Jiang, C., Shuai, Z., Mingji, Y., Kandhari, A., Zhizhong, L., Weiqing, H., & Yu, X.(2020).Evaluation of Three-dimensional Printing Assisted Laparoscopic Cryoablation of Small Renal Tumors: A Preliminary Report..Urology journal.
Kandhari, A., Wang, Y., Chiel, H., Quinn, R. D., & Daltorio, K. A.(2020).An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots.Soft Robotics.
Kandhari, A., Wang, Y., Chiel, H., & Daltorio, K. A.(2019).Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves.Soft robotics,6(4),560--577.
Kandhari, A., Mehringer, A., Chiel, H., Quinn, R. D., & Daltorio, K. A.(2019).Design and actuation of a fabric-based worm-like robot.Biomimetics,4(1),13.
Kandhari, A., Mehringer, A., Chiel, H., Quinn, R. D., & Daltorio, K. A.(2019).Design and Actuation of a Fabric-Based Worm-Like Robot.Biomimetics,4(1),13.
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. D.(2018).Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.Bioinspiration and Biomimetics,13(2).
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R.(2018).Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.Bioinspiration \& biomimetics,13(2),026003.
Kandhari, A., Huang, Y., Daltorio, K. A., Chiel, H. A., & Quinn, R. D.(2018).Body stiffnesses in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.Bioinspiration & Biomimetics,13, 026003.
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. D.(2018).Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.Bioinspiration \& biomimetics,13(2),026003.
Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., Kanu, E., Andersen, K., Kershaw, J., Bachmann, R., & Others, R.(2015).Peristaltic Locomotion of a Modular Mesh-Based Worm Robot: Precision, Compliance, and Friction.Soft Robotics,2(4),135–145.
Horchler, A., Kandhari, A., Daltorio, K. A., Moses, K. A., Ryan, J. A., Stultz, K. A., Kanu, E. A., Andersen, K. A., Kershaw, J. A., Bachmann, R. A., & Others, R. A.(2015).Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction.Soft Robotics,2(4),135--145.
Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., Kanu, E., Andersen, K., Kershaw, J., Bachmann, R., & Quinn, R. D.(2015).Peristaltic Locomotion of a Modular Mesh-Based Worm Robot: Precision, Compliance, and Friction.Soft Robotics,2(4),135–145.
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. D.().In a soft worm robot, circumferential stiffness increases forward locomotion velocity, whereas bending stiffness increases turning angle..