rate (103 + ∆HR bpm), which was varied between

-10 ≤ ∆HR ≤ 10 bpm. The motion data with varying heart rate was generated by

compression and dilation of the trajectory of POI on heart surface. Heart motion
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Figure 4.4: Plot showing the RMS prediction error results for a parametric simulation
study where the predictors are tested in the presence of varying measurement noise
at a sampling rate of 28 Hz.

data was again downsampled to 28 Hz and corrupted with additive white gaussian

noise with σR = 1.30 mm. The performance of the predictors were evaluated only

for the motion with varying heart rate and for the 1-step ahead predictions. The

RMS errors were computed for 100 Monte Carlo trials and EKF was implemented

again with the parameters given in [20]. The results presented in Figure 4.5 shows

that EKF yielded better results than the AR filtering algorithms and last cycle

method. One-step and generalized predictors provided similar results with former

giving slightly better results. Finally, the last cycle method gave comparable results

to adaptive predictors when variation in heart rate is small, yet the prediction error

increases significantly when ∆HR increases.s

Results from these two simulation studies agree with the results reported in [20],

indicating that EKF produces better one-step predictions than the adaptive algo-

rithms and the last cycle method in the presence of high measurement noise and
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Figure 4.5: Plot showing the RMS prediction error results for a parametric simulation
study where the predictors are tested in the presence of varying heart rate at a
sampling rate of 28 Hz.

variations in heart rate at a sampling rate of 28 Hz. However, as the control algo-

rithms employed in the real-time tracking hardware testbed operate at a sampling

rate of 2 kHz, it is informative to also look at the prediction performance of the

algorithms for varying heart rate at a sampling rate of 2 kHz. When the second

simulation study was repeated at a 2 kHz sampling rate, it was observed that the

one-step adaptive predictor produced better one-step predictions than the EKF pre-

dictor. Furthermore, the variations in the prediction performances of algorithms at

different heart rates disappeared as a result of much higher sampling rate and no no-

ticeable variations were observed in prediction performances at different heart rates

as in Figure 4.5.

Based on these observations, the following reasons can be considered to explain

the differences between the results presented in this study and the study of Yuen

et al. [20]. First, and foremost, the comparison between the algorithms presented
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in [20] was based on one-step prediction performances in simulation, whereas, the

results reported above in Table 4.3 compares algorithms in terms of the tracking per-

formances on a hardware testbed. Because of the high order and nonlinear dynamics

of the robotic platform and the controllers employed, a better one-step prediction

performance does not necessarily translate to a better tracking performance. Second,

the sampling rates used in the two studies were different. The experiments, and as

a result, the prediction and control algorithms, in this study used a sampling rate of

2 kHz. On the other hand, Yuen et al., acquired the EKF predictions at the 3DUS

sampling rate of 28 Hz. And, as mentioned before, the relative performances of the

algorithms appeared to be different at different sampling rates. The third factor is

the nature of the data used in the two studies. In this study, the 3D motion of a

POI located on the surface of heart motion is used. On the other hand, Yuen et al.

characterized the motion of mitral valve annulus by a 1D model. In addition, the

hardware experiments in this study and in [20] represents two different cases, as the

test beds used to evaluate the performance of the predictors are quite different. The

differences in the inner dynamics of the experimental set-ups might lead to different

tracking performance results. Namely, if RLS-based adaptive filters would have been

employed for tracking in [20], the tracking performance of RLS-based predictors can

be expected to be different when compared to this study.

The generalized predictor presented in this thesis represent the best results re-

ported in the literature. These results show that the model predictive controller with

the proposed generalized estimator and the exact reference data performed equally

well, which indicates that the main cause of error is no longer the prediction but the

performance limitations of the robot and controller. It is important to note that the

results also need to be validated in vivo, which were the case in [7, 20].



Chapter 5

Probabilistic Robotics Approach

5.1 Motivation and Methodology

In robotic-assisted CABG surgery heart motion is canceled with motion compensa-

tion. To achieve this motion compensation, a predictive controller which implements

a RHMPC in the feedforward path was found to be necessary as emphasized in sec-

tion 1.2. Such a predictive controller needs an estimate of the future motion of the

POI on the heart surface.

In order to estimate the future motion of POI on heart surface accurately and

then subsequently cancel this motion effectively, it is essential to provide noise-free

and good quality of heart motion data to these algorithms. For this purpose, it is

required to filter and clean the measurements obtained from the sonomicrometry

sensor system, which is used for measuring heart motion in this research.

For the one step and the generalized motion estimation algorithms presented in

Section 3.2 and Section 3.3 the provided heart motion data is only filtered offline in

46
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order the clean the ultrasound echoing effects of the Sonomicrometry sensor system.

The tracking results presented in Section 4.1.2 are obtained via using this offline

filtered data.

As stated, these tracking results need to be validated in-vivo (see Section 4.1.2).

During an in-vivo experimental procedure it is not possible to do any offline filtering

in order to clean the existing noise in measurements, since the incoming heart data

would be online. In the light of these facts, an online processing method to clean the

sensor measurements is found to be required.

Sonomicrometry sensor system is very accurate and the major source of error is

the crystal geometry [10]. However, this system contains noise from the ultrasound

echoes and it is prone to error due to the calibration between the base sensors and

the robotic manipulator coordinate frame.

In order to represent these uncertainties explicitly in the Sonomicrometry sensor

system a probabilistic robotics approach is followed in this research. Using the

probability theory, the noise in the sensor system is characterized. Then, a recursive

Bayes estimator is used to filter and clean the noisy measurements collected from

the Sonomicrometer. Finally, the POI on the heart surface is localized using these

filtered measurements.

5.2 Recursive State Estimation

The idea of estimating state from sensor measurements is the core of the probabilistic

robotics. In robotic applications, sensors carry only partial information about certain

quantities i.e. locations of a mobile robot and nearby obstacles and without a doubt

these measurements are corrupted by noise. State estimation aims to recover state

variables from the data gathered by the sensors.
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In probabilistic robotics, one of the most essential concepts is belief distribu-

tions. A belief simply represents the robots internal knowledge about the state of

the environment. In other words, the belief of a robot is the posterior distribution

over the state of the environment. Probabilistic state estimation algorithms compute

belief distributions over all possible states in the existing environment. The princi-

pal algorithm for calculating the belief is the Bayes filter. This recursive algorithm

calculates the belief distribution from measurement and control data [25].

Being a recursive algorithm is an essential property of the Bayes filter, that is,

the belief bel(xt) at time t is calculated from the belief bel(xt−1) at time t− 1. The

input to the algorithm is the belief distribution at time t − 1, together with the

most recent control ut and the most recent measurement zt. The output is the belief

distribution, bel(xt), at time t [25].

Algorithm 1 depicts the general algorithm for Bayes filtering.

