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Abstract: Worm-like robots have demonstrated great potential in navigating through environments 
requiring body shape deformation. Some examples include navigating within a network of pipes, 
crawling through rubble for search and rescue operations, and medical applications such as endos-
copy and colonoscopy. In this work, we developed path planning optimization techniques and ob-
stacle avoidance algorithms for the peristaltic method of locomotion of worm-like robots. Based on 
our previous path generation study using a modified rapidly exploring random tree (RRT), we have 
further introduced the Bézier curve to allow more path optimization flexibility. Using Bézier curves, 
the path planner can explore more areas and gain more flexibility to make the path smoother. We 
have calculated the obstacle avoidance limitations during turning tests for a six-segment robot with 
the developed path planning algorithm. Based on the results of our robot simulation, we determined 
a safe turning clearance distance with a six-body diameter between the robot and the obstacles. 
When the clearance is less than this value, additional methods such as backward locomotion may 
need to be applied for paths with high obstacle offset. Furthermore, for a worm-like robot, the paths 
of subsequent segments will be slightly different than the path of the head segment. Here, we show 
that as the number of segments increases, the differences between the head path and tail path in-
crease, necessitating greater lateral clearance margins. 

Keywords: worm-like peristaltic robots; nonholonomic robots; Bézier curve; obstacle avoidance; 
path planning simulations; biomimetic locomotion 
 

1. Introduction 
Worm-like, peristaltic motion enables a robot to use its entire body surface for trac-

tion in confined spaces. This type of locomotion enables navigation through environments 
that other autonomous robots would have difficulty traversing [1,2]. However, the trade-
off for worm-like robots is speed. Peristaltic motion waves are composed of small, coor-
dinated body actuations, each of which has limited strain. Thus, a segment’s motion dur-
ing a single wave (the stroke length) is often small relative to body length. While turning, 
the stroke length can be further reduced [3], which decreases speed. Thus, understanding 
and optimizing curved paths is essential for being able to utilize peristaltic motion effi-
ciently in robotics. 

For rigid-bodied robots, collision-free trajectory methods have proved reliable both 
in simulation and in physical systems [4,5]. Specifically, rapidly exploring random tree 
(RRT) algorithms are heavily used to generate paths for rigid robots [6–8]. These algo-
rithms explore random points within a given range and assign a point with minimal cost 
as the new waypoint towards the goal. For practical applications, path smoothing meth-
ods are also critical when the robot is non-holonomic. In other words, a curved path 
method to connect waypoints needs to be established to prevent sudden directional turn-
ing along a path when the robot’s angular acceleration and linear acceleration are limited. 
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In such cases, the Bézier curve is frequently chosen to form smooth paths [9–11]. The Bé-
zier curve, which is mathematically defined as Bernstein polynomials, can smoothly con-
nect two endpoints with specific direction requirements, and the curve’s shape can be 
easily adjusted by modifying its control points [12]. 

Variants of the planning methods used for rigid robot path generation are being in-
troduced for compliant and multi-segment robot locomotion. For example, open-loop ob-
stacle-aided navigation has been implemented in a soft-growing robot [13]. In this study, 
the obstacles passively steer the robot, consequently reducing the uncertainty of the ro-
bot′s location and directing the robot to targets that do not lie in a straight path from the 
starting point. Dutta et al. [14] investigated a critical-point bug-based path planning algo-
rithm for a wheeled snake robot. Their robot is rigid but has many degrees of freedom 
and non-holonomic constraints. With their algorithm, a snake-like robot can find a way to 
arrive at the goal point while avoiding collisions with multiple static obstacles. While 
many studies on worm-like robots have been conducted, most of them have focused on 
locomotion patterns and on decreasing slipping during locomotion [15–19]. A recent 
study also applied the graph search path-planning algorithm to achieve a breadth-first 
search [20]. To our knowledge, RRT algorithms have not been implemented for compliant 
robots to avoid obstacles in path planning. 

Planning for worm-like robots presents unique challenges compared to rigid robots 
[21]. Reachable space is limited. The no-slip constraints at each segment are non-ho-
lonomic and can depend on neighboring segments. Furthermore, the structure itself is 
soft, which can deform the body in difficult-to-predict ways. In addition, unlike a train of 
segments that follow the same tracks, each segment’s path is slightly different, which can 
increase complexity because of the number of degrees of freedom. While wheeled robots 
can be characterized by a minimum turning radius, for worms, the minimum turning ra-
dius depends on the wave pattern, current body shape, and length of turn, and other fac-
tors [22–25]. 

In our previous work, we realized an RRT algorithm-based path planning algorithm 
with a given start and goal in an obstacle-free environment [6]. This algorithm was applied 
to the simulation of our group’s worm-like robot structure named Compliant Modular 
Mesh Worm with steering (CMMWorm-S) [26]. With this path planner, it is possible to 
calculate the number of waves needed to obtain arbitrary combinations of positions and 
orientations in space. We further introduced a modified version of the RRT algorithm, the 
RRT-ellipse method, which made path generation more efficient by reducing the number 
of iterations needed to find the most feasible path. By the definition formula of an ellipse ൜x=h+a·cos(t)
y=k+b·sin(t) ,t∈(0,2π], for each consecutive two waypoints and their corresponding facing 

direction, there will be one specific ellipse match. By reversely solving h, k, a, b, we obtain 
the ellipse curve. The set of generated curves therefore smoothly form a path through the 
given waypoints. 

