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High-Throughput Biomarker Segmentation
on Ovarian Cancer Tissue Microarrays

via Hierarchical Normalized Cuts
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Michael D. Feldman, and Anant Madabhushi∗

Abstract—We present a system for accurately quantifying the
presence and extent of stain on account of a vascular biomarker
on tissue microarrays. We demonstrate our flexible, robust, ac-
curate, and high-throughput minimally supervised segmentation
algorithm, termed hierarchical normalized cuts (HNCuts) for the
specific problem of quantifying extent of vascular staining on
ovarian cancer tissue microarrays. The high-throughput aspect of
HNCut is driven by the use of a hierarchically represented data
structure that allows us to merge two powerful image segmentation
algorithms—a frequency weighted mean shift and the normalized
cuts algorithm. HNCuts rapidly traverses a hierarchical pyramid,
generated from the input image at various color resolutions,
enabling the rapid analysis of large images (e.g., a 1500 × 1500
sized image under 6 s on a standard 2.8-GHz desktop PC). HNCut
is easily generalizable to other problem domains and only requires
specification of a few representative pixels (swatch) from the
object of interest in order to segment the target class. Across
ten runs, the HNCut algorithm was found to have average true
positive, false positive, and false negative rates (on a per pixel
basis) of 82%, 34%, and 18%, in terms of overlap, when evaluated
with respect to a pathologist annotated ground truth of the target
region of interest. By comparison, a popular supervised classifier
(probabilistic boosting trees) was only able to marginally improve
on the true positive and false negative rates (84% and 14%) at
the expense of a higher false positive rate (73%), with an additional
computation time of 62% compared to HNCut. We also compared
our scheme against a k-means clustering approach, which both the
HNCut and PBT schemes were able to outperform. Our success
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in accurately quantifying the extent of vascular stain on ovarian
cancer TMAs suggests that HNCut could be a very powerful tool
in digital pathology and bioinformatics applications where it could
be used to facilitate computer-assisted prognostic predictions of
disease outcome.

Index Terms—Biomarker discovery, hierarchical normalized
cuts (HNCuts), high-throughput, mean shift, multivariate histol-
ogy, normalized cuts, segmentation, tissue microarray (TMA).

I. INTRODUCTION

W ITH the advent of whole slide digital scanners, histo-
logical data have now become amenable to digital and

quantitative image analysis [1], [2], [48], [49], [52], [53], [56]–
[58]. Additionally, with tissue microarray (TMA) technology, it
is now possible to simultaneously stain several hundred tissue
sections (tissue cylinders) for the presence of various biomark-
ers [47]. In the digital (uncompressed) form, these TMAs can be
several gigabytes in size with image dimensions of up to 100 000
× 100 000 pixels. Some researchers are currently looking to in-
crease the number of cylinders that can be accommodated on a
single TMA to over 10 000 [3]. Since manual analysis of such
large amounts of data is clearly not tractable, high-throughput,
reproducible, and accurate computerized image analysis meth-
ods are required for quantification of the presence and extent of
different biomarkers on TMAs [36]–[38], [41], [46], [50], [54].

It is estimated1 that 21 990 women will be diagnosed with and
15 460 women will die of cancer of the ovary (OCa) in 2011.
The five-year survival rates of these women are highly correlated
with the early detection of OCa. Recent work [4] suggests that
specific tumor vascular biomarkers (TVMs), identifiable on OCa
TMAs [46], could have prognostic significance, which would
enable not only predicting the aggressiveness of the disease, but
could also help in tailoring a personalized treatment regime for
the patient.

The manual quantification of extent of biomarker staining is,
however, a laborious, time consuming, and error-prone affair.
Consequently, there is a real need for high-throughput quanti-
tative image analysis algorithms which can automatically and
efficiently estimate biomarker extent on very large pathology
slides in a few seconds [40], [44], [45]. For illustrative pur-
poses, consider having ten patient studies each with a TMA of
500 cylinders. Overall, there are 5000 1500 × 1500 images to
analyze. An expert clinician could expect to invest 5 min per
image, thus resulting in over 400 h to analyze all of the data.

1Cancer Facts and Figures, American Cancer Society, Atlanta, GA, 2011.
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Fig. 1. (a) TMA. (b) Representative magnified tissue cylinder drawn from
(a) with the extracted (c) stained TVM. A typical TMA could contain over
500 individual cylinders, making the biomarker detection via traditional image
analysis algorithms a challenge.