Algorithm 1 Bayes Filter Algorithm

1: Bayes Filter(bel(xt−1), ut, zt)
2: for all xt do
3: bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dx

4: bel(xt) = ηp(zt|xt)bel(xt)
5: end for
6: return bel(xt)

In the Bayes filter algorithm, the probability p(xt|ut, xt−1) is the state transition

probability. It designates the evolution of environmental state xt over time as a func-

tion of robot controls ut. The probability p(zt|xt) is the measurement probability.

The measurement probability designates the probability that the measurements z

are generated from the environment state x where the measurements are regarded as

the noisy projections of the state. These two probabilities p(xt|ut, xt−1) and p(zt|xt)

together characterize the dynamical stochastic system of the robot and its environ-

ment.
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The Bayes filter algorithm is composed of two fundamental steps, prediction or

control update and correction or measurement update respectively. The prediction

step, shown in Line 3, is performed by processing the control ut. It is done by

calculating a belief over the state xt based on the prior belief over state xt−1 and

the control ut. Specifically, the predicted belief bel(xt) is obtained by the integral

of the product of two distributions; the prior belief assigned to xt−1, and the state

transition probability from xt−1 to xt [25].

In the correction step, shown in Line 4, the predicted belief bel(xt) is multiplied

with the measurement probability of the sensor measurement zt. It is done for

each hypothetical posterior state xt. The result is normalized, by a normalization

constant η since the resulting product is generally not a probability and thus it may

not integrate to 1. The result is the final belief bel(xt), which is returned in the

final line of the algorithm. In order to compute the posterior belief recursively, the

algorithm requires an initial belief bel(x0) at time t = 0 [25].

In probabilistic robotics, different techniques are employed to implement Bayes

filters. Each of these techniques relies on different assumptions regarding the state

transition and measurement probabilities and the initial belief. Those different as-

sumptions lead to different types of beliefs, and the algorithms for computing those

belief distributions have different computational characteristics. Since an exact tech-

nique does not exist to calculate beliefs, they need to be approximated. In order to

choose a suitable approximation to compute belief distributions, a trade-off must be

made between the certain properties of the algorithm such as computation efficiency,

accuracy of the approximation, and ease of implementation [25].

In the implementation of Bayes filtering algorithms for this study, sonomicrome-

try sensor system provides the sensor measurements, z, by computing the distance

between the crystal sutured on the heart and each crystal located on the base plate.
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The 3D position of the POI on the heart surface would be treated as the environ-

mental state variable, x, and the heart motion data will be used as the control data,

u, throughout the presented study.

Rest of this chapter is organized as follows. In the next two sections two compo-

nents for implementing the Bayes filtering algorithms will be described; the motion

and the measurement models. The motion model deals with state transition prob-

ability, p(xt|ut, xt−1) and measurement model deals with measurement probability,

p(zt|xt). Then, two different Bayes filtering algorithms will be explained, Extended

Kalman Filter (EKF) and Particle Filters. Finally, the results concerning the local-

ization of the POI on the heart surface by implementing these algorithms will be

presented.

5.3 Motion Model

This section focuses on the motion model. Motion models covers the state transition

probability p(xt|ut, xt−1) and plays an essential role in the prediction step of the

Bayes filtering algorithm presented in Line 3 of Algorithm 1.

The idea behind studying motion models by a probabilistic approach comes from

the fact that the outcome of a control action is uncertain, due to control noise or

unmodeled exogenous effects. Therefore the generated motion model will be suitable

to the probabilistic state estimation techniques [25].

In order to implement the Bayes Filter algorithm a motion model of heart is

needed. The motion of the heart is quasi-periodic in nature, including the heart

beating and breathing motions. In Section 2.2.2, the Fourier analysis of the heart

motion depicts that first harmonic of the breathing motion and first four harmonics

of the heart beating motion is clearly visible
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In order to simplify this motion, two different approaches are followed to construct

a motion model. The first approach is the use a Brownian motion and the second

approach is to construct a harmonic motion by using only the first two harmonics

heart motion.

5.3.1 Brownian Motion

The Brownian motion, an idealized approximation to actual random physical pro-

cesses, is used to represent the motion of heart beating. A Brownian motion which

is also called a Wiener process is a stochastic process. It is a collection of random

variables S(t) that are defined on the same probability space (Ω, F, P ), satisfying the

following conditions:

1- S(t) = 0, t = 0;

2- With probability one, S(t) is continuous in t;

3- S(t) has stationary and independent increments, i.e. for any positive integer n

and any 0 = t0 < t1 < · · · < tn, the random variables S(ti) - S(ti−1), i = 1, . . . , n are

mutually independent, and S(k+ t) - S(k) has the same distribution as S(t) for any

k, t > 0;

4- S(t) ∼ N(0, σ2t).

From Property 4, it is clear that S(t) has the normal distribution with mean 0 and

variance σ2t for some constant σ2. [26]

The state update equation of the Brownian motion is given by the following linear

equation.

xt = xt−1 + εt (5.1)

Here, xt and xt−1 are the three dimensional state vectors, which represent the
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position of the crystal on heart surface at time t and t − 1 respectively. xt is of the

form:

xt =







x̂t

ŷt

ẑt







(5.2)

where x̂t, ŷt, ẑt represents the 3D position coordinates of the crystal with respect

to reference coordinate frame. εt is the uncertainty induced by the Brownian motion,

which is represented by a zero-mean multivariate Gaussian distribution, N(0,Σ). Σ

is of the form:

Σ =







Σx 0 0

0 Σy 0

0 0 Σz







(5.3)

(Σx,Σy,Σz) are computed from the corresponding axes of three dimensional heart

motion data which is only filtered offline to remove the outliers.

5.3.2 Harmonic Motion

Harmonics motion is another approximation to the actual heart motion. Although

it is not simple as the Brownian motion, it resembles the actual heart motion better

than the Brownian motion since it comprises actual components of the heart motion.

The spectral analysis of the heart motion in Section 2.2 show that heart motion,

yt, can be approximated by a certain number of harmonics. By using an m− order

Fourier series with constant offset and the first two harmonics (m = 2) of the heart
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motion, the following simple approximation to a single axis of the actual heart motion

can be obtained:

ut = c0 +

2∑

m=1

amsin(mw0t) + bmcos(mw0t) (5.4)

where in Equation 5.4, c0 is the constant offset, am ∈ R
3’s and bm ∈ R

3’s are the

Fourier series coefficients and w0 is the heart rate. The Fourier series coefficients are

obtained by taking N − point FFT of the heart motion data and the constant offset

is set to the mean of the position values of the related reference axis. Equation 5.4

shows the harmonic approximation for a single axis of the three dimensional heart

motion. This approximation is applied for each of the three axes to generate a three

dimensional harmonic approximation of the actual heart motion. Figure 5.1 shows

the constructed 2nd order harmonics approximation superimposed on the reference

signal for z-axis.