However, the elliptical curve lacks the ability to adjust its shape for the given end-
points. This further reduces the flexibility needed to obtain a more efficient trackable path 
in an environment with obstacles. 

In this article, we develop an efficient and robust obstacle avoidance path planning 
method for the CMMWorm-S robot as well as for other robots that use peristalsis to loco-
mote around obstacles. We show that switching from elliptical to Bézier curve path gen-
eration results in the generated being path more suitable for the robot to follow with less 
errors. We evaluate this approach by finding paths between two obstacles that create a 
narrow passageway. If the robot’s original path is aligned with the passageway, then plan-
ning is trivial since no adjustments are needed. Specifically, we evaluated passageways 
that are parallel to the original path but are offset by some distance, akin to offset pipes or 
channels. We found that as the robot approaches the new passageway (i.e., obstacle clear-
ance decreases), the reachable space is increasingly limited. As a result, the amount of 
offset is a function of the clearance distance after a critical obstacle clearance, which, for 



Biomimetics 2021, 6, 57 3 of 23 
 

 

our robot, is about six body diameters. We also compared different robots with varying 
numbers of segments and found that an increasing number of segments inversely affects 
turning capabilities. Finally, we conducted an empirical comparison with the physical ro-
bot and verified the c offset clearance characteristic we obtained from the simulation. 

2. Materials and Methods 
2.1. Worm-Like Robot Structure and Kinematics 

This research aims to generate efficient path planning for worm-like robots to navi-
gate around obstacles with a designated peristaltic turning gait. In particular, our research 
is based on the simulation of our worm-like robot: Compliant Modular Mesh Worm-like 
Robot with Steering (CMMWorm-S robot) [18], as shown in Figure 1. The CMMWorm-S 
mimics the locomotion pattern of an earthworm using its deformable mesh structure. 

We have previously developed a kinematic model [3] for this robot in which we as-
sumed that each segment (the region closest to a set of cable actuators) is a trapezoid. Two 
sides of the trapezoid have equal length 𝑑, which is equal to the diameter. The left side of 
the trapezoid is determined by the left cable and has length WL, and the right side is con-
trolled by the right cable and has length RL. This model proved useful for our peristaltic 
robot when considering turns [25], but this should also apply to other worm-like robots. 
Thus, by adjusting the robot-related parameters, the methods introduced in this paper 
and their corresponding results can be applied to different types of worm-like robots that 
locomote using peristalsis. 

The robot body begins in a cylindrical shape with a diameter of 20 cm and can be 
viewed as six independent segments whose shape (diameter and left/right width) can be 
controlled by their corresponding actuator pairs. With preprogrammed code, the actua-
tors will control these segments to expand or contract in sequence to locomote by forming 
a peristaltic wave [24]. In this paper, we primarily use a 2 × 1 wave pattern for locomotion. 
Such pattern indicates two continuous segments deforming at the same time (front seg-
ment contracts while rear segment expands), and only one pair of this deformation is ac-
tuated at any given time. In the simulation, each segment is represented by trapezoids 
(blue lines in Figure 1) with the parameters d, WR, and WL. The diameter (d) is simplified 
as a preset constant value. The left/right width (and WL) of these trapezoids defines the 
robot’s present shape, and their changes during time represent the locomotion of the 
worm-like robot. 

 
Figure 1. A typical worm-like robot can be simplified as a series of 2D trapezoids (blue lines) applied 
to Compliant Modular Mesh Worm with Steering robot (CMMWorm-S) as viewed from the top [18]. 

Our simulation environment is set up with our robot placed at the left side of obsta-
cles and facing horizontally from left to right. All of the results in this paper are independ-
ent of the choice of coordinate reference frame, but for the convenience of comparison, the 
robot′s initial configuration is always set so that its rear edge is on the y-axis and its cen-
terline is on the x-axis, as shown in Figure 2. Two rectangular obstacles are also shown in 
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Figure 2. The obstacles form a passage between the robot’s start position and the goal. The 
passage′s width is 30 cm, which enables 25% diameter clearance on either side. 

 
Figure 2. A worm-like robot passes through the obstacles solved by the Bézier curve path algorithm in our MATLAB 
simulation. The shape of the curve is controlled by points 𝑃ଶ and 𝑃ଷ 

2.2. Bézier Curves 
To improve on the path generation algorithms previously published by our group 

[6], we use cubic order Bézier curves to generate a smooth path for CMMWorm-S. A cubic 
order Bézier curve is shown as the purple curve from 𝑃ଵ to 𝑃ସ in Figure 2. The paramet-
ric equation of the explicit form of a cubic order Bézier curve (𝐵(𝑡)) can be expressed as 
follows: 𝐵(𝑡) = (1 − 𝑡)ଷ𝑃ଵ + 3(1 − 𝑡)ଶ𝑡𝑃ଶ + 3(1 − 𝑡)𝑡ଶ𝑃ଷ + 𝑡ଷ𝑃ସ, 𝑡 ∈ [0,1] (1) 

where 𝑃ଵ , 𝑃ଶ , 𝑃ଷ , and 𝑃ସ  are designated controlling points in Cartesian coordinates. 
By increasing variable t from 0 to 1, the path defined by B(t) will form the Bézier curve 
from 𝑃ଵ to 𝑃ସ, as shown in Figure 2. We name the vectors from 𝑃ଵ to 𝑃ଶ as the start-
ing control vector 𝑉௦௖ , and name the vectors from 𝑃ଷ to 𝑃ସ as the finishing control vector 𝑉௙௖. 