When we consider our proposed algorithm, using a single lap-
top, we could complete the same work in about 10 h. Using a
standard eight-core machine, the analysis could be completed
in just over an hour.

Accurate identification of the extent and intensity of the stain
could provide a quantitative and reproducible prognostic metric
that could help predict risk of disease recurrence and patient
survival. In Fig. 1, the region of interest is the reactive chemically
stained dark brown region, corresponding to the TVM ESM-1
[4]. While the extent and intensity of the ESM-1 stained region
may have prognostic significance, it is currently impractical in
terms of both time and effort for an expert pathologist to perform
this segmentation manually.

Most previous computerized image analysis algorithms for
TMAs have involved thresholding-based schemes [5]–[7].
These methods are known to be highly sensitive to even slight
changes in color and illumination [55]. Clustering-based ap-
proaches, including k-means [42], have also been investigated
for the analysis of TMAs. However, k-means is a nondeter-
ministic algorithm and is highly sensitive to the initial choice
of cluster centers [8]. Active contour schemes [9], while suit-
able for cell and nuclear segmentation in digital pathology, are
not ideally suited to the problem of pixel-level classification.
Additionally, they are typically infeasible for problems where
hundreds of objects need to be concurrently segmented on very
large images [10]. In [11], it was shown that using hierarchical
normalized cuts (HNCuts) as a preprocessing step for an ac-
tive contour approach drastically improved computation time of
their active contour approach by providing a significantly better
initial estimate to the region.

While supervised learning methods such as probabilistic
boosting trees (PBT) [12], [13] have become popular for image
classification and segmentation, these methods are constrained
by the difficulty [14] in obtaining ground-truth segmentations
from experts for classifier training of the object of interest. Man-
ual annotation of the data, apart from being time consuming and
laborious, can also be expensive if only a medical practitioner is
capable of providing accurate annotations. Additionally, if the
target of interest changes, considerable effort might be required
to generate new annotations and retrain the classifier [43].

Normalized Cuts (NCuts) [15] is among the final mature
descendants from a series of graph-cutting techniques ranging
from max cut to min cut [16]–[19]. It is a popular scheme
in spite of its main drawbacks: 1) the large number of calcu-
lations needed for determining the affinity matrix and 2) the

time-consuming eigenvalue computation. For large images, the
computation and overhead of these border on the infeasible [15].
Consequently, a significant amount of research has focused on
avoiding their direct calculations [20], [21].

The mean-shift algorithm (MS) [22], [39] has been employed
and modified in [23] as an unsupervised technique for mode
discovery instead of k-means [51]. The MS algorithm attempts
to identify the cluster mean within a predefined bandwidth. By
using a steepest gradient approach, a fast convergence to the
set of true means of the statistical data can be found [24]. The
improved fast Gauss transform (IFGT) implementation of the
MS algorithm [25] allowed computation times for large images
to become reasonable. For the rest of this paper, we will make
no distinction between IFGT-MS and MS.

There are two major differences between this study and a
previous, preliminary conference version of this paper [26]. The
first difference is that this study uses a frequency weighted mean
shift (FWMS) which significantly improves the computation
time over that in [26]. The second is an extension of the original
work by the inclusion of a number of additional experiments
to rigorously and quantitatively evaluate our scheme on a much
larger data cohort compared to what was initially presented
in [26]. The strength of HNCut is in that it combines a pow-
erful unsupervised clustering technique (mean shift [22]) with
an equally powerful graph partitioning scheme (NCuts [15]).
By performing clustering and partitioning in the color space (as
opposed to pixel-level classification), the HNCut algorithm is
highly efficient and precise. For large images, such as TMAs
where there are often many fewer unique colors than pixels,
performing the analysis in the color as opposed to the spatial do-
main could result in significant improvements in computational
processing time. HNCut only requires specifying a few repre-
sentative pixels from the target class and, unlike more traditional
supervised classification algorithms, does not require more de-
tailed target object annotation. More importantly, the HNCut
algorithm is more flexible compared to supervised schemes in
its ability to segment different object classes. The combination
of both the high-throughput efficiency and flexibility of HNCut
makes it ideally suited to applications requiring high-throughput
analysis, such as quantifying the expression of biomarkers on
TMAs. In this paper, we demonstrate the specific application
of HNCut to a problem of automated quantification of stain
extent associated with a vascular marker on OCa TMAs (see
Fig. 1).