At any time t, the update equation of the original heart motion and harmonic

motion model can be written as:

yt+∆t = yt +∆yt (5.5)

ut+∆t = ut +∆ut (5.6)

In the above equation yt represents the three dimensional actual heart motion

and ut represents three dimensional harmonic motion. Similarly, ∆yt is a the three

dimensional vector representing the increment of actual heart motion and ∆ut is a

three dimensional vector representing the increment of harmonic motion.

Since the heart motion, yt, at time t is approximated by the harmonic motion ut,

the increment ∆yt can be also approximated by ∆ut. In other words,
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Figure 5.1: 2nd order harmonics approximation superimposed on the reference signal
for z-axis.

∆yt ≈ ∆ut (5.7)

With this approximate, state update equation for the harmonic motion model is:

xt = xt−1 +∆ut + εrt (5.8)

Again, xt and xt−1 represent the three dimensional position of the crystal on heart

surface at time t and t−1 respectively. ∆ut is the update increment of the harmonics

motion as shown in Equation 5.7. εrt is the uncertainty induced by the process noise,

which is represented by a zero-mean multivariate Gaussian distribution, N(0,Σr), of

the form:
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Σr =







Σrx 0 0

0 Σry 0

0 0 Σrz







(5.9)

(Σrx ,Σry ,Σrz) are computed from the corresponding axes of the three dimensional

remaining motion;

rt = yt − ut (5.10)

5.4 Measurement Model

This section will describe the probabilistic models of sensor measurements p(zt|xt),

that are crucial for the measurement update step. Probabilistic robotics explicitly

models the noise in sensor measurements. Such models account for the inherent

uncertainty in the robots sensors.

5.4.1 Sonomicrometry Sensor System

It is mentioned in Section 2.2 that Sonomicrometry sensor system is employed to

collect the heart motion data used in this study. The schematic that shows the

Sonomicrometry sensor model can be seen in Figure 5.2.

The sonomicrometer setup obtained from SonoMetrics Corporation has six chan-

nels for piezoelectric crystals. In this system one piezoelectric crystal was sutured

on the heart and five other crystals were asymmetrically mounted on a rigid plastic

base forming a reference coordinate frame in order to measure the motion POI on
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heart surface.

The geometrical placement of the piezoelectric crystals on the base will affect

the formation of the uncertainty geometry of the sensor. Thus, sensors should be

mounted asymmetrically to prevent having homogeneous solutions since solutions

depend on geometrical placement. In order to minimize the uncertainty geometry

of the sensor, the base crystals should be placed evenly on a circle. Both of these

could be satisfied by placing the crystals on a circle slightly shifting them from their

original evenly spaced positions [10].

The 3D Position coordinates and the distances between the crystals are given

in Figure 5.3. Here the base crystals are named as {q1, q2, · · · , q5}. There are ten

possible reference coordinate frame combinations that can be formed from the five

base crystals, where the crystal q1 is located at the origin in the shown default

coordinate frame (see Appendix A).

All of the crystals are assumed to be well calibrated. Only possible source of error

is due to the crystals geometry, which only affects the absolute value of the distance

measurements. The most significant uncertainties in the measurements are due to the

ultrasound echoes. Besides these uncertainties, no errors due to the inaccuracy of the

flight time measurements, uniform speed of sound in the medium of measurements,

and no weak signal reception are assumed [27].

The sensor system in Figure 5.2 provides 10 different sensor measurement to the

user with 5 of them are independent. The first 5 independent measurements are

obtained by treating 5 base crystals transmitters and the 6th crystal on heart as

receiver. The duplicates of these measurements are obtained by treating the crystal

on heart as transmitter and base crystals as receivers.

Hence, a set of sensor data at time t which includes all of these 10 measurements

can be written as:
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q1
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q3

q4

q5

q6

Figure 5.2: Sonomicrometry sensor model: Five crystals were mounted to a base to
measure the distance of a sixth crystal attached to the heart.

zt = {z1t , · · · , z
10
t } (5.11)

The accuracy of these measurements can be verified by calculating them from

the true state xt, the 3D position coordinate crystal attached near the POI on heart

surface (see Equation 5.12).

ẑit = hi(xt),

hi(xt) = ||xt − qi||
(5.12)
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Figure 5.3: Sonomicrometry base plate, 3D crystal position coordinates and crystal
distances in mm.

where xt represents the 3D position coordinates of the crystal on heart surface

and qi for i = 1, · · · , 5 represents the 3D position coordinates of the base crystals.

The nonlinear Equation 5.12 is the Euclidean distances between the known 3D

position coordinates of the each base crystal and the 3D position coordinate crystal

attached on the heart. In the reference coordinate frame this nonlinear equation is

expanded as:
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hi(xt) =
√

(x̂t − qix)
2 + (ŷt − qiy)

2 + (ẑt − qiz)
2 (5.13)

where (x̂t, ŷt, ẑt) is the coordinate of the crystal on the heart surface as shown in

Equation 5.2 and (qix, qiy, qiz) is the coordinate of crystal qi on the base.

In order to compute the 3D position coordinates of the POI on heart surface, at

least 4 crystals are necessary. The position information of the the crystal attached

next to the POI relative to the origin can be calculated using geometric triangulation

method [27].

Approximating the Sonomicrometry error by a Gaussian noise distribution with

a constant standard deviation, σ, will be the simplest approach to generate a mea-

surement model. A Gaussian noise distribution will sufficient enough to capture

the basic uncertainties in the sensor system and it will provide a convenient way to

filter and clean the noisy measurements. Constructing the measurement model by

a Gaussian noise distribution will allow to implement Bayes Filtering by Extended

Kalman Filter Algorithm.

Although the Gaussian noise distribution will be sufficient enough to model noise

in sensor measurements, in some cases a more detailed measurement model is needed

to capture the uncertainties. Such a model will be presented next.

5.4.2 Sonomicrometry Measurement Model

In order to generate the measurement model, first, the Euclidean distances between

the crystal on the heart and each base crystal are computed. Then, the differences,

innovations, between the actual measurements obtained by sonomicrometer channels

and these computations are calculated.
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αt = zt − ẑt (5.14)

With the innovation obtained from the measurements and the computed data is

shown in Equation 5.14, the measurement probability can be rewritten as:

p(αt) = p(zt|xt) (5.15)

The next step is to generate the normalized histogram of these innovations in

order to visualize the amount of error between the measurements and computations.

The generated model incorporates two types of measurement errors, which are es-

sential to capture all possible source of error: small measurement noise and random

unexplained noise.

The major source of the small measurement noise is the crystal geometry as men-

tioned in Section 5.4.1. Since the ultrasound wave is broadcast and received by the

leading edge of the piezoelectric crystal surface, the originally measured distance may

not be the true distance between the geometric centers of respective crystals. For

example, if the crystals are oriented edge-to-edge, then diameter of the piezoelectric

disc, which surrounds the crystals, should be subtracted from the initially measured

distance. Therefore these piezoelectric discs add error to the sonomicrometry mea-

surements [10].