For curves to be applied to the smooth path generator, the following requirements 
must be matched: (1) the given start point and finish point must be the two endpoints of 
the curve. (2) The curve must be tangential to the corresponding given directions at the 
start point and finish point. Such directions are either from the path planning configura-
tion (initial/goal robot facing direction) or from the previous curve’s facing direction at its 
current start point. 

The characteristic of the Bézier curve makes it simple to fulfill these requirements. 
From the equation, we can determine that the curve will always start at 𝑃ଵ and end at 𝑃ସ . The curve will always be tangential to 𝑉௦௖  and 𝑉௙௖  at 𝑃ଵ  and P4, respectively. By 
setting 𝑃ଵ and 𝑃ସ’s coordinates as the start/ending point and by setting 𝑉௦௖ and 𝑉௙௖ to 
the required directions, the curve can be applied smoothly to connect the two waypoints 
generated by the path planning algorithm. The derivative of Equation (1) is also continu-
ous, which indicates that there is no sudden turning along the applied curve. Addition-
ally, by changing the length of 𝑉௦௖ and 𝑉௙௖, we can adjust the curve’s shape for optimiza-
tion while ensuring the matching of the requirements. 
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2.3. Path Generation with Obstacle Avoidance 
Path generation is completed by first finding several critical waypoints and then by 

generating viable curves and sequentially connecting them. The algorithm will repeat this 
search until a path is formed by those curves that successfully connects the initial position 
and goal position without colliding with any obstacles. Optimization is then conducted to 
reduce the total path length. 

The waypoints can either be (1) generated randomly or (2) be heuristically deter-
mined. In the first case, when no a priori information is given to the algorithm and the 
waypoints needs to be discovered, the algorithm will pick random points from the whole 
space (as in Figure 3a) and generate the Bézier curve paths with a random control vector 
length through those points. In this paper, two obstacles are placed to form a passage. 
Therefore, we use the heuristic that a waypoint at the center entrance of the passage is 
usually effective, as shown in Figure 3b. 

After a potential path has been generated, the algorithm checks collisions. We calcu-
late the collisions by adding a clearance margin to the obstacle borders. Then, we use the 
MathWorks intersection function for polyshapes to identify if there is an intersection be-
tween the path and the shape defined by obstacles. Since the CMMWorm’s radius is 10 
cm, we make the collision detection margin 10% larger than the robot′s diameter (11 cm). 

In order to optimize the final result, the path generation and collision checking pro-
cess will repeat with varied parameters and produce different non-colliding paths. The 
path with the minimal total length is considered the optimal path. In Section 3.1, we will 
demonstrate that this approach decreases the total waves used for travel even, though due 
to the complex kinetics of peristalsis, the relationship between the path length and total 
waves is non-linear. 

Based on Equation 1, we can calculate the length of each Bézier curve S using the 
following equation: 𝑆 =  න ඥ𝑥ሶ ଶ(𝑡) + 𝑦ሶ ଶ(𝑡) 𝑑𝑡, 𝑡 ∈ [0,1]ଵ

଴  (2) 

where 𝑥ሶ  and 𝑦ሶ  are the first derivative of the curve’s coordinates with respect to time. 
The length equation is an elliptic integral that cannot be expressed in fundamental 

functions. Therefore, instead of solving for the analytical solution, we use cumulative trap-
ezoidal numerical integration to calculate an approximation of the arc length: 

𝑆 =  න 𝐵(𝑡)𝑑𝑡 ≈ ෍ 𝑇2𝑁 [𝐵 ൬𝑖 − 1𝑁 ൰ + 𝐵( 𝑖𝑁)]ே
௜ୀଵ , 𝑡 ∈ [0,1]ଵ

଴  (3) 

where N is an artificially assigned value to represent the total iteration. By increasing N, 
the integration result can be more accurate. B(t) is the equation of integrated curve equa-
tion. 
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Figure 3. The six-segment robot passes through the obstacles that are arranged to form an offset passage. The dark rectan-
gles represent the obstacles, and the green dashed lines are the detection borders. The gray dots in the background of (b) 
are the random waypoints used to search the whole space. The blue curves are the possible paths to the goal. Additionally, 
the pink curve is the final path that the robot chose. (a) The robot follows the path, successfully traverses an unknown 
passage between the obstacles, and reaches the goal. (b) The robot traverses a known passage with a preset waypoint. 

After calculating the length of the path, we can also compute the how many waves a 
path has. Our previous work created a kinematic model of the worm-like robot used in 
this study [18] and an algorithm to allow the robot to follow the path [6]. Based on previ-
ous work, we can generate the whole movement of the robot by following the path and 
can obtain the number of waves. For each wave, the second segment deforms so that the 
center of the first segment (the head of the robot) follows the path. Then, a 2 × 1 peristaltic 
wave travels backwards to the remaining segments so that the robot follows no-slip kine-
matic constraints. Each wave is counted until the robot reaches the goal. The detailed re-
alization is described in Appendix A. 

