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Abstract
Articulated legs enable the selection of robot gaits, including walking in different directions such as
forward or sideways. For longer distances, the best gaits might maximize velocity or minimize the
cost of transport (COT). While animals often have morphology suited to walking either forward
(like insects) or sideways (like crabs), hexapod robots often default to forward walking. In this
paper, we compare forward walking with crab-like sideways walking. To do this, a simple gait
design method is introduced for determining forward and sideways gaits with equivalent body
heights and step heights. Specifically, the frequency and stride lengths are tuned within reasonable
constraints to find gaits that represent a robot’s performance potential in terms of speed and
energy cost. Experiments are performed in both dynamic simulation in Webots and a laboratory
environment with our 18 degree-of-freedom hexapod robot, Sebastian. With the common three
joint leg design, the results show that sideways walking is overall better (75% greater walking speed
and 40% lower COT). The performance of sideways walking was better on both hard floors and
granular media (dry play sand). This supports development of future crab-like walking robots for
future applications. In future work, this approach may be used to develop nominal gaits without
extensive optimization, and to explore whether the advantages of sideways walking persist for other
hexapod designs.

1. Introduction

Legs enable animals [1, 2] and robots [3–26], to nav-
igate particularly challenging terrains. Bio-inspired
multi-legged robots [27–29], have shown how using
many legs together in a coordinated gait results in
fast and stable locomotion. In particular, our group
is inspired by crabs which can cross a spectrum of wet
to dry sandy terrains and small to large rocks [30, 31].

Many legged robots, inspired by insects, are
hexapods that walk forward. Statically stable gaits
can be generated with inverse kinematics [32]. Sta-
bility margins can be quantified based on center of
mass (COM) location relative to the support polygon
[33–36].

Contact forces can be used to generate adaptive
gaits [37–39]. Dynamic control can achieve desired
task accelerations [40]. Bioinspired controllers have
demonstrated stable walking through the transla-
tion of biological concepts such as central pattern
generators [41], genetic algorithms [42], artificial

neural networks [43], and spiking neural networks
[44, 45]. Forward walking has been demonstrated to
be predictable enough for planning [46], simultane-
ous localization and mapping [47], and walking in
confined spaces [48].

Sideways walking has been studied in a relatively
smaller number of robots. One important exception
in bipeds [49] shows that rotating the hips and
knees to operate in the sagittal plane with a non-
anthropomorphic gait is akin to walking sideways and
reduces roll oscillations [50]. In this design, adding
rotation at the hip is best for steering, resulting in a
biped leg design that is similar to a crab leg [51]. A
robot with four legs that operates this way can switch
between quadruped gaits and biped stances [52]. A
second important exception is in omni-directional
legged gaits [53–55], where robots might use
sideways walking to side-step an obstacle or stabilize
a lateral perturbation. Others have characterized the
stability of sideways walking with dynamic gait stabil-
ity margins [56] and minimization of foot forces and
torques [57].
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Robots inspired by crustaceans are especially
promising in traversing amphibious terrain. While
lobster-like robots with eight legs walk forward in
water [26], the crab-like hexapod Ariel walks side-
ways on land or underwater with invertible legs [3].
Forward bounding gaits have been demonstrated with
a swimming quadruped crab-like robot [58]. Side-
ways walking can be accomplished with compliant
reduced-actuated legs in flat and sloped terrain [25].
More recently, Crabster and little Crabster robots have
been designed to traverse deep and shallow water,
respectively [19, 20, 59, 60]. As amphibious legged
robots become more advanced, sideways walking may
become more important.

While most engineered robots default to a for-
ward walking gait [17, 18, 30–40, 42–48, 61, 62],
most biological crabs default to sideways walking
[63, 64]. Furthermore, crab species that develop side-
ways walking (carcinization) [65] are thought to do so
to increase speed [66]. Should crab-like robots walk
sideways as well? Or are the mechanics of robots suf-
ficiently different that forward walking is always bet-
ter? For future robots to traverse the types of terrains
that biological crabs excel in, which is better? To our
knowledge, direct comparisons between forward and
sideways hexapod walking have not been done in
robotics and are needed to answer the preceding
questions.

In this paper, our goal is to compare forward
and sideways walking for a robot that can do both.
We propose a simple, direct method for finding a
gait that represents the robot’s performance poten-
tial for a particular walking direction. The robot’s
workspace first is computed and used to define end
effector paths for each leg that utilize their longest
feasible stride lengths (SLs) in a particular direction.
Then, dynamic simulation is used to iteratively find
the minimum leg cycle time for which the paths can
be followed with a desired accuracy, resulting in a gait
that is both efficient and accurate. This allows us to
directly compare velocity and energy usage at differ-
ent walking heights and SLs for forward and sideways
walking, first in simulation, and then on a mobile
robot. The simulation platform is Webots [67–69],
a widely used and validated robot simulation soft-
ware [70–76]. The hardware platform is our robot
Sebastian [77], figure 1(a), walking on flat ground
and in sand. Finally, practical trade-offs of sideways
and forward walking are discussed. In future work,
this method can be applied to other types of robots
to determine appropriate nominal walking gaits and
further understand crab-like gaits with robot models.