This small measurement noise can be characterized by subtracting the 2mm di-

ameter of the piezoelectric crystal initially during the computation of the distances

between the location of the each base crystal and the location of the crystal attached

on the heart. This calculation will improve the overall noise model by initially getting

rid of the deflection bias due to the crystal geometry.
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Figure 5.4: Normalized histogram of the error between the sensor measurements and
actual data.

The histogram shown in Figure 5.4 will provide the essential information to gen-

erate the noise model of the sensor system. It can be observed that most of the error

is distributed around 0 mm with significant bumps exist from -0.5 mm to 2 mm.

Outside this range, the amount of observed error is relatively small.

This error can be approximated by a narrow Gaussian noise distribution,

phit(zt|xt). The mean, µ, and covariance, σ, of this is distribution is determined

according to the frequency of the error values in this range. The resulting Gaussian

distribution has has a µ = 0.3 and a σ = 0.15.

The remaining component of the generated model, random unexplained noise,

is describing the ultrasound echoes of the Sonomicrometry sensor system. To keep

things simple, the effects of ultrasound echoes will be modeled using a uniform dis-

tribution, prand(zt|xt), spread over the entire error range seen in Figure 5.4.
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Figure 5.5: Density distribution of the noise model superimposed on the normalized
error histogram

These two different distributions are now mixed by a weighted average, defined

by the parameters whit and wrand with whit+wrand = 1. The weights are determined

according to the frequency of the error values for the corresponding distributions.

The Equation 5.16 gives the resulting distribution.

p(zt|xt) =

(

whit

wrand

)T

·

(

phit(zt|xt)

prand(zt|xt)

)

(5.16)

The density resulting from this linear combination of the individual densities is

shown in Figure 5.5. It can be noticed that the basic characteristics of both basic

models are still present in this combined density.

Now with the necessary components to implement Bayes filter, the motion model,
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p(xt|ut, xt−1), and measurement model, p(zt|xt), are generated, two different Bayes

filtering algorithms will be presented next.

5.5 Extended Kalman Filter Algorithm

Extended Kalman Filter (EKF) is a variation of Gaussian Filters. Gaussian tech-

niques based on the same the basic idea that beliefs are represented by multivariate

normal distributions, which is shown in Equation 5.17.

p(x) = det(2πΣ)
−1

2 exp{
−1

2
(x− µ)TΣ−1(x− µ)} (5.17)

.

This density over the variable x is characterized by two sets of parameters: which

are the mean and the covariance. The Kalman filter represents beliefs by these

moments. At time t, the belief bel(xt) is represented by the mean, µt and the

covariance Σt.

The input of the Kalman filter is the belief at time t− 1, is represented by µt−1

and Σt−1. To update these parameters, Kalman filter require the control ut and the

measurement zt. The output is the belief at time t which is represented by µt and

the covariance Σt [25].

The Kalman filter is implemented for a restricted class of problems with linear

state transitions and linear measurements. Since the arguments of the measurement

probability, p(zt|xt), is not linear in this study (see Equation 5.12), the linearity

assumption is violated and so Kalman filter algorithm is not applicable in its current

form.
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The EKF is a variation of Kalman Filter which is modified to handle nonlinear

cases. EKF calculates an approximation to the true belief. It represents this approx-

imation by a Gaussian. Specifically, the belief bel(xt) is represented by the mean,

µt and the covariance Σt. Thus, the EKF inherits from the Kalman filter the basic

belief representation, but it differs in that this belief is only approximate, not exact

as was the case in Kalman filters.

In EKF the state transition probability and the measurement probabilities are

governed by nonlinear functions g and h, respectively:

xt = g(ut, xt−1) + εt (5.18)

zt = h(xt) + δt (5.19)

where εt and δt describe the process noise and measurement noise respectively.

The process noise εt is of the same dimension with the state vector xt. It is a zero

mean Gaussian distribution with covariance Rt. Similarly, the measurement noise δt

is of the same dimension with the measurement vector zt. It is a zero mean Gaussian

distribution with covariance Qt. The nonlinear functions g and h are approximated

by linearization via TaylorExpansion.

Now, the EKF algorithm is depicted in Algorithm 2 [25]:

Algorithm 2 Extended Kalman Filter Algorithm

1: Extended Kalman Filter(µt−1,Σt−1, ut, zt)
2: µ̄t = g(ut, µt−1)
3: Σ̄t = GtΣt−1G

T
t +Rt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − h(µ̄t))
6: Σt = (I −KtHt)Σ̄t

7: return (µt,Σt)
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The nonlinear measurement update equation, h(µ̄t), in Line 5 of Algorithm 2 is

already given in Equation 5.13. Ht is the Jacobian of the h(µ̄t). It is obtained by

the linearization of h(µ̄t) via Taylor series expansion around µ̄t. Ht is given by:

Ht = h
′

(µ̄t) (5.20)

Ht =










∂h1

∂µ̄x

∂h1

∂µ̄y

∂h1

∂µ̄z

∂h2

∂µ̄x

∂h2

∂µ̄y

∂h2

∂µ̄z

...
∂hm

∂µ̄x

∂hm

∂µ̄y

∂hm

∂µ̄z










(5.21)

where m is the dimension of the measurement vector z.

On the other hand, the nonlinear state transition equation, g(ut, µt−1), in Line

2 will be defined differently for the two motion models, Brownian motion and har-

monics motion, presented in Section 5.3.

In the first case, Brownian Motion, state update equation is g(ut, µt−1) will be

linear which is already presented in Equation 5.1. Thus the Jacobian, Gt of the

linearization of g(ut, µt−1) is of the form:

Gt = I (5.22)

where I is the identity matrix with I ∈ R
n and n is the dimension of the state x.

With these motion and measurement models EKF algorithm for Brownian motion

model will be:

In the second case, harmonic motion model is utilized. For this case the state

update equation is given in Equation 5.8. Likewise the Brownian Motion Model state
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Algorithm 3 Extended Kalman Filter Algorithm with Brownian Motion Model

1: Brownian EKF(µt−1,Σt−1, zt)
2: µ̄t = µt−1

3: Σ̄t = Σt−1 +Rt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − h(µ̄t))
6: Σt = (I −KtHt)Σ̄t

7: return (µt,Σt)

update Jacobian, Gt = I and the EKF algorithm for Harmonic motion is given as:

Algorithm 4 Extended Kalman Filter Algorithm with Harmonic Motion Model

1: Harmonics EKF(µt−1,Σt−1,∆ut, zt)
2: µ̄t = µt−1 +∆ut

3: Σ̄t = Σt−1 +Rt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

5: µt = µ̄t +Kt(zt − h(µ̄t))
6: Σt = (I −KtHt)Σ̄t

7: return (µt,Σt)

The purpose of using EKF algorithm lies in its simplicity and its computational

efficiency. It is computationally extremely tractable since it represents the belief

distribution by a multivariate Gaussian distribution.

