Koyuncu, C., Lu, C., Bera, K., Zhang, Z., Xue, Z., Toro, P., Corredor-Prada, G., Chute, D., Fu, P., Thorstad, W., Faraji, F., Bishop, J., Mehrad, M., Castro, P., Sikora, A., Thompson, L., Chernock, R., Lang Kuhs, K., Luo, J., Sandulache, V., Adelstein, D., Koyfman, S., Lewis, Jr, J., & Madabhushi, A.(2021).Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma.The Journal of Clinical Investigation,131(8),e145488.
Lu, C., Bera, K., WAng, X., Prasanna, P., Xue, Z., Janowczyk, A., Beig, N., Yang, M., Fu, P., Lewis, J., Choi, H., Schmid, R., Berezowska, S., Schalper, K., Rimm, D., Velcheti, V., & Madabhushi, A.(2020).A prognostic model for overall survival of patients with early-stage non-small cell lung cancer: a multicentre, retrospective study.The Lancet Digital Health,2(11),e594-e606.
Corredor-Prada, G., Lu, C., Koyuncu, C., Bera, K., Toro, P., Fu, P., Koyfman, S., Chute, D., Adelstein, D., Thorstad, W., Bishop, J., Faraji, F., Lewis, J., & Madabhushi, A.(2020).Computerized features of spatial interplay of tumor-infiltrating lymphocytes predict disease recurrence in p16+ oropharyngeal squamous cell carcinoma: A multisite validation study..Journal of Clinical Oncology,38(15_suppl),6559-6559.
Koyuncu, C., Corredor-Prada, G., Lu, C., Toro, P., Bera, K., Fu, P., Koyfman, S., Chute, D., Adelstein, D., Thorstad, W., Bishop, J., Faraji, F., Lewis, J., & Madabhushi, A.(2020).Combination of tumor multinucleation and spatial arrangement of tumor-infiltrating lymphocytes to predict overall survival in oropharyngeal squamous cell carcinoma: A multisite study..Journal of Clinical Oncology,38(15_suppl),6566-6566.
Corredor, G., WAng, X., Zhou, Y., Lu, C., Fu, P., Syrigos, K., Rimm, D., Yang, M., Romero, E., Schalper, K., Velcheti, V., & Madabhushi, A.(2019).Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non�Small Cell Lung Cancer.Clinical Cancer Research,25(5),1526-1534.
Xue, Z., Gong, L., Wang, G., Lu, C., Gilmore, H., Zhang, S., & Madabhushi, A.(2019).Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images.Journal of Medical Imaging,6(01).
Corredor, G., WAng, X., Zhou, Y., Lu, C., Fu, P., Syrigos, K., Rimm, D., Yang, M., Romero, E., Schalper, K., Velcheti, V., & Madabhushi, A.(2018).Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer.Clinical Cancer Research.
Lu, C., Romo-Bucheli, D., WAng, X., Janowczyk, A., Ganesan, S., Gilmore, H., Rimm, D., & Madabhushi, A.(2018).Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers.Laboratory Investigation.
Lu, C., Lewis, J., Dupont, W., Plummer, W., Janowczyk, A., & Madabhushi, A.(2017).An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival.Modern Pathology.
Lu, C., Xu, H., Xue, Z., Gilmore, H., Mandal, M., & Madabhushi, A.(2016).Multi-Pass Adaptive Voting for Nuclei Detection in Histopathological Images.Scientific Reports [20452322],6
Cohn, H., Lu, C., Paspulati, R., Katz, J., Madabhushi, A., Stein, S., Cominelli, F., Viswanath, S. E., & Dave, M. E.(2016).Tu1966 A Machine-Learning Based Risk Score to Predict Response to Therapy in Crohn's Disease via Baseline MRE.Gastroenterology [00165085],150(4).