2. Relationship to other legged gait
literature

Analytical research has shown how factors such as
velocity, body height, SL, duty factor, joint torque, vis-
cosity, and heat loss can be used to minimize energy

cost [78, 79]. For example, smaller duty factors can
improve energy cost when speed is increased [80, 81].
However, if the duty factor is too low (<0.5) the robot
can become unstable if there are fewer than three legs
on the ground at a given time. Thus, in this paper, we
assume an alternating tripod gait, common to many
other hexapod robots [76, 82–90], which can be gen-
eralized to other alternating stance gaits for four or
more legs.

Other researchers show that uniformly distribut-
ing vertical ground reaction forces results in improved
energy efficiency [91]. Even if the ground reaction
forces cannot be used in the optimization, minimiz-
ing the sum of the squares of joint torques improves
the distribution of foot forces and moments [92–95].
Thus, a torque distribution algorithm has been shown
to decrease the proportion of heat loss and, as a result,
decrease energy cost [96].

It is also possible to use numerical methods to
improve gaits over time. For example, using a genetic
algorithm [97] to optimize the controller with respect
to energetic efficiency, travelled distance and stabil-
ity of the robot locomotion [98]. More recent robots
have shown promise in developing gaits with end-to-
end deep learning [44]. A full review can be found in
[99]. However, these energy-based strategies can be
time consuming, or have uncertainty about achieving
a solution, or cannot easily and directly be applied to
other articulated legged robots [99].

In the present work, our gait design method is
based on the observation that longer SLs often help
both speed and energy cost. Detailed animal simula-
tions [80] suggest that to achieve high speed walking
with maximum efficiency, longer SLs should be used.
Human velocity measured on a treadmill shows that
SL changes linearly with velocity outside the transi-
tion area [100]. While [80] also suggests there is an
optimal stride and swing period for a given veloc-
ity, we allow these to vary in our method in order
to follow the planned end effector trajectories with a
desired accuracy. Thus, our gait design method differs
from the existing literature in that while the result-
ing gaits are not optimized for speed or energy cost,
they can be expected to be relatively fast and effi-
cient while following their planned leg trajectories
accurately. These modifications allow for their use to
compare the robot’s performance in different walking
directions.

3. Hardware and simulation platforms

We validate our results on our crab-like robot Sebas-
tian, figure 1(a), which has physical parameters listed
in table 1. This robot’s leg design is loosely inspired
by the biological crab species Pachygrapsus crassipes,
which is a small shore crab that typically walks side-
ways. Like crabs, the legs end in pointed dactyls
[30, 31]. However, while shore crabs are often 5 cm
long, our robot is scaled up to 33 cm long to accom-
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Figure 1. Each of the six legs on our robot (a) and in our simulation (b) have three joints as defined (c).

modate standard SAVOX SV-1270TG motors. Also,
the robot is a hexapod in order to have the minimum
number of legs for an alternating tripod gait. Thus,
there are 18 degree-of-freedom (DOF). All of the leg
pieces are 3D printed (MarkerGear M2, PLA, 100%
infill). The orange chassis contains batteries and elec-
tronics for control and data collection. The robot uses
a Raspberry Pi 4B powered by a PiSugar2 Pro as its
on-board CPU, which communicates with an 18-pin
Pololu Maestro servo controller. A 7.4 V lithium poly-
mer battery powers the motors, and an INA260 power
sensor measures the power draw at 25 Hz. The sensor
measurements are collected with an Arduino Nano
and sent to the on-board CPU.

We use a simplified model in Webots simulation
as shown in figure 1(b). Webots is a robotics platform
that can model, program and simulate mobile robots
with a large number of available sensors and actua-
tors [67–69]. It is used widely in robotics simulation
and has been validated in several relevant examples
[70–76], with results which are relevant to our study.

Table 1. Robot dimensions.

Length (cm) Weight (g)

Total robot 33a 3650
Body 20b 1800
1 coxa (L1) 5.4 21.8
1 femur (L2, 1 servo included) 9.0 95.0
1 tibia (L3, 2 servos included) 7.5 176.9
1 dactyl (L4) 12.6 16.6

aThe minimum length of Sebastian in Y direction (figure 1(a)),
when the robot is standing.
bThe length of Sebastian in X direction (figure 1(a)).

4. Gait design method

Here, the goal of our gait design method is to find
fast, stable and low cost of transport (COT) gaits for
robots that have articulated legs. Specifically, a com-
mon articulation design (e.g. [6–10, 18, 30, 31, 37]) is
to have a ‘hip’ joint that rotates the leg about a verti-
cal axis, followed by ‘knee’ and ‘ankle’ joints that have
parallel and horizontal axes of rotation, figure 1(c).
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Note that human and animal ‘hip’ joints can rotate
in multiple directions, but typical servomotors only
rotate in one direction, so this nomenclature is a con-
venience for this paper. The critical design parameters
are the length of the segments between these joints.
With such a design a robot can walk at a range of
body heights (in Z-direction, figures 1(a) and (b))
and at a range of different step sizes and step heights.
A typical forward walk (in X-direction, figures 1(a)
and (b)) will involve using broad motions of the hip
to move forward and smaller adjustments of the knee
and ankle to maintain a straight stride. A sideways
walk (in Y direction, figures 1(a) and (b)) will involve
greater motions at the knee and ankle to maintain
constant height, with only small motions at the hip
if steering is required.