2.4. Analysis of Limiting Factors: Radius, Offset, and Clearance 
The passage is characterized by the location (offset in y-axis, and clearance in x-axis) 

relative to the original orientation of the robot. In other words, a passage with a high offset 
will require more turning to be accommodated, and a passage with greater clearance will 
have more room to make the required turn. 

In previous work, we determined a safe turning radius for stable reorienting turns of 
77 cm [3]. Attempting to keep turning at a tighter radius for many waves can result in stall 
conditions in which the waves make smaller and smaller progress. Thus, all turns were 
limited to 77 cm radius—the limit of the tightest possible complete circle. However, be-
cause the radius of a Bézier curve is always varying here, we show how worm-like robots 
can take tighter turns over short distances with Bézier curves. 
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To make comparisons with prior turning radii, we visualize the Bézier curve decom-
posed into three parts: a first reorienting turn, an efficient line, and a second reorienting 
turn. How the boundaries are determined is based on whether the path’s radius of curva-
ture is larger than the robot’s safe turning radius, as shown in Figure 4. During the first 
reorienting turn, the robot needs to turn in a direction that is aimed at the obstacles or 
passage. Then, the efficient line section has a relatively larger curvature radius, allowing 
the robot to move forward with greater efficiency. In the second reorienting turn, the robot 
needs to turn to by a certain degree again and reorient itself to pass through the obstacles. 
The proportion of these three parts affects the robot′s turning clearance. To avoid stall 
status during the first and second reorienting turn, the direction of the head of the robot 
when entering the efficient line section is limited. This factor will also influence the max-
imum obstacle offset that the robot can pass. 

 
Figure 4. (a) The whole path (pink line) is separated into three parts. The first reorienting turn is from the beginning to 
(104, 18), the efficient line is from (104, 18) to (164, 147) (dashed line), and the second reorienting turn is from (164, 147) to 
the goal point (300, 167). (b)The path curve’s corresponding curvature radius with respect to x position. 

3. Results 
3.1. Path Improvements by Bézier Curves Application 

Bézier curves enable the important ability of adjusting the shape of a curve while 
matching the starting and finishing configuration and can help optimize the path for dif-
ferent environments with identical starts and goals. By implementing this method, we 
have conducted related tests in simulation, and the results are compared to those from 
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our previous work using an elliptic path. During the test, we set the start and goal direc-
tions horizontally rightward. Therefore, the angles of the control vectors against the x-axis 
were both 0, as shown in Figure 5. In Figure 5a, the most efficient path to get to the goal 
configuration (position and orientation) is formed by small control vectors (10 cm and 10 
cm). It takes 51 waves (total length of 229 cm) for the robot to reach the goal. In Figure 5b, 
obstacles are added (gray rectangles). The previous efficient path from (a) (green dashed 
line) only has 6.3 cm of space available to clear the obstacles, which is smaller than the 
robot’s radius (10 cm). As such, the optimized path needs to be adjusted (the solid pink 
line) to avoid the collision. Such an adjustment can be made by increasing the control 
vectors (60 cm and 60 cm), resulting in a larger turning radius. The optimized path now 
uses 127 waves (total length of 234 cm) to reach the goal due to the increased environment 
complexity. The forward max motion per step is reduced when turning due to the kine-
matics of the robot [3]. Therefore, the total number of waves increases more than the 
length of the total path does. 

 
Figure 5. Comparisons of different Bézier curves to reach the same goal in different situations. The Bézier curve of case (a) 
is more linear than that in case (b). (a)The length of the control vectors is 10 cm. It takes 51 waves for the robot to reach 
the goal. (b) Due to obstacles, the Bézier curve requires a larger turning radius for better passing ability. The length of the 
control vectors is 60 cm. It takes 127 waves for the robot to reach the goal. For reference, the green dotted line in (b) is the 
path in (a). 

In our previous work, we tested the robot′s performance with different elliptical 
paths [6]. Using the elliptical curves, for a given set of start and goal configurations, there 
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would be at most one corresponding elliptical path available. Such a relation leaves no 
space to optimize the path shape between two waypoints. Additionally, given the struc-
tural constraints of our soft worm-like robot, there is a limitation on the turning angle, 
and it can only follow a curve within a given curvature. As shown in Figure 6a,b, when 
the ellipse path has a curve radius that is too large for the robot to reach, there will be a 
large error (2.24 cm) at goal. The Bézier curves allow the robot to follow the path accu-
rately by adjusting the control vectors to better fit the robot′s kinematic constraints. In our 
test, the positional error of the Bézier curve application can be less than half (0.60 cm) of 
the error of the ellipse path (1.34 cm), as shown in Figure 6a,c. the curvature radius for the 
Bézier curve can be adjusted to both increase and then decrease rapidly. With such an 
adjustment, the period where the robot cannot follow the path will be shorter and will 
enable the robot to further eliminate the accumulated displacement error before reaching 
its goal, as shown in Figures 6d and 7. With all of these features, the Bézier curve shows 
an advantage in terms of trackable path generation and error reduction 

 
Figure 6. Comparisons between elliptical path generation and Bézier curve path; blue dot and arrow are the desired posi-
tion and orientation; red dot and arrow are the simulated robot′s reached position. The blue curve is the generated ellipse, 
and pink is the executed path. (a) Blue and red arrows almost coincide, which shows that the robot has successfully 
reached its goal. (b) The robot fails to follow the ellipse; thus, the pink and blue curves do not coincide because the elliptical 
axis length in the lateral direction is too small. (c) The robot follows the Bézier curve and reaches the goal with a much 
smaller error compared to (a). (d) The robot deviates from the path but corrects the error to reach the goal. 
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Figure 7. Comparisons between the elliptical path and the Bézier curve paths. The blue curve is the 
Bézier curve, and the pink is the executed path. The dotted green line is the previous elliptical path. 
The below figure shows the curvature radius of both paths. 

