Warick Delprado

Publications

Algohary, A., Shiradkar, R., Pahwa, S., Purysko, A., Verma, S., Moses, D., Shnier, R., Haynes, A., Delprado, W., Thompson, J., Tirumani, S., Mahran, A., Rastinehad, A., Ponsky, L., Stricker, P., & Madabhushi, A. (2020). Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study. Cancers, 12 (8).
Algohary, A., Shiradkar, R., Pahwa, S., Purysko, A., Verma, S., Moses, D., Shnier, R., Haynes, A., Delprado, W., Thompson, J., Tirumani, S., Mahran, A., Rastinehad, A., Ponsky, L., Stricker, P., & Madabhushi, A. (2020). Combination of peri-tumoral and intra-tumoral radiomic features on bi-parametric mri accurately stratifies prostate cancer risk: A multi-site study. Cancers, 12 (8), 1-14.
Algohary, A., Viswanath, S. E., Shiradkar, R. E., Ghose, S. E., Pahwa, S. E., Moses, D. E., Jambor, I. E., Shnier, R. E., Böhm, M. E., Haynes, A. E., Brenner, P. E., Delprado, W. E., Thompson, J. E., Pulbrock, M. E., Purysko, A. E., Verma, S. E., Ponsky, L. E., Stricker, P. E., & Madabhushi, A. E. (2018). Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings. Journal of Magnetic Resonance Imaging, 48 (3), 818-828.
Penzias, G., Singanamalli, A., Elliott, R., Gollamudi, J., Shih, N., Feldman, M., Stricker, P., Delprado, W., Tiwari, S., B�hm, M., Haynes, A., Ponsky, L., Fu, P., Tiwari, P., Viswanath, S. E., & Madabhushi, A. E. (2018). Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings. PLoS ONE, 13 (8).
Algohary, A., Viswanath, S. E., Shiradkar, R. E., Ghose, S. E., Pahwa, S. E., Moses, D. E., Jambor, I. E., Shnier, R. E., B�hm, M. E., Haynes, A. E., Brenner, P. E., Delprado, W. E., Thompson, J. E., Pulbrock, M. E., Purysko, A. E., Verma, S. E., Ponsky, L. E., Stricker, P. E., & Madabhushi, A. E. (2018). Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings: Radiomics Categorizes PCa Patients on AS. Journal of Magnetic Resonance Imaging.
Penzias, G., Janowczyk, A., Singanamalli, A., Rusu, M., Shih, N., Feldman, M., Stricker, P., Delprado, W., Tiwari, S., Böhm, M., Haynes, A., Ponsky, L., Viswanath, S. E., & Madabhushi, A. E. (2016). AutoStitcher: An Automated Program for Efficient and Robust Reconstruction of Digitized Whole Histological Sections from Tissue Fragments. Scientific Reports, 6
Ginsburg, S., Algohary, A., Pahwa, S., Gulani, V., Ponsky, L., Aronen, H., Boström, P., Böhm, M., Haynes, A., Brenner, P., Delprado, W., Thompson, J., Pulbrock, M., Taimen, P., Villani, R., Stricker, P., Rastinehad, A., Jambor, I., & Madabhushi, A. (2016). Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study: Radiomic Features for Prostate Cancer Detection on MRI. Journal of Magnetic Resonance Imaging [10531807].
Penzias, G., Janowczyk, A., Singanamalli, A., Rusu, M., Shih, N., Feldman, M., Stricker, P., Delprado, W., Tiwari, S., Böhm, M., Haynes, A., Ponsky, L., Viswanath, S. E., & Madabhushi, A. E. (2016). AutoStitcher: An Automated Program for Efficient and Robust Reconstruction of Digitized Whole Histological Sections from Tissue Fragments. Scientific Reports [20452322], 6