To compare forward and sideways gaits, our
method, shown in figure 2, maximizes SL and fre-
quency (reciprocal of period (T)) sequentially at a
desired height. Subject to our constraints, this should
approximately maximize the velocity (v) based on
equation (1)

v = 2 ∗ SL

T
. (1)

∗Specifically, when the root-mean-square error
(RMSE) between measured and commanded trajec-
tory is � 1.2 cm, swing height error (eHS) is � 7%,
and SL error (eSL) is � 9%, section 4.3.

Firstly, we calculate the workspace at the desired
height and select the longest strides possible within
the workspace (either in X direction for forward or in
Y direction for sideways walking, figure 3(a)). This is
expanded upon in section 4.1.

Secondly, we apply inverse kinematics to find the
joint angles for a trajectory with stance that follows
full SL and swing that follows a parabolic arc with
set height (figures 3(b) and (c) and 4(a) and (b)) in
section 4.2.

Thirdly, we simulate in Webots with the planned
trajectory and the joint angles with position control
in section 4.2, discussed in section 5.

Fourthly, we check if the measured simulated legs
in Webots follow the commanded trajectory accu-
rately by tuning the period. We increase the stepping
period to decrease the velocity or increase the num-
ber of points k (section 4.2) until the robot follows the
desired trajectory within a defined threshold of error.
This is expanded upon in section 4.3.

Finally, we validate the key results on Sebastian.
These results are shown in section 6.

4.1. Finding workspace and stride
Just like biological crabs, our robot’s joints have rota-
tional limits, which together with the leg lengths
determine the reachable space (workspace) of the
dactyl. Joint limits are partly due to interference
between the proximal and distal segments if they

rotate too far. In addition, servos themselves have
rotation limits. Our robot’s dactyls intentionally
point inward [30, 31] and are therefore not reversible.
As shown in figure 4(a), the rotational range for hip
joints θ1 is (−22.5◦, 22.5◦) and for knee joints θ2

(−80◦, 20◦), and for ankle joints θ3 (−130◦, 0). The
negative value for θ1 is the clockwise direction, and
the negative values for θ2 and θ3 are the downward
direction. The 0◦ for hip joints is shown with bold
dark lines in figure 3(b).

We also limit the workspace based on the angle
between the ground and the dactyl (AGD) for sta-
ble walking, figure 4(a). We consider the AGD to
be zero when the dactyl is normal to the ground
(vertical). When the dactyl points inward toward the
body, the AGD is negative. When the dactyl points
outward away from the body, the AGD is positive.
The workspace is thus constrained to AGD ranges
(−60◦, 60◦). Larger (positive) AGD results in an
excessively sprawled posture and a tendency to slip
on flat surfaces. At this AGD range, the robot can
successfully extract dactyls at each swing.

In order to have room to walk forward, the mid-
dle legs are normal to the body and the front and rear
legs are rotated 45◦ with respect to normal to the body,
see figure 3(b). Sideways walking gait uses a config-
uration where the legs are parallel to each other, as
shown in figure 3(c). The workspace in figure 3(a)
is determined by forward kinematics with rotational
angles’ limitations and leg lengths shown in table 1.
The height, h, is the distance between the knee rota-
tional axis and the tip of the dactyl. The XY plane
shows the workspace with a given height.

Except where indicated, we choose 17.5 cm as the
desired height. This height is the minimum for our
physical robot testing because of the sprawl limits,
sinkage in sand, and the clearance between the body
and the ground. With the given height, the workspace
of the right front, middle and rear legs for forward
walking is shown in figure 3(b) in gray. The left legs
workspaces (not shown) are symmetrical with the
right legs. Then, we find the full SL for the gait, the red
lines in figure 3(b). Based on geometry, figure A1 in
appendix A, the full SL for the right front, middle and
rear legs are the same. Figure 3(c) is the workspace for
sideways walking, as legs are parallel and the hip joints
are not used. The full SL is 15 cm. The gray shape
shows the available workspace. The blue (green) dis-
plays the full stride (half stride) for sideways walking.
Note that the half stride experiments are performed
with the distal part of the workspace, because it is
more stable.

4.2. Trajectory inverse kinematics
In both forward walking and sideways walking, the
stance phase trajectory is a straight line and the swing
phase trajectory is a parabola with 6 cm swing height,
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Figure 2. The process for determining gaits for forward and sideways walking.

as in figure 4. We choose 6 cm as the swing height,

because this is sufficient for extracting dactyls from

the sand. A higher swing will be able to step over

larger obstacles, but will cost more energy during

the swing phase and may slow the required step-

ping frequency. A RMSE analysis of the simulated

end effector trajectory, found that 66% of the trajec-

tory error for forward walking occurs in the swing

phase. Consequently, we expect an increase in the

swing height to result in a decrease in speed. Similarly,

about 55% of the trajectory error sideways walking is

in the swing phase, so we expect increasing the swing

height to decrease speed. Figure 4(a) is the trajec-

tory for the right middle leg for forward walking and

figure 4(b) is the trajectory for the right legs’ sideways

walking.