3.2. Offset Clearance Limitations for Six-Segment Robot 
Our research establishes a relationship between the maximal passable value of the 

obstacle offset (distance between obstacle edge and robot’s central axis) and turn clearance 
distance (distance between obstacle edge and robot’s front edge in the axial direction). 
Figure 8 shows three cases of such relationship. In Figure 8a, the obstacles are remarkably 
close (30 cm) to the robot. The length of the efficient line is only 1/4 of the first reorienting 
turn section. The angle of the efficient line can only reach 45 degrees due to there being 
insufficient space for the robot to turn at the max angle. In this case, the maximum offset 
of the obstacle that the robot can pass is 16 cm along the y-axis. In Figure 8b, the obstacles 
are placed further away (110 cm). The increased distance gives the robot more room to 
turn at a larger angle, and the efficient line section can take up a large proportion of the 
whole path in terms of distance. The angle of the efficient line is 67 degrees, and the length 
along the x-axis for the efficient line section is 1.6 times that of the first reorientation sec-
tion, and the robot can avoid an obstacle with a 136 cm offset along the y-axis. In Figure 
8c, when the distance is larger than 118 cm, the distance is big enough to allow the robot 
to move vertically, making the robot able to overcome an obstacle of any offset. 
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Figure 8. As the robot moves farther from the obstacle, the maximal passable offset dramatically increases. In case (a), the 
distance is 30 cm, and the robot can overcome an obstacle with a 16 cm offset. In case (b), the distance becomes 110 cm; 
the robot can overcome a 136 cm offset obstacle. In case (c), the distance is 130 cm; the robot can overcome any obstacle of 
any offset (400 cm offset shown as example). 

Thus, we are able to show the relationship between the limiting offset for a particular 
clearance. Setting the obstacles at intervals of 10 cm along the x-axis, we find the limiting 
offset along the y-axis. In this test, we set the waypoint at the center of the entrance of the 
passage, as shown in Figure 8. The control vector lengths are the same, i.e., the length of 𝑉௦௖ is equal to the length of 𝑉௙௖. The range of the vector length is limited to between 10% 
to 50% of the distance between the starting point to the ending point during the random 
path generation process. As the offset clearance becomes larger, the size of the offset will 
sharply increase. This emphasizes the importance of planning. Figure 9a shows several 
potential robot paths and obstacles. The detailed realization is shown in Appendix B. 
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Figure 9. The turn clearance limitations for a six-segment robot shows how much space the robot has to turn with respect 
to its initial distance to the obstacle (10 cm, 30 cm, 50 cm, etc.). The passing ability increases as the distance between the 
obstacles and the robot increases. (a) shows the boundary paths of the robot and their corresponding reachable area. (b) 
Max offsets of passable obstacles in respect to different initial starting clearances. Note that the obstacle configuration in 
Figure 10 is shown by the red circle. 
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Figure 10. Backward motion is needed if the obstacle is too close. Here, the distance between the obstacles and the robot 
is 10 cm, and the offset is 35 cm, which is outside the range defined in previous figure (see dot). Therefore, it has to go 
backward first and then go forward. In (a), the robot follows the paths with a backward path, successfully passes through 
the obstacles, and reaches the goal. (b) shows the paths of each segment in different colors. 

3.3. Backward Movement 
For the case of Figure 8a, when the obstacle with a large offset is too close to the robot, 

the robot will not be able to pass the obstacle using forward locomotion. However, ena-
bling backward movement is an available approach to solve this issue. In such a case, the 
robot moves backward to create enough space and then moves forward with a generated 
path to pass through the obstacles. To generate the backward Bézier curve, we need to 
find a goal point on the line passing through the center of the robot’s head and the center 
of the passage’s entrance. The direction is from the entrance’s center to the robot’s center. 
Then, we can obtain a backward Bézier curve with the center of the robot’s tail and the 
backward goal point. After the robot completes the backward motion, the algorithm will 
continue with forward path planning with the robot’s new position as the starting point, 
as shown in Figure 10. Using the limitations shown in Figure 9, we can determine whether 
backward movement is needed and what how far backward the robot needs to move in a 
particular situation. Specifically, for our robot, if the robot has a distance six-body diame-
ters before the obstacle, this is a safe turning clearance distance for any obstacle offset, and 
this is the maximum distance required to move backwards. 
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3.4. The Influence on Turning by the Total Number of Segments 
Our research also tested how the increasing number of segments affects the turning 

path planning, and the simulated result is shown in Figure 11. 

 
Figure 11. Robots with four, six, and eight segments passing through the same obstacles. The number of waves increases 
with the increasing number of segments in order for the entire body of the robot to move through the obstacle. 