On the other hand, representing the posterior, p(z|x), by a Gaussian has impor-

tant ramifications. Especially, Gaussians are unimodal, in other words they posses

a single maximum. Although such a posterior is characteristic of many tracking

problems in robotics, in which the posterior is focused around the true state with a

small margin of uncertainty, gaussian posteriors are a poor match for many global

estimation problems. The reason is in many global estimation problems, distinct

hypotheses exist, each of which forming its own mode in the posterior [25].

In the next section a nonparametric approach for implementing the Bayes Filter

is presented, which will overcome this single hypothesis ramification.
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5.6 Particle Filter Algorithm

Particle Filter is another approach to Bayes filter implementation and it represents

the posterior distribution, p(z|x), by a finite number of samples unlike the Extended

Kalman Filter which relies on finite functional form and represents the posterior by

a multivariate Gaussian distribution. For this purpose, particle filters regarded as

nonparametric filters [25].

The samples, particles, which represent the posterior distribution are denoted

as:

Xt := x
[1]
t , x

[2]
t , . . . , x

[M ]
t (5.23)

where M represents the total number of particles in particle set Xt. Each particle

x
[m]
t in this set with 1 ≤ m ≤ M represents a single hypothesis for the possible true

state at time t. The key idea of particle filters is to approximate and represent the

belief distribution bel(xt) by a finite number of random particles Xt.

Likewise the Extended Kalman Filter algorithm the belief, bel(xt), at time t is

computed from the the belief, bel(xt−1), at the previous time step t−1. The following

algorithm depicts the basic Particle Filter Algorithm [25].

In Algorithm 5 inputs are the particle set at the previous time step t − 1, X̄t−1,

control input at time t, ut and measurement at time t, zt. Two essential steps

of the Bayes filtering state transition distribution, p(xt|ut, xt−1), and measurement

distribution p(zt|xt) are presented in Lines 4 and 5 respectively.

State transition is implemented by sampling from this distribution, p(xt|ut, xt−1).

For this purpose, a hypothetical state xt is generated from the particle set Xt−1 based

on the particle xt−1 by employing the control input ut. By generating M particles
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Algorithm 5 Particle Filter Algorithm

1: Particle Filter(µt−1, Xt−1, ut, zt)
2: X̄t = Xt = ∅
3: η = 0
4: for m = 1 → M do
5: sample x

[m]
t ∼ p(xt|ut, x

[m]
t−1)

6: w
[m]
t = p(zt|x

[m]
t )

7: η = η + w
[m]
t

8: X̄t = X̄t + 〈x
[m]
t , w

[m]
t 〉

9: end for
10: for m = 1 → M do
11: w

[m]
t = w

[m]
t /η

12: end for
13: for m = 1 → M do
14: draw x

[i]
t from X̄t with ∝ w

[i]
t

15: add x
[i]
t to Xt

16: end for
17: return Xt

in this way, the prediction belief distribution bel(xt) is represented. It is important

to note that the M particles are generated independently from each other.

In order to incorporate the measurement, zt, into particle set important factor,

w
[m]
t is calculated by using the measurement probability: w

[m]
t = p(zt|x

[m]
t ). The

importance factor w
[m]
t represents the weight of the particle x

[m]
t and these weighted

particles approximates the belief distribution at time t, bel(xt).

The most essential part of the particle filter algorithm is shown in Lines 12-16,

the resampling. In the resampling process M particles are drawn with replacement

from the temporary particle set X̄t in which the particles are distributed relative to

bel(xt). Probability of drawing a sample is proportional to the normalized weight,

w
[i]
t , of each particle x

[i]
t . The normalization of the weights w

[i]
t are carried out in

Lines 9 - 11.
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The key idea of the resampling process is incorporating the effect normalized

importance factors into the particle set. As a result of resampling, the particle set

X̄t is transformed into another particle set Xt of the same size which contains samples

according to the distribution bel(xt) = ηp(zt|x
[m]
t )bel(xt).

However the resampling process arouses an important problem regarding the

complete representation of the original density with the generated particles. This

problem is presented next.

5.6.1 Sampling Variance

A significant issue about the particle filter algorithm is the sampling variance. The

statistics obtained by the samples such as mean and variance differ from the statis-

tics of the original density distribution from which these samples are drawn. This

variation is called as sampling variance [25].

The resampling step of the Algorithm 5 is the major cause of this increase sam-

pling variance which might result with the incomplete representation of the original

density with the generated particles. The repetitive resampling of the particles will

cause decrease in the diversity of the particles in the final particle set, Xt, which

represents the posterior belief distribution, bel(xt).

This problem can be solved with low variance sampling. In the low variance

sampling, particles are generated via a sequential sampling process unlike the basic

particle filter algorithm, which follows an independent sampling process (see Algo-

rithm 5). This algorithm is given in Algorithm 6 [25].

For this purpose, initially a r between 0 and M−1 is chosen. Then, by repeatedly

adding M−1 to r the particles can be selected. A unique particle is selected by the

following formula;
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Algorithm 6 Low Variance Sampler

1: Low Variance Sampler(Xt,Wt)
2: X̄t = ∅
3: r = rand(0,M−1)

4: c = w
[1]
t

5: i = 1
6: for m = 1 → M do
7: U = r + (m− 1) ·M−1

8: while U > c do
9: i = i+ 1
10: c = c+ w

[i]
t

11: end while
12: add x

[i]
t to X̄t

13: end for
14: return X̄t

i = argmin
j

j
∑

m=1

w
[m]
t ≥ U (5.24)

where U is any number between 0 and 1. There are three advantages of the

low-variance sampler. First, the sample space is sampled in a more systematic way

as opposed to independent selection. Second, if all samples have identical weights

the collection of particles will be the same after re-sampling. Third, the algorithm

has a lower complexity O(M) as opposed to the complexity of independent selection

O(M log M) [25].

With the low variance sampler shown above the particle filter algorithm for the

harmonic motion model is given below.