First, we use inverse kinematics to determine joint

angles required for points along the path. Then,

we use polynomial fitting to generate the trajectory

for Webots simulation (with convergence criteria of

R2 � 90%).

In stance, the trajectory, figure 4, is defined by end-

points A and B, which are determined by the full stride

in figures 3(b) and (c). We divide the stride into k

equal segments of equal time. At each of the result-

ing k + 1 points, we use inverse kinematics to find

the joint angles, then use polynomial interpolation to

determine the desired joint angles (θ1, θ2, and θ3) as

a function of time for position control. We start with

k = 9, and increase it as described in section 4.3 and

figure 2.

In forward walking swing phase, the hip angle
(θ1) increases at a constant rate and we use inverse
kinematics to determine the knee and ankle angles
(θ2 and θ3) that keep the end effector on the desired
parabolic trajectory, figure 4. Thus the k + 1 points
are determined by increments of (θ1B − θ1A)/k, where
θ1B and θ1A are the θ1 for point B and A respectively,
figure 4. In sideways walking swing phase, the x direc-
tion speed is held constant and thus the k + 1 points
are determined by increments of (xB − xA)/k, where
xB and xA are the x positions for points B and A
respectively, figure 4.

4.3. Period tuning
After determining the trajectory with inverse kine-
matics, we determine the fastest possible frequency
for an accurate step. In order to compare forward
and sideways walking with equivalent metrics, we set
a threshold for the end effector trajectory accuracy.
Specifically, we chose 8% of the full SL, which is 6%
of Sebastian’s body length, and 4% of Sebastian’s
leg length. When the robot cannot keep up with
the desired trajectory within the threshold, the speed
is too fast. In addition, we choose the criteria for
margin of error of swing height (Δ Hs � 7%) and
SL (Δ SL � 9%). Except where indicated, the periods
used for all the gaits in this paper are based on this
method.

Periods are evaluated iteratively in Webots simu-
lations. For each period, the x, y, and z coordinates
of the end effector are measured and compared with
the commanded trajectory, with 33.3 Hz as the sam-
pling frequency. If the RMSE is less than 1.2 cm, the
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Figure 3. The workspace of the dactyl tip (a) determines the available SL for walking (b) forward or (c) sideways. The black lines
in (a) represent the height chosen to figure out the effect of height. Note that for comparison, we consider a half-stride sideways
walk (green) in (c) that uses only the distal part of the workspace (gray) because that results in more stable walk.

speed is increased. If RMSE, eSL and/or eHS thresholds
are exceeded, the period T or the number of points
k is increased; if RMSE exceeds 1.2 cm, the period T
is increased; and if eSL and/or eHS exceeds the defined
thresholds, k is increased, according to figure 2. The
resulting period is used for the simulation and valida-
tion gaits.

This process is demonstrated numerically in
table 2. Here we show that for forward walking we can
use a smaller period, decreasing until the normalized
RMSE (the RMSE divided by the threshold) exceeds
100%. Thus, the period we selected was 1.44 seconds.

Similarly for sideways walking, the periods are longer
(and the SLs are also longer).

Note that the period resolution (0.18 seconds in
table 2) is sufficiently small since the maximum veloc-
ity error from the period resolution (<0.03 m s−1)
is smaller than the difference between the maximum
velocities (0.085 m s−1) for sideways and forward
walking. Furthermore, since we can analytically pre-
dict the velocity using equation (1), we can further
show that the theoretical error would be less than the
reported differences between maximum sideways and
forward velocities.

6



Bioinspir. Biomim. 17 (2022) 046001 Y Chen et al

Figure 4. In both forward (a) and sideways (b) walking, the stance trajectory is a straight line (green) and the swing trajectory is
a parabola with height Hs = 6 cm.

Table 2. RMSE between measured simulated trajectory and commanded trajectory and simulation velocity
with different periods for full stride forward and sideways walking—the stride for forward walking is 14 cm
and sideways walking 15 cm. T is the period. The bold data is the proper periods we choose.

Forward walking

Period T (s) 1.8 1.62 1.44 1.26 1.08
Normalized RMSE 102% 96% 90% 105% 113%

Velocity (m s−1) 0.109 0.105 0.116 0.134 0.153

Sideways walking

period T (s) 2.4 1.86 1.68 1.5 1.32
Normalized RMSE 91% 94% 95% 88% 100%

Velocity (m s−1) 0.132 0.166 0.186 0.200 0.227

5. Simulation preliminary results

The gaits used in both forward and sideways
walking are tripod gaits. In Webots, the robot is
walking on a linoleum floor where the friction coef-
ficient is 0.5. The velocity is measured from total
position, d, moved after ten full steps, and excludes
the steps before the first 0.3 seconds, to eliminate
acceleration transients. The position is obtained from
the GPS node in Webots. Energy consumption, E, is
measured by the battery node. COT is calculated
based on equation (2)

COT =
E

mgd
(2)

where g is the acceleration of gravity and m is the mass
of the robot.