Increasing the number of segments increases the path error among segments. Ac-
cording to our simulation of robots with 4, 6, and 8 segments, the path errors among seg-
ments increase with the increasing number of segments. The largest error is the error be-
tween the first and last segments. Such errors vary while the robot is progressing along 
its path. We called the largest error along the whole path on the left side L-error and the 
right side one R-error. Additional clearance margins may need to be given for additional 
segments. 

Figure 12 shows the errors between the last segment′s path and the first segment′s 
path in the 4, 6, and 8 segments cases. The rear part of the robot could collide with the 
obstacle if the passage becomes narrower or wider. If the passage becomes narrower, the 
L-error may cause a collision with the left side of the bottom obstacle in the robot′s ap-
proach phase, and the R-error may cause a collision with the bottom of the upper obstacle 
in the passing phase of the robot. Consider an example for the eight-segment robot: if the 
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distance between the robot and the obstacle is 22 cm smaller or if the width of the passage 
is 1.5 cm smaller, there would be a collision. 

The four-segment robot′s L-error is 15.4% of its diameter, it is 17.8% for the six-seg-
ment robot, and it is 20.2% for the eight-segment robot. The four-segment robot′s R-error 
is 9.6% of its diameter, and it is 14.2% for the six-segment robot and 17.9% for the eight-
segment robot. The comparison is shown in Table 1. 

 
Figure 12. Robots with four, six, and eight segments pass through the same obstacles. The errors increase with the number 
of segments. The largest L-error and R-error for the four-segment robot (a) are 3.08 and 1.93. The largest L-error and R-
error for the six-segment robot (b) are 3.56 and 2.84, and for the robot with eight segments (c), the largest L-error is 4.03, 
and the largest R-error is 3.58. The two insets show the robots′ positions and gestures when they are at the L-error and R-
error. (a)i, (b)i, and (c)i are the waves with the maximum L-error. (a)ii, (b)ii, and (c)ii are the waves with the maximum R-
error. 

Table 1. The ratios of the errors normalized by the diameter of the robots with 4, 6, and 8 segments. 
The ratios increasing with the increasing number of segments. 

Path Error 4 Segments 6 Segments 8 Segments 
L-Error 15.40% 17.80 20.20% 
R-Error 9.60% 14.20% 17.90% 
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3.5. Empirical Comparison with Physical Robot 
Finally, we made an empirical comparison with our physical robot. We tested the 

robot′s offset clearance limitations in a specific situation where the distance between the 
robot and the obstacle is 70 cm. 

3.5.1. Differences between the Simulation and the Physical Robot 
As we mentioned in Section 2.1, the simulation did not consider the slip of the robot. 

However, in the physical situation, the slip is relatively common in the robot′s movement, 
and the actual elongations are different from the simulation results. In this case, we 
needed to calibrate simulation data and make the simulation more practical. 

The diameter of the physical robot is 11 cm. The maximum elongation of each seg-
ment is 17 cm, and the minimum contraction of each segment is 9.5 cm. The parameters 
of the physical robot are slightly different from the previous simulation in order to com-
plete the simulation with the physical robot, so we updated the parameters in the algo-
rithm. 

First, we tested a 70 cm straightforward movement with a simulation and a physical 
worm-like robot to compare the differences between them. The physical robot′s moving 
distance is 55.8 cm, which is 80% of the simulation result, which is shown in Figure 13. 

 
Figure 13. (a) a straightforward locomotion path for a 70 cm straightforward generated by the simulation. (b) Start (green 
dot) and finish (blue) position of a real six segment worm-like robot applying the same algorithm. The red line shows the 
total movement (55.8 cm), which is 80% of the simulation result. 
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3.5.2. Offset Clearance Limitations of the Physical Robot 
Next, we compared the differences between the physical robot application and the 

simulation in a turning process and acquired the offset clearance limitation of the physical 
robot. We tested the offset clearance limitation of the physical robot at a 70 cm distance. 

Due to the complexity of the physical environment, structural and dynamical errors, 
slipping, and spinning is observed during the tested robot’s locomotion. In the simulation, 
a robot that starts at (57, 0) can reach the goal point at (217, 34) and pass over an obstacle 
that is 20 cm in width. In the physical robot experiment, the robot finally reached (193.3, 
27.3), which is 85.2% of the simulation result in the x-axis direction and 81.1% in the y-axis 
direction. The result indicated that the physical robot could pass over a 15 cm obstacle at 
56 cm, as shown in Figure 14. 

The result from the physical robot shows the difference and relationship between the 
simulation and the physical truth. The path algorithm in our simulation can be imple-
mented with physical robots to perform a similar path pattern to reach the goal and to 
avoid obstacles. However, corrections need to be applied to the simulation data to com-
pensate for the locomotion errors between simulation and physical movement due to the 
robot’s configuration measurement error and slipping. The turn clearance distance 
changed because the distance at which the physical robot travels along the x-axis is 85% 
of that of the simulation. In the physical experiment, the turn clearance distance changed 
from 70 cm to 56 cm, and the offset of the obstacle is 15 cm, as shown in Figure 14b. Based 
on the test result, the final physical locomotion of the test robot is about 80% of our non-
calibrated simulation result (the physical experiment also showed that the slipping con-
dition is different between the x-direction and y-direction.). 