In Algorithm 7, Σr (see Equation 5.9) is the covariance of the three dimensional

remaining motion shown in Equation 5.10 and k in Line 8 is the number of mea-

surements. v
[j]
t is an auxiliary variable which represents the probability of the the
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Algorithm 7 Particle Filter Algorithm for Harmonic Motion Model

1: Harmonics Particle Filter(µt−1, Xt−1,∆ut, zt)
2: X̄t = Xt = ∅
3: η = 0
4: for m = 1 → M do
5: sample r

[m]
t ∼ N(0,Σr)

6: µ̄
[m]
t = µt−1 +∆ut + r

[m]
t

7: w
[m]
t = 1

8: for j = 1 → k do
9: ẑ

[m]
j = ||µ̄

[m]
t − qj ||

10: α
[m]
j = zt − ẑ

[m]
j

11: v
[j]
t = p(α

[m]
j )

12: w
[m]
t = w

[m]
t · v

[j]
t

13: end for
14: η = η + w

[m]
t

15: X̄t = X̄t + 〈x
[m]
t , w

[m]
t 〉

16: end for
17: for m = 1 → M do
18: w

[m]
t = w

[m]
t /η

19: end for
20: r = rand(0,M−1)

21: c = w
[1]
t

22: i = 1
23: for m = 1 → M do
24: U = r + (m− 1) ·M−1

25: while U > c do
26: i = i+ 1
27: c = c+ w

[i]
t

28: end while
29: add x

[i]
t to Xt

30: end for
31: µt = E[Xt]
32: return (µt, Xt)
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innovation particle α
[m]
j . For each particle, this probability is directly computed from

the innovation measurement model presented in Section 5.4.

The Algorithm 7 initially computes the prediction belief distribution, bel(xt)

which is represented by the temporary particle set X̄t. X̄t is generated by initially

sampling from the remaining motion. Then the posterior belief distribution, bel(xt),

represented by particle set Xt, is obtained by resampling with low variance sampler.

Finally, the expected position of the POI on heart surface is computed by taking the

weighted expectation of the particles in Xt.

For the Brownian motion model Lines 5-6 of the Algorithm 7 is updated in the

following way:

Algorithm 8 Brownian Motion Model for the Particle Filter Algorithm

1: sample r
[m]
t ∼ N(0,Σ)

2: µ̄
[m]
t = µt−1 + r

[m]
t

where Σ is the covariance of the Brownian motion as shown in Equation 5.3.



Chapter 6

Evaluation of the Probabilistic

Algorithms

In this chapter, we comprehensively evaluate the performance of the probabilistic

algorithms that are presented in the previous chapter. Initially, we test the algo-

rithms on a 70 s of Sonomicrometry data. After the algorithms are verified with this

independent data, we applied these algorithms to a 60 sec heart motion data and

show that they effectively filter the noisy heart motion data. Finally, one-step esti-

mates obtained from the generalized adaptive predictor (see Section 3.3) algorithm

is employed as the motion model of the applied probabilistic approach. Thus, two

distinctive studies presented in this thesis are linked to each other.
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6.1 Verification with the Independent Sensor

Data

In order to collect the 70 s of Sonomicrometry data, first the rigid plastic sensor base,

shown in Figure 5.3, was placed in a rectangular glass tank which is filled with dis-

tilled water. The 6th, moving, crystal of the Sonomicrometry system was attached to

the tip of the PHANToM manipulator. Then, the tip of the manipulator was hanged

down into the water bath with the piezoelectric crystal surface is looking towards the

rigid base. Finally, a custom circular motion was applied to the PHANToM device

and ten incoming measurements from these six channels were recorded.

Together with these ten measurements, the 3D position coordinates of the moving

crystal were also computed. This position is calculated by the SonoVIEW Software

(Sonometrics Inc., Ontario, Canada) via geometric triangulation method, which is

mentioned the previous chapter. The 3D position of the moving crystal was also

computed by PHANToM manipulator. The encoder positions on the PHANToM

were recorded and these positions were transformed into end effector positions.

The 3D position coordinates of the moving crystal computed by the Sonomicrom-

eter and PHANToM manipulator can be seen Figure 6.1.

The simulations for all of the four algorithms;

i) EKF with Brownian motion model

ii) EKF with Harmonic motion model

iii) Particle Filter with Brownian motion model

iv) Particle Filter with Harmonic motion model

were tested with the same 70 s of data.
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Figure 6.1: The 3D position coordinates of the moving crystal computed by Sonomi-
crometry and PHANToM.
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Figure 6.2: Density distribution of the noise model superimposed on the normalized
error histogram.

In the simulations, the end effector positions of the PHANToM manipulator rep-

resents a ‘perfect’ localization, providing a performance base for the probabilistic

algorithms during the filtering of the channel measurements and localization of the

moving crystal. The performance metric that was used for the evaluation of the

algorithms is the three dimensional Root Mean Square Error (RMSE) between the

localized position of the moving crystal by probabilistic algorithms and the position

computed by Sonomicrometry. This error was compared with the 3D RMSE between

the position computed by Sonomicrometry and the position computed by PHANToM

to show the performance of the algorithms.

For the particle filter algorithms, the measurement model is shown in Figure

6.2. 500 particles were used for the representation of distributions and simulations

performed 10 times with worst result is presented.
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Table 6.1: Simulation Results for a 70 sec long Sonomicrometer Data: RMSE for the
Probabilistic Localization Algorithms.

Localization Results RMS Position Error [mm]

Baseline Error between

Sonomicrometry and PHANToM

2.4130

EKF with Brownian motion model 2.9860

EKF with Harmonic motion model 2.5129

Particle Filter with Brownian motion model 2.6454

Particle Filter with Harmonic motion model 2.5042

Localization results of the probabilistic algorithms in terms of 3D RMSE for the

70 sec Sonomicrometry data are shown in Table 6.1. Second row shows the baseline

RMS error between the Sonomicrometry sensor system and PHANToM manipulator.

Remaining rows show the RMS error for between the Sonomicrometry sensor system

and the four distinct probabilistic algorithms.

Filtering results for a certain channel measurement by the and EKF with har-

monic motion model and the localized 3D position of the moving crystal is shown

in Figure 6.3 and Figure 6.4 respectively. These two figures are provided in order to

exemplify and demonstrate how the algorithms are filtering the incoming Sonomi-

crometry sensor data and compute the position of the moving crystal with these

filtered measurements.

When the RMS error results of the localization algortihms are compared with each

other, particle filter algorithm with harmonic motion model yields the best results.

The effect of the harmonic motion model in the performance of localization can be

also observed. Both the EKF and particle filter algorithms provide better results

with harmonic motion model than Brownian motion model. These results together
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Figure 6.3: Raw and filtered sensor data by EKF with harmonic motion model
gathered by 5th channel are presented.

with the Figures 6.3 and 6.4 show that the presented probabilistic algorithms filter

the incoming noisy measurements effectively and yields accurate localization of the

moving crystal.
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Figure 6.4: The 3D position coordinates of the moving crystal computed by Sonomi-
crometry and localized by EKF with harmonic motion model.
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6.2 Application to the Heart Motion Data

In this section, the results regarding the application of the localization algorithms to

a 60 sec constant heart rate motion data are presented. It is already shown in the

previous section that these algorithms are working properly. Since the initial goal of

this study is to develop an online filtering mechanism for incoming sensor data, it is

essential to test the presented algorithms with the prerecorded heart motion data.