5.1. Effect of stride length
Our Webots simulation confirms that using the
longest SL results in the fastest and the most efficient
gaits, figure 5. At the chosen height of 17.5 cm, we
compared behavior with shorter strides. In sideways
walking, with a full SL of 15 cm, we consider the most

distal portions of the SL to take shorter strides. In for-
ward walking, with a full SL of 14 cm, the middle leg
strides are centered while the front and rear legs are
spaced as far as possible from the middle leg (forward
and rear parts of the full SL). Decreasing SL mono-
tonically decreases velocity and increases COT until
steps are smaller than the step height. At these small
SLs, the robot is even slower and less efficient.

Furthermore, it is clear that sideways walking is
almost twice as good, both in speed and efficiency for
a given SL. Thus, a sideways walk with a half stride
(7.5 cm) should be more efficient than a forward walk
with a full 14 cm stride. This hypothesis is validated
on the hardware in section 6.

5.2. Effect of body height
Next, we consider whether the superior performance
of sideways walking is unique to the height we have
chosen. To do this, we consider two slices of the
full 3D workspace at the bottom of figure 3(a) for
h = 18 and 19 cm, respectively, and find their max-
imum SL. In order to do so, for sideways walking,
we consider a ZY plane through the center of the
workspace in figure 3(a). For forward walking, we
consider a XZ plane through the widest part of the

7
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Figure 5. In simulation, the maximum stride yields the fastest and most efficient gait. The sideways walking is twice as good as
the forward walking given the same stride. And the half stride (7.5 cm) sideways walking is better than 14 cm full stride forward
walking. This is validated with hardware in section 6.

workspace in figure 3(a). In the same way, the stride
planes for different heights, figures 6(a) and (b), the
maximum SL at each height can be observed, and is
plotted in figure 6(c). Note that when height is greater
than 10 cm, front and rear legs have the same maxi-
mum SL as the middle leg’s, as shown with the isosce-
les triangle in figure A1. However, when the height is
less than 10 cm, the full stride limits are different for
middle and front/rear legs.

For both forward walking and sideways walking,
a step that holds the body at a constant height of
less 10 cm will be limited in size based on the joint
angle limits (see how the workspace plot tapers at the
top of figures 6(a) and (b)). Limiting factors include
the rotational joints and AGD limits, and the front
and rear legs rotating 45◦ with respect to normal
to the body. In particular, for sideways walking, the
workspace of is non-contiguous if the height is below
10 cm, suggesting that the robot could take small steps
with large y position (>20 cm, highly sprawled) or
small steps with y < 15 cm, but would not be able
to move between these regions within a single stance.
This suggests a lower limit on walking height based on
joint angle limits.

For walking with body height above 10 cm, the
available SLs are different for forward walking and
sideways walking. For forward walking, figure 6(b),
there is a maximum SL near 10 cm, and a gradual
decrease at higher heights. For sideways walking, the
maximum SL is at closer to 14 cm height, with a
steeper decrease at higher body heights.

We can only validate kinematic predictions for
the upper range of body heights, due to limitations
of highly sprawled postures for our physical robot
in sand, and we focus our simulation in this range.
Since the height is the measured from the center of
the hip joint, when the height is too low the chassis

drags along the ground. This is exacerbated when the
dactyls penetrate the sand. The gray bar in figure 6(c)
shows the appropriate height ranges for our robot
experimentally. Fortunately, that range includes a
critical intersection at which forward walking SLs
exceed SLs of sideways walking. Thus, we tested this
limited height range at three points (17.5 cm when
the sideways SLs are longer, 19 cm when the for-
ward walking SLs are longer, and 18 cm when they
are approximately equal). This represents the upper
height range possible since at 20 cm, the workspace
tapers to zero.

For all three of the heights examined, sideways
walking is faster, and energetically superior. The dif-
ferences become smaller when the height is larger, and
sideways walking worsens. Specifically, the speed of
the sideways walking robot is 73% faster at the low-
est height and 40% faster at the highest height. The
COT of the forward walking robot is 127% higher at
the lowest height and only 56% higher at the highest
height.

Overall, the best walking is expected to be sideways
walking at the lowest possible body height, 17.5 cm.
Perhaps in future hardware designs, legs could be
mounted below chassis and sand penetration could
be limited with dactyl design to enable even more
sprawled posture comparisons at heights close to
14 cm. However, heights below 10 cm would not be
desirable with current joint and angle limits.

6. Results

We compared three gaits: the full stride gaits for side-
ways and forward walking (the best possible gaits),
and a half stride sideways gait, figures 3(b) and (c).
This half stride gait should be comparable to the for-
ward gait at full stride since our prediction was that

8
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Figure 6. For forward (a) and sideways (b) walking, the legs operate in a plane of the workspace, the stride plane. Thus, the full
SL varies with the walking body height, H (c). The gray area in (i) shows the region of feasible heights for our hardware prototype,
which are between Hmin and Hmax. Expanding to examine the feasible range, (ii) shows that when the height is larger than 18 cm,
the full SL for forward walking is bigger than sideways walking. (iii) Shows that the simulation predicts higher velocity when
sideways walking throughout this range of heights with the full SL. (iv) Shows that the COT is also better (lower) for sideways
walking than forward walking for this range of heights. The h values in (a) and (b) are the same as figure 3(a), and heights marked
with black lines: 17.5, 18 and 19 cm are used for (c), (ii)–(iv).

the sideways gait was roughly twice as good. In addi-
tion, such a gait with shorter-than-maximum steps
could be a valuable baseline for realtime SL adapta-
tion in the presence of obstacles [18]. The period for
half SL sideways gait is 1.2 seconds, as opposed to the

period for full sideways gait of 1.5 seconds (table 2)
and is determined in the same method.