 
Figure 14. (a) simulated robot and obstacle avoidance path. The total displacement is 70 cm on the x-axis and 20 cm on the 
y-axis (b) The starting and finishing status of the physical robot with the same path implemented. 
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We then recommitted the test with an 80% scale factor for correction. After correction, 
the offset of the obstacle in the simulation was adjusted to 18 cm, and the turn clearance 
distance was adjusted to 56 cm, As shown in Figure 15, the offset difference between the 
simulation and the real-world test has been reduced by half (3 cm). 

 
Figure 15. With the application of an 80% scale factor for correction, the simulation can more accurately predict the results 
of the real-world implementation. 

4. Discussion 
We have developed an obstacle-avoiding path planning algorithm to ensure that a 

worm-like robot can pass around obstacles in different situations, with an understanding 
of the robot′s offset clearance limitation. 

There are two major applications for this research. The first one is static path planning 
for the robot under a known and stable situation. The second application is real-time path 
planning; the situation is unknown and changeable. 

For static path planning, the environmental information is known [27]. The algorithm 
will need to find a path through the known obstacles. In such a case, we assume that we 
can obtain information about obstacles in advance or obtain the information from sources 
outside of the robot, e.g., with an aerial view camera. With this information, the algorithm 
can generate an appropriate path for the robot. For the static case, the computation time 
is less important since we can allow the robot to move after all the computation is com-
pleted. 

For real-time obstacle avoidance path planning, the algorithm can adapt to changes 
in the environment and can create progress updates. To achieve real-time path planning, 
the robot should continuously update the information from the surroundings. Options 
include applying anterior mounted cameras in vine robots [28] and onboard proximity 
sensors, such as what we previously demonstrated on our robot [17,29]. Laser radar, such 
as in [30], improves accuracy and multiple cameras, such as in [31], can provide an en-
hanced shape resolution and refresh rate. 

The current computational time cost for a long-distance path generation (50 times of 
robot total length) may be a challenge for real-time execution. However, choosing a close 
goal will reduce the computation time. Moreover, for a slowly changing environment, 
when considering the limited speed of a worm-like robot, even a slow algorithm can have 
enough time to generate the path for the subsequent few waves. 

In the future, comparing different wave patterns may enable better turning. Our 
work is based on a 2 × 1 wave mode of motion, and this is the simplest method of move-
ment for a physical robot. An actual earthworm or other soft animals can vary the patterns 
of coordination used for locomotion, and our previous study also indicates performance 
improvements by optimizing this wave pattern [21]. We can find inspiration from these 
animals and apply their modes of motion to our worm-like robot. For example, a worm-
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like robot can use a 3 × 1 and 3 × 2 wave mode to move [18]. In the future, more work will 
need to be conducted in order to create a more inclusive simulation. 

Turn clearance limitations can be important for the practical design of worm-like ro-
bots. If six diameters are required to navigate an arbitrarily large offset, this suggests that 
the robot needs to be able to detect obstacles that are far ahead at the very least. Further-
more, if the robot pathways do not have sufficient open space around them (for example 
in the case of two pipes that may have shifted relative to each other) a no-slip turn may 
not be possible between the two paths. Our work shows empirical results for a robot with 
one set of dimensions but with more segments moving at once using 3 × 1, but more waves 
can enable tighter turns if the robot stiffness is sufficient. Furthermore, it is possible to 
take advantage of a slip in some environments. 

Since our robot is soft, its low mass and compliant body make its collisions with ob-
stacles inherently safe. Although these collisions will consume more energy, the collisions 
may sometimes be beneficial. There is some research regarding using obstacles to the ben-
efit of the robot. For example, a snake robot could actively use obstacles to propel itself 
forward [32]. For worm-like robots, we could also use the benefits of the interactions with 
the obstacles. In some situations, these interactions could allow us to make an easier turn, 
such as in a pipe, by using the obstacles′ reaction force. Path planning with the interaction 
between the robot and obstacles will be an important part of future work. 

Understanding the effect of slip and interaction with obstacles will help such robots 
efficiently align their bodies for the next step of a process and will guide and benefit 
worm-like robot design to improve their maneuverability. 

5. Conclusions 
Our work aimed to build and apply obstacle avoidance path planning for worm-like 

robots and provide inspiration and guidance for similar robots using soft body locomo-
tion. In this work, we improved the path-generating algorithm by changing the elliptical 
curve to the Bézier curve (Figure 3). The Bézier curve gave us the ability to change and 
optimize the shape of the curve while matching the starting and finishing configuration. 
This ensured a great advantage of the flexibility of Bézier curves in handling different 
situations and environmental requirements compared to the previous ellipse path. With 
the advantages of the Bézier curve, the new path planner can generate smoother and more 
flexible paths (Figure 5). With the Bézier curve, the robot can reach the goal point with 
smaller errors compared to the ellipse curve (Figure 6). To find the offset clearance char-
acteristic, we divided the whole path into three parts (Figure 4). The first reorienting turn 
was directed toward the passage at the beginning of the path; the efficient line has a rela-
tively larger curvature radius in the middle, and the second reorienting turn is oriented 
to pass through the obstacles. These three parts help us understand the relationship be-
tween the horizontal advance distance and vertical advance distance (Figure 8). Based on 
this algorithm, we were able to determine the worm-like robot′s offset clearance and find 
the limiting size of the obstacles at different distances (Figure 9). In this project, we also 
tested the influence of a different number of segments of the worm-like robot. The simu-
lation shows that the difference between the paths of each segment increases with the 
number of segments (Figure 12). We also committed comparison experiments with phys-
ical robots. In the “straightforward” experiment, the physical robot′s real path was about 
80% of the simulation result (Figure 14). In the offset clearance experiment, the physical 
robot’s path was 85.2% of the simulation result in the x-axis direction and 81.1% in the y-
axis direction. 
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Appendix A 

Steps for the path generation in an unknown situation 

Input: Acquire the initial and desired configuration of the robot, the position of the obstacles, and 

the maximum number of samples, Nmax. 