The harmonic motion model which comprises 2nd order harmonic approximation of

the heart motion data was presented in Section 5.3.2.

The incoming channel measurements during an in-vivo data collection are very

noisy. These noisy measurements causes sign shifting in the geometric triangulation

method, which is used by Sonomicrometer to compute the 3D position of the POI,

and thus yields incorrect results for the 3D coordinates of the POI (see Figure 6.5).
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Figure 6.5: z-Coordinate of the 3D Position of POI computed separately by raw
measurements and offline filtered measurements.
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Table 6.2: Simulation Results for a 60 sec long Constant Heart Rate Motion Data:
RMSE for the Probabilistic Localization Algorithms.

Localization Results RMS Position Error [mm]

EKF with Brownian motion model 1.3859

EKF with Harmonic motion model 1.3271

Particle Filter with Brownian motion model 1.1484

Particle Filter with Harmonic motion model 1.0506

For this purpose an updated performance metric is required to evaluate the algo-

rithms. The performance metric that was used for the evaluation of the algorithms

is the 3D RMS error between the localized position of the POI on heart surface

by probabilistic algorithms and 3D position computed via geometric triangulation

method by offline filtered measurements. Again, 500 particles were used for the rep-

resentation of probability distributions and the simulations performed 10 times with

worst result is presented. Localization results of the probabilistic algorithms in terms

of 3D RMSE for the 60 sec heart motion data are shown in Table 6.2.

The filtered heart motion data from channel 5 by the EKF with harmonic motion

model and the localized 3D position of the POI is shown in Figure 6.6 and Figure 6.7

respectively. Again, these two figures are provided in order demonstrate and show

that how the algorithms are filtering the heart motion data and localize 3D position

of the POI on heart surface.

When the RMS error results of the localization algorithms are compared with

each other, particle filter algorithm with harmonic motion model yields the best

results. Both the EKF and particle filter algorithms provide better results with

harmonic motion model than Brownian motion model. These results together with

the Figures 6.6 and 6.7 show that the presented probabilistic algorithms filter the
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Figure 6.6: Raw and filtered sensor data by EKF with harmonic motion model
gathered by 5th channel are presented.

heart motion effectively and yields accurate localization of the POI.
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6.3 Generalized Adaptive Predictor as Motion

Model

In this part of this chapter, two distinct studies presented in this thesis are linked.

In this manner the generalized adaptive predictor is used to generate motion model

for the EKF and particle filter algorithms.

By employing the one-step estimates generated by the generalized adaptive filter,

the corresponding motion model for the algorithms is constructed in the following

way.

At any time t, the update equation of the generalized motion model can be written

as:

∆gaft = gaft+1 − gaft (6.1)

where gaft+1 is the one step prediction generated by the adaptive predictor and

gaft is the xt, which is the current 3D position of the heart data. Then, the state

update equation in Line 2 of EKF Algorithm (Algorithm 2) is updated as;

µt+1 = µt +∆gaft (6.2)

and consecutively in Line 5 of Particle Filter Algorithm (Algorithm 5) is updated

as;

µ̄
[m]
t = µt−1 +∆gaft + r

[m]
t (6.3)
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Table 6.3: Simulation Results for a 60 sec long Constant Heart Rate Motion Data:
RMSE for the Probabilistic Localization Algorithms.

Localization Results RMS Position Error [mm]

EKF with Generalized motion model 1.2257

Particle Filter with Generalized motion model 1.0876

where r
[m]
t is sampled from the distribution r

[m]
t ∼ N(0,Σgaf ) with Σgaf is the

covariance obtained from the three dimensional remaining motion between one-step

estimates and current position of POI (see Equation 6.1).

Localization results of the EKF and Particle Filter algorithms for the 60 sec heart

motion data are shown in Table 6.3.

From Table 6.3 it can be seen that integrating the one-step estimates obtained

from the generalized adaptive filter results in considerable improvement in the per-

formance of EKF algorithm. Although it enhances the performance of the particle

filter algorithm when compared to Brownian motion model, it yields slightly worse

results than the harmonic motion model.

6.4 Discussion of the Results

At this point, it would be informative to discuss the algorithms and their performance

presented in the previous sections.

In this chapter, we initially evaluate the presented EKF and particle filter algo-

rithms on a Sonomicrometry sensor data. The presented results in Table 6.1 and
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Figures 6.3 and 6.4 show that the algorithms are working properly and yields rea-

sonable localization results for a custom generated circular motion.

After verifying the implementation of the algorithms, we applied them to a con-

stant rate heart motion data. Although the channel measurements for this study

comprise more noise (see Figure 6.6) than the previous study, both of the EKF and

particle filter algorithms filter and clean these noisy channels effectively and accu-

rately localize 3D position of the crystal attached near the POI (see Figure 6.7 and

Table 6.2).

In all of the studies, harmonic motion model yields better results than the Brow-

nian motion model which is no surprise since the harmonic approximation includes

significant information about the state of the environment.

Finally, we integrate the generalized adaptive predictor presented in Section 3.3

into the motion model of the localization algorithms. The one-step estimates gen-

erated by the adaptive predictor improved the performance of the EKF algorithm

precisely (see Table 6.3).

When the two localization algorithms are compared in terms of computational

efficiency, EKF algorithm is much more computationally tractable. The duration for

EKF algorithm to process the 60 sec heart motion data is on the order of 2 − 3 sec

whereas the particle filter algorithm, with 500 particles, process the same data in

approximately 6000 sec. Therefore, despite particle filter provides better filtering of

the noisy measurements, EKF is much more computationally efficiently and can be

easily implemented.



Chapter 7

Conclusion

In this thesis, two distinct studies are presented.

In the first study, a one-step and a generalized estimator for predicting the hori-

zon estimate for the model predictive controller are presented. Three different sets

of experiments are performed with constant heart rate and varying heart rate to

evaluate the performance of the proposed algorithms.

The experimental RMS error on the order of 0.160−0.350 mm obtained using the

generalized estimator described in this thesis represents a significant improvement

in tracking performance compared to earlier studies. These results show that the

estimation of future POI motion is no longer the bottleneck in the heartbeat motion

tracking since the necessary amount of RMS tracking error in the order of 100-250 µm

for the POI on the heart surface is achieved to perform precise operations.

Furthermore the results showed that if the heart statistics change, then adaptive

predictors are able to adjust to these changes sufficiently quickly and yield good

tracking results. However, if the statistics change abruptly and significantly, such as

in an arrhythmia, actions must be taken to minimize the effect of poor predictions.
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Another way to improve tracking quality is to incorporate other types of data

into the estimation scheme. One such possibility is to include the electrocardiogram

(ECG) signal into the observations. In this way, the predictor is able to use the

electrical signals that activate heart contraction in order to improve the prediction

as in [4]. This may improve performance during heart contractions, when rapid POI

motion occurs.