Sideways and forward walking are compared in
four progressively more realistic evaluations from
kinematic prediction, to simulation, to walking on
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Figure 7. When comparing kinematics, Webots, and physical robot performance on smooth ground, velocity agrees well
(a). Energy costs can be compared as well (b). Even though sideways walking is better on robot than predicted in simulation,
sideways is more energy efficient with lower COT. The height of the bars means the average velocity (a) and COT (b) over ten
trials tests. The error bars show the standard deviation (STD) of velocity and COT.

hard floors, to walking in dry sand, which represents
one of the more challenging terrains for crab-like
robots.

First, the kinematic prediction of velocity is
calculated using equation (1), with the SL and period
determined as above. As is clear from figure 7(a),
the kinematic predictions of the speed for forward
and sideways walking are similar. Thus, dynamics are
needed to understand the differences.

Secondly, based on the dynamic simulation results
in Webots, figure 7(a), when the interaction with
a smooth low-friction ground is included, forward
walking is much slower than sideways walking and
slower than the kinematic prediction, as shown in the

previous section. A contributing factor is the degree
of slip between the dactyl and the ground. Specifi-
cally, while the middle legs tend to have small slip,
the front and rear legs for forward walking have a
high amount of backward slip, which we diagram
in figure 8. In sideways walking, middle legs slip
slightly more than front and back legs, since it is
opposed by two legs, however the degree of slip is less.
Additionally, forward walking involves more lateral
motion of the body, which does not occur in sideways
walking.

The average velocity for the full stride sideways
walking is 62% larger than the half stride sideways
gait, which validates that the full SL gait yields the

10
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Figure 8. The dactyl angles at beginning and end of stride show small slippage of all legs for full stride sideways walking (a) and
small slippage of middle leg and big slippage of front and rear legs for full stride forward walking (b). The magenta arrows show
the slip direction. The magenta numbers show the slip value. Note that points A and B are shown figure 4.

Figure 9. The joint energy cost per meter (a) and swept angles (b) were measured for each joint in the simulated Webots gaits.
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Figure 10. With the forward walking gait (a), the dactyl tends to pull out of the sand. While for sideways walking (b), the dactyl
tends to roll on the sand, as shown in inset details. The total depth of sand is 7.5 cm.

optimal gait. Note that low-friction environment
was chosen because it simplifies modeling (especially
compared to granular media), and can be directly
compared with walking on the lab floor (i.e. the solid
bars in figure 7(a) are similar to the shaded bars).

Thirdly, we validate these simulation results with
physical hardware, our robot Sebastian. For each
gait, we did ten trials of ten strides each on the
linoleum floor and kept all parameters the same as the
simulation.

The hardware trials validate the velocity predic-
tions from Webots. Specifically, the Webots predic-
tions are 95% accurate. The slight difference may
caused by the error from the fabrication, servos’
motion, power sensor and parts connection of Sebas-
tian. This supports our conclusion that the fastest
sideways walking gait is ∗1.05 body lengths per sec-
ond, 75% faster than the fastest forward walking gait,
figure 7(a).

Although the forward walking COT is in the range
reported by other hexapod robots, e.g. [101], walking
sideways lowers COT by 40%, as shown in figure 7.
One possibility was that the lower COT is due to the
fact that sideways walking only uses two joints per leg
(ankle and knee) whereas forward walking uses three
(ankle, knee and hip). To investigate whether this is
the case, we separated the energy contribution of each
joint for each gait, figure 9(a). This calculation is from
ten full strides of the simulation joint torques, which
is expected to be similar to hardware due to the overall
similarity of COT in figure 7. As expected, the energy
used by swinging legs is less than the energy used by
stance legs (since leg mass is small relative to body
mass). However, one potentially surprising result is
that even without the energy used by the hip joint,
sideways walking is still more efficient, since the knee

and ankle require more energy for forward walking.
This is true despite the fact that the knee and ankle
move more than (full stride) or comparable to (half
stride) forward walking, figure 9(b).

Thus, we conclude that in addition to the num-
ber of joints utilized, the higher COT is due to energy
lost from slip, figure 8 and other dynamic effects,
including rotation of the body, figure C1.

Finally, we tested the robot on dry sand, figure 10,
since granular media is a natural substrate for crab-
like locomotion. The sand is Pavestone natural play
sand. The robot walked in ten directions in the sand
tank to minimize any error caused by differences in
the sand surface. For each gait, we did ten trials in sand
and kept all parameters the same. Every trial includes
ten full strides.