Output: Bézier curve Path.  

1. Set the center of the robot’s head as the starting point and set the ending point as the ending 

point. 

2. For i = 1 to Nmax. 

2.1. Set Bézier points of the first part and generate the path. 

a. 𝑃ଵ—Current point of the robot’s head. 

b. 𝑃ଶ—Current tangent direction of the robot’s head with random length 𝐿ଵ. 

c. 𝑃ଷ—Current tangent direction of the desired direction with random length 𝐿ଶ. 

d. 𝑃ସ—Random point in the whole space to search the entrance of the passage. 

2.2. Set Bézier points of the second part and generate the path. 

a. 𝑃ଵ—First part’s 𝑃ସ. 

b. 𝑃ଶ—Current tangent direction of the first part’s 𝑃ଷ with random length 𝐿ଷ. 

c. 𝑃ଷ—Current tangent direction of the goal point with random length 𝐿ସ. 

d. 𝑃ସ—Goal point. 

2.3. Conduct collision detection for the Bézier curve path. 

2.4. The robot’s head following the path and generate the path of each segment. 

2.5. Conduct collision detection for the path of each segment. 

2.6. Return no collision paths. 

3. Choose the final path. 

a. If the shortest path is chosen: 

Calculate the arc length of the paths. 

Return the shortest path. 

b. If the path with the minimum number of waves is chosen: 

Calculate the numbers of waves of each path. 

Return the path with the minimum number of waves. 

4. Return the final path. 

Steps for the path generation in a known situation 

Input: Get the initial and desired configuration of the robot and the position of the obstacles. 

Output: Bézier curve Path.  
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1. Set the center of the robot’s head as the starting point and the ending point as the ending point. 

2. Set Bézier points of the first part and generate the path. 

a. 𝑃ଵ—Current point of the robot’s head. 

b. 𝑃ଶ—Current tangent direction of the robot’s head with random length 𝐿ଵ. 

c. 𝑃ଷ—Current tangent direction of the desired direction with random length 𝐿ଶ. 

d. 𝑃ସ—Specified point, its position, and direction are based on the position of the obstacles and 

passage. 

3. Set Bézier points of the second part and generate the path. 

a. 𝑃ଵ—First part’s 𝑃ସ. 

b. 𝑃ଶ—Current tangent direction of the first part’s 𝑃ଷ with random length 𝐿ଷ. 

c. 𝑃ଷ—Current tangent direction of the goal point with random length 𝐿ସ. 

d. 𝑃ସ—Goal point. 

4. Conduct collision detection for the Bézier curve path. 

5. The robot’s head follows the path and generates the path of each segment. 

6. Conduct collision detection for the path of each segment. 

7. Choose the final path. 

a. If the shortest path is chosen: 

 Calculate the arc length of the paths. 

Return the shortest path. 

b. If the path with the minimum number of waves is chosen: 

 Calculate the numbers of waves of each path. 

 Return the path with the minimum number of waves. 

8. Return no collision paths. 

Appendix B 

Steps for the algorithm to find the turn clearance limitations 

Input: Initial and desired configuration of the robot; the distance of the obstacles; the ini-
tial offset of the obstacle, 𝑂𝑓𝑓𝑠𝑒𝑡௜௡௜௧; the maximum number of iterations, Nmax. 

Output: Bézier curve Path and the offset of the largest obstacle.  

1. Set the center of the robot’s head as the starting point, the center of the passage’s 
entrance as the ending point, and the center of the passage’s exit as the goal point. 

2. While finding a Bézier curve that satisfies the constraints, let the robot successfully 
traverse the passage, Offset = Offset+1 cm. 

2.1. For i = 1 to Nmax. 

2.1.1. Set Bézier points of the first part and generate the path. 

a. 𝑃ଵ—Current point of the robot’s head. 

b. 𝑃ଶ—Current tangent direction of the robot’s head with random length 𝐿ଵ. 
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c. 𝑃ଷ—Current tangent direction of the desired direction with random length 𝐿ଵ. 

d. 𝑃ସ—The center of the passage’s entrance. 

2.1.2. Set Bézier points of the second part and generate the path. 

a. 𝑃ଵ—The center of the passage’s entrance. 

b. 𝑃ଶ—Current tangent direction of the first part’s 𝑃ଷ with random length 𝐿ଶ. 

c. 𝑃ଷ—Current tangent direction of the goal point with random length 𝐿ଶ. 

d. 𝑃ସ—The center of the exit of the passage’s exit. 

2.1.3. Conduct collision detection for the Bézier curve path. 

2.1.4. Robot follows the path and generates the path of each segment. 

2.1.5. Conduct collision detection for the path of each segment. 

2.1.6. Return no collision paths. 

2.2. Choose the final path. 

Calculate the arc length of the paths. 

Return the shortest path and continue the while looping. 

3. Return the final path and the offset of the largest obstacle. 
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