In the second part of the thesis a probabilistic approach to filter and clean the

measurements obtained from the Sonomicrometry sensor system, which is used for

measuring heart motion in this research.

The implementation of the two probabilistic algorithms, EKF and Particle Fil-

ter, is verified with a custom generated circular motion and then the performance

of these algorithms are evaluated on a heart motion data. Subsequently, the gen-

eralized predictor presented in the first part of the thesis integrated to improve the

performance of the algorithms.

The 3D RMS Position errors on the order of 1.000 − 1.400 mm obtained using

the generalized estimator described in this thesis represents a sufficient localization

performance for the POI on the heart surface. When the computational efficiency

and ease of implementation of the algorithms are taken into account, these result

show that EKF algorithm can be further developed and integrated as an online

filtering mechanism for the sensor measurements.

In order to emerge the second part of the thesis as a publishable study and

developed into an online process, a secondary sensor system is required. Such a

sensor system will provide online independent measurements which will be used as

the baseline data during the filtering of the Sonomicrometry measurements.

In the on-going development of this setup, two high-speed cameras are currently

employed for measuring heart motion and providing the independent measurement
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for filtering algorithms. Currently, a successful calibration between the Sonomicrom-

etry sensor system, high-speed camera system and PHANToM manipulator is trying

to be achieved before using these localization algorithms in an in-vivo experiment.
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Appendix A

Sonomicrometer Least Squares

Equations

For each group of four crystals, the position of the crystal attached on the point of

interest (POI) on heart surface is calculated relative to the three crystals fixed on

the base. First crystal on the base is selected as the origin of the coordinate frame.

Second crystal forms the x-axis together with the crystal at the origin, and the third

crystal forms the xy-plane together with the x-axis. Four different coordinate frames,

(α, β, γ, δ), from five base crystals can be constructed in the following way:

α1: 1 – 2 – 3 β1: 1 – 3 – 4 γ1: 2 – 3 – 4 δ1: 4 – 5 – 1

α2: 1 – 2 – 4 β2: 1 – 3 – 5 γ2: 2 – 3 – 5 δ2: 4 – 5 – 2

α3: 1 – 2 – 5 δ3: 4 – 5 – 3

(A.1)

Let the position of the fourth crystal be P (x, y, z); x = [x y]T denote the xy-

coordinates with respect to the coordinate frame; and d be the measured distance

between two crystals. If x is known, the distance of the fourth crystal from the base

frame, z, can be computed from raw crystal measurements using trigonometry. The
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position of the fourth crystal can be computed as:

[

2x2 2y2

2x3 2y3

]

︸ ︷︷ ︸

A1

[

x

y

]

︸ ︷︷ ︸

xα

=

[

d21 − d22 + x2
2 + y22

d21 − d23 + x2
3 + y23

]

︸ ︷︷ ︸

b1

(A.2)

z = +
√

d23 − x2 − y2 (A.3)

Then for n possible measurements, there are n linear equations.

A1x1 = b1

A2x2 = b2

...

Anxn = bn

(A.4)

Similar solutions can be grouped under the same coordinate frame such as:

xn =







xα, n = 1, 2, 3

xβ , n = 4, 5

xγ , n = 6, 7

xδ, n = 8, 9, 10

A1xα = b1 A4xβ = b4 A6xγ = b6 A8xδ = b8

A2xα = b2 A5xβ = b5 A7xγ = b7 A9xδ = b9

A3xα = b3 A10xδ = b10

(A.5)

Let g be a homogeneous transformation matrix:



APPENDIX A. SONOMICROMETER LEAST SQUARES EQUATIONS 96

g =

[

R p

0 0 1

]

(A.6)

where position vector p describes translations with respect to a reference frame, and

orientation matrix R describes rotations. Then inverse transformation matrix of g is:

g−1 =

[

RT −RTp

0 0 1

]

(A.7)

Using the transformation matrices, all of the measurements can be expressed under

the same coordinate frame.

gαβ

[

xβ

1

]

=

[

xα

1

]

−→

[

xβ

1

]

= g−1
αβ

[

xα

1

]

gαγ

[

xγ

1

]

=

[

xα

1

]

−→

[

xγ

1

]

= g−1
αγ

[

xα

1

]

gαδ

[

xδ

1

]

=

[

xα

1

]

−→

[

xδ

1

]

= g−1
αδ

[

xα

1

]

(A.8)

Lets define a truncated transformation g̃ and its identity in the following way.

g̃−1 =
[

RT −RTp
]

(A.9)

Ĩ =

[

1 0 0

0 1 0

]

(A.10)
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Anxα = bn −→ AnĨ

[

xα

1

]

= bn, n = 1, 2, 3

Anxβ = bn −→ Ang
−1
αβ

[

xα

1

]

= bn, n = 4, 5

Anxγ = bn −→ Ang
−1
αγ

[

xα

1

]

= bn, n = 6, 7

Anxδ = bn −→ Ang
−1
αδ

[

xα

1

]

= bn, n = 8, 9, 10

(A.11)

Then, all equations can be combined into a single linear equation:

A1Ĩxα = b1

...

A4g
−1
αβ

[

xα

1

]

= b4

...

A6g
−1
αγ

[

xα

1

]

= b6

...

A8g
−1
αδ

[

xα

1

]

= b8

...

A10g
−1
αδ

[

xα

1

]

= b10

≡























A1Ĩ
...

A4g
−1
αβ

...

A6g
−1
αγ

...

A8g
−1
αδ

...

A10g
−1
αδ





























x0

y0

1






=























b1

...

b4

...

b6

...

b8

...

b10























(A.12)
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











































A1Ĩ
...

A4g
−1
αβ

...

A6g
−1
αγ

...

A8g
−1
αδ

...

A10g
−1
αδ























Ĩ1

[

x0

y0

]

+























A1Ĩ
...

A4g
−1
αβ

...

A6g
−1
αγ

...

A8g
−1
αδ

...

A10g
−1
αδ























Ĩ2























=























b1

...

b4

...

b6

...

b8

...

b10























(A.13)

where,

Ĩ1 =







1 0

0 1

0 0






and Ĩ2 =







0

0

1







(A.14)













































A1Ĩ
...

A4g
−1
αβ

...

A6g
−1
αγ

...

A8g
−1
αδ

...

A10g
−1
αδ























Ĩ1























︸ ︷︷ ︸

A

[

x0

y0

]

=























b1

...

b4

...

b6

...

b8

...

b10























−























A1Ĩ
...

A4g
−1
αβ

...

A6g
−1
αγ

...

A8g
−1
αδ

...

A10g
−1
αδ























Ĩ2

︸ ︷︷ ︸

b

(A.15)
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Using linear least squares, a solution to Ax = b can be found as:

x = (ATA)−1ATb (A.16)