For all gaits, sand slows down the robot, which is
consistent with other papers [30, 31]. The COT is also
increased, as expected, because of the resistance of
the sand, increased slip, and more variable and unsta-
ble steps. Forward gait velocity performance reduc-
tion percentages are lower than sideways walking,
because the sand reduces the slippage on the front and
rear legs when compared with the linoleum tests in
appendix B.

Nonetheless, the full stride sideways gait is both
faster and more energy efficient than the full stride
forward gait in sand. A half stride sideways gait is
comparable to the full stride forward gait in efficiency
and speed.

7. Conclusions

Taken together, our results suggest sideways walking
at the lowest height, utilizing the full range of motion
is best for energy efficiency and speed.
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By both metrics, sideways walking appears bet-
ter than forward walking. Sideways is more efficient
and faster at all heights in the range of our robot.
Sideways is better on flat smooth terrain and on dry
granular media. Sideways gives better speed per SL.
Sideways gives longer SLs at low heights. The single
exception seems to be that forward walking enables
longer SLs when the robot is at its maximum height
but not enough to translate into faster or more effi-
cient walking.

In addition, we demonstrate a gait design method
that is effective in variable terrains. On tile floor, side-
ways walking is comparable to kinematic and simula-
tion predictions. On sand, as expected, all the robot
gaits are slower and less efficient. However, the rel-
ative speeds and efficiency on sand follow the same
patterns. This suggests that the gait design method
is sufficiently generalizable to varying terrain. Since
beaches are of particular interest for crab robots, test-
ing on rocky and wet substrates will be interesting
for future work. However, our prior work [30, 31]
suggests that compact wet sand may be easier to tra-
verse than dry sand since wet sand is strengthened
by capillary forces, and the increase in shear strength
can reduce leg slip. Thus, our experiments here are
meant to convey the best and worst case for walking
on beaches, showing sideways walking is superior in
both.

This work reflects the differences in a common
leg design configuration for forward walking robots
[76, 82–86, 89, 90]. The fact that it is common for
forward walking makes it all the more surprising
that sideways walking is more efficient and reflects
an opportunity to use these already designed robots
differently.

8. Discussion

8.1. Comparison with biology
Biological crabs are diverse and able to traverse a wide
range of terrains [102]. As is visible from table 3, some
species are larger, and some are smaller than our hexa-
pod robot. Inhabiting a range of ecological niches,
they also display a wide range of walking speeds,
both above and below the speed of our robot when
normalized by leg length [103–105, 105–108]. The
crabs closest in size to our robot are king crabs, like
Paralomis formosa [103–105] and Kamchatka crabs
[105, 106]. Since the reported studies are ecologi-
cal rather than biomechanical, some of the walking
recorded could include sideways walking. However,
like all king crabs, their joint anatomy enables for-
ward walking rather than the sideways walking char-
acteristic of true crabs of order Brachyura [105]. The
king crabs have a speed to leg length ratio of around
3, which is similar to our robot’s forward walking

speed to leg length ratio of 4. Meanwhile, examples
of Brachyura crabs are much faster, in the case of
the ghost crabs, reflecting fast muscle actions and
dynamic gaits in which the step length is extended
by jumping through the air [109]. As walking robots
improve to serve in tedious and hazardous tasks,
bio-inspiration from crabs can provide important
insights.

Our robot’s preference for sideways walking is
consistent with evolutionary biology [66]. In mul-
tiple instances forward walking animals have devel-
oped sideways-walking crab-like anatomy in a process
called carcinization [65]. Sideways walking is thought
to help the animal walk faster, but may reduce the
pleon and claw size [65].

8.2. Fundamental trade-offs for sideways and
forward walking
Our robotic experiments suggest that a preference for
sideways walking may be due to mechanical differ-
ences in sideways and forward walking that are shared
between robots and animals. There are several key dif-
ferences in walking directions fundamental to both
robots and animals.

First, forward walking uses three joints per leg,
while sideways walking only relies on two, since the
hip angle can be constant during sideways walking.
Using the hip joint for forward walking contributes
to the energy cost (15%, figure 9) but does not result
in an increase overall speed. This is not to say that
hip joints are not valuable. The tests in this paper
use a fixed gait, but animals and robots in challeng-
ing terrain can use a hip joint in footfall planning and
maneuvering in both forward and sideways walking.
Therefore, there are advantages to having DOF avail-
able that are not used in nominal walking, and future
study could investigate this further.

Second, sideways walking enables qualitatively
different use of the dactyls. Sideways walking keeps
dactyls in a plane, while forward motion rotates
dactyl. This is pictured in figures 8 and 10. While in
both cases the AGD limits are the same, in sideways
walking the dactyls can rotate to follow the curve of
the dactyls, almost rolling like a wheel over the ter-
rain, which can be seen in appendix B and figure 10.
For the three legs in the front, this motion may help
slide over terrain. For the three legs in the rear, this
might help compact the granular media before push
off. In contrast, in forward walking, the dactyls rotate
sideways during stance, digging the tips out as the
AGD increases, figure 10 and appendix B. Loosening
the terrain around the dactyl may make it harder to
anchor to the ground in surf zones. There may also be
trade-offs for probing the substrate or burrowing in
granular media.

