Akhil Kandhari

Publications

Jiang, C., Shuai, Z., Mingji, Y., Kandhari, A., Zhizhong, L., Weiqing, H., & Yu, X. (2020). Evaluation of Three-dimensional Printing Assisted Laparoscopic Cryoablation of Small Renal Tumors: A Preliminary Report.. Urology journal.
Kandhari, A., Wang, Y., Chiel, H., Quinn, R. D., & Daltorio, K. A. (2020). An Analysis of Peristaltic Locomotion for Maximizing Velocity or Minimizing Cost of Transport of Earthworm-Like Robots. Soft Robotics.
Kandhari, A., Wang, Y., Chiel, H., & Daltorio, K. A. (2019). Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves. Soft robotics, 6 (4), 560--577.
Kandhari, A., Mehringer, A., Chiel, H., Quinn, R. D., & Daltorio, K. A. (2019). Design and actuation of a fabric-based worm-like robot. Biomimetics, 4 (1), 13.
Kandhari, A., Mehringer, A., Chiel, H., Quinn, R. D., & Daltorio, K. A. (2019). Design and Actuation of a Fabric-Based Worm-Like Robot. Biomimetics, 4 (1), 13.
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. D. (2018). Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration and Biomimetics, 13 (2).
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. (2018). Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration \& biomimetics, 13 (2), 026003.
Kandhari, A., Huang, Y., Daltorio, K. A., Chiel, H. A., & Quinn, R. D. (2018). Body stiffnesses in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration & Biomimetics, 13 , 026003.
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. D. (2018). Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion. Bioinspiration \& biomimetics, 13 (2), 026003.
Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., Kanu, E., Andersen, K., Kershaw, J., Bachmann, R., & Others, R. (2015). Peristaltic Locomotion of a Modular Mesh-Based Worm Robot: Precision, Compliance, and Friction. Soft Robotics, 2 (4), 135–145.
Horchler, A., Kandhari, A., Daltorio, K. A., Moses, K. A., Ryan, J. A., Stultz, K. A., Kanu, E. A., Andersen, K. A., Kershaw, J. A., Bachmann, R. A., & Others, R. A. (2015). Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robotics, 2 (4), 135--145.
Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., Kanu, E., Andersen, K., Kershaw, J., Bachmann, R., & Quinn, R. D. (2015). Peristaltic Locomotion of a Modular Mesh-Based Worm Robot: Precision, Compliance, and Friction. Soft Robotics, 2 (4), 135–145.
Kandhari, A., Huang, Y., Daltorio, K., Chiel, H., & Quinn, R. D. (). In a soft worm robot, circumferential stiffness increases forward locomotion velocity, whereas bending stiffness increases turning angle. .