Thirdly, forward walking induces more body rota-
tion and dactyl slip. While the slip at the middle legs,

13



Bioinspir. Biomim. 17 (2022) 046001 Y Chen et al

Table 3. Normalized velocity for Sebastian robot and several crab species.

Species Mass (kg) Leg length (cm) velocity
leg length

(
mm/s

cm

)
Preferred walking direction References

Pachygrapsus crassipes 0.02 5 17a Sideways [110–112]
Ghost crab 0.05 9 178 Sideways [113–115]
Paralomis formosa 0.23 23 3 Forward [103–105]
Kamchatka crab 8 150 3a Forward [105, 106]
Red king crab 10.9 152 0.1 Forward [107, 116]
Coconut crab 37.3 123 50 Forward [108, 117]
Our robot 3.65 29 7 Sideways This paper

Our robot 3.65 29 4 Forward This paper

aThe average velocity is used. Maximum velocities are used for others. Note that these speeds are from a variety of sources from laboratory
[110, 113] tests to migrations [103, 107], and are only provided to demonstrate the impressive range of animal scales.

shown in figure 8, are small and comparable, the slip
of the other legs can be greater, figure 8. In particu-
lar in forward walking, the impacts of the alternating
tripods are asymmetric at the onset of stance due to
the fact that two feet fall on one side and one on the
other side. Two legs on the right (+Y) land at the
same time as the middle leg on the left (−Y), caus-
ing a COM displacement to the left (−Y), which will
be corrected in the next alternating tripod [118–120].
While these offsets are small relative to the body width
of the robot, as shown in figure C1 in appendix C,
they can introduce wasted yaw rotation that is not
present in sideways walking [121]. Both yaw rotation
and slippage from front and rear legs, figure 8, result
in smaller velocity of forward walking, which is visible
in figure C1, and evident in lower energy efficiency.
One reason that the decrease in energy efficiency from
tile to sand is smaller for forward walking might be
that the sand damps this oscillation. Compliance in
the leg may be an important factor to consider in
future.

8.3. Limitations and future work
A limitation of this study is that because a complete
optimization of leg morphology and gait control was
not performed, we cannot rule out the possibility that
there could exist a faster forward gait, especially for
the sand. Our approach has the advantage that the
robot motions are constrained to be slow enough to
be precise, which means that they could be adjusted
for precise foot placement. If this constraint was lifted,
and more variable path parameterization was used,
a more complete and detailed optimization would
be possible. However, such an optimization seems
unlikely to double the speed of forward walking. If
such an optimization was performed either a priori or
during walking, the approach presented here provides
a heuristic for an appropriate baseline.

Furthermore, our results could be sensitive to leg
design. Our robot segment lengths were chosen based
on a goal to grasp rocky terrain by taking advantage of
valleys between spheres [122], it may be that optimiz-
ing the legs for forward walking will yield improved

forward walking gaits. This may be an area in which
the study of biological crabs will be relevant, especially
since our calculated optimal corresponds to the leg
ratio which is also found in sideways walking crabs
[122]. Actuators inspired by artificial muscles may be
able to provide different behaviors.

Even more, the end effector design can be a factor.
Simpler end effectors might not be able to take advan-
tage of the sideways rolling motion of the dactyls.
Compliant end effectors can recover and store impact
energy. End effectors with variable friction or attach-
ment properties could be exploited to a greater degree
with more adaptive control. Sensing could enable
closed-loop slip reduction gaits.

Interesting future work would be to compare stud-
ies of different number of legs [123–133] or different
leg configurations. For example, some robots are con-
figured for agile omnidirectional walking [53–55],
and may have spectrum of gaits that includes forward
and sideways walking, unlike here in which sideways
and forward walking represent qualitatively different
behaviors.

While we hope this study encourages use of side-
ways walking gaits in future robots, we recognize that
there are disadvantages for sideways walking. Having
legs on the “sides” as in forward walking (rather than
the front and back for sideways walking) means that
sensors are not occluded by the legs. For example,
mounting cameras and range finders on the front
of the robot can enable careful footfall planning for
forward waking. However, in surf zone, sand and
water, vision may be less helpful than tactile explo-
ration, which can explain why crabs but not insects
use sideways walking. Another advantage of forward
walking is that legs can be specialized for a forward
motion [134], unlike for crabs which typically walk
equally well left and right. An insect might use rear
legs for power and forward legs for manipulation
and a lobster can balance front claws and rear pleon.
However, in robot design, having multiple redundant
parallel legs with the same design can be robust and
cost-effective.
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Figure A1. From the isosceles triangle defined in red, it can be shown that the front and rear legs’ maximum SLs are equal to the
middle leg’s.

Figure B1. The overview of the main videos provided in the link.
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Appendix A. The full stride lengths for
front, rear and middle legs are the same

See Figure A1.

Appendix B. The videos of Webots
dynamic simulation and Sebastian
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forward walking, and half stride sideways
walking

See (Figure B1).

Appendix C. The tracks of the center of
mass of Sebastian within two cycles

See Figure C1.
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