The rest of this paper is organized as follows. In Section II, we
describe previous related work and contributions of our work.
In Section III, we provide the methodological description of
HNCut, and in Section IV, we demonstrate its application in
segmenting the stain extent of a TVM from OCa TMAs. Quali-
tative and quantitative evaluations of the segmentation results for
the TVM on OCa TMAs are presented in Section IV, followed
by a discussion of the results in Section V. Finally, concluding
remarks and future directions are presented in Section VI.

II. PREVIOUS WORK AND CONTRIBUTIONS

The attempt to merge NCuts and mean shift is not new [27].
To overcome the computational issues associated with NCut, a
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novel approach of combining both the MS and NCut algorithms
was presented in [27]. Clustering the image by running the MS
algorithm to convergence produced class assignments for the
pixels. By taking the average intensity value of the regions ob-
tained via the MS clustering step and using them as the vertices
in the NCut algorithm, a significant speed improvement was
obtained.

It was later noticed in [28] that when points of similar values
are within an ε neighborhood of each other, their contribution
to the overall system can be merged, providing an efficiency
improvement by reducing the number of computations needed
per iteration. We use this to extend the MS work in [27] in
a hierarchical fashion which is more pertinent and amenable
to problems in digital pathology and biomedical imaging. This
allows us to perform the same detection or segmentation task in
half the time (under 0.5 s for HNCut as compared to the reported
1.78 s for [28]).

While there are similarities between our work and [27] and
[28], there are also significant differences. The proposed algo-
rithm is specifically designed for rapid extraction of pixels of
interest in a minimally supervised manner, as opposed to un-
supervised clustering which is insensitive to the user’s domain
knowledge as the aforementioned approaches take. Thus, we
first manually identify the desired target class based on individ-
ual representative colors (referred to as a swatch) selected from
the target class by a user. This swatch, which can be changed
based on the desired target class or domain, lends HNCut sig-
nificant flexibility and ease of use.

Second, to our knowledge, this is the first attempt at combin-
ing an FWMS with a partitioning algorithm that accomplishes
the same task as MS but does it significantly faster. The FWMS
exploits the fact that as each iteration of MS completes, more
points converge. We demonstrate in this paper how the conver-
gence of our novel FWMS scheme allows us to perform cluster-
ing 15 times faster than the traditional MS algorithm [27]. We
can see from the run times presented in [27] that for a 240 × 160
pixel image, the running time is 2.18 s. By working directly in
the color space and using an FWMS, we can perform a similar
operation in 6 s on an image 58 times larger.

The work presented in this paper represents important
methodological and clinical contributions summarized as
follows.

1) A new minimally supervised hierarchical segmentation
approach that combines a FWMS and normalized cuts
(HNCuts) for pixel-level detection and classification.
HNCut is able to segment very large images rapidly.

2) HNCut is largely insensitive to choice of parameter value
and is able to discriminate between regions with similar
color values. The parameters for NCuts are automatically
computed, and the parameters for the FWMS are automat-
ically adjusted based on the variance of the output.

3) Layman initialization of the system is possible, obviat-
ing the need for detailed ground-truth annotation from an
expert that is required for more sophisticated supervised
classifiers.

4) This study represents the first attempt, to our knowledge, to
accurately quantify a vascular marker on OCa TMAs with

Fig. 2. Flow chart of the HNCut process. Proceeding left to right, the user
selects the domain swatch, followed by the FWMS of the image. This results in
the original image being decomposed into multiple levels of color resolution,
which is then followed by the application of NCut at each of the color reso-
lutions generated. At each pyramid level, colors not deemed to be part of the
swatch are eliminated. Following the application of NCut on the color pyramid
(from the lowest to the highest color resolution), the color values that have not
been eliminated are mapped back to the spatial domain via their original pixel
locations, and the final segmentation is obtained.

the ultimate objective of creating a quantitative image-
based metric for OCa prognosis and survival.

III. DESCRIPTION OF HNCUT

A. Overview

Fig. 2 presents a high-level overview of the four stages as-
sociated with the HNCut algorithm. Each of these stages are
discussed in detail in the following sections. We present an
overview here to guide the reader through the various stages.

We start by requiring the user to select a few sample pixels
from the target class from an image. We use these pixels to guide
the subsequent pixel classification process across all images in
the same domain.

Next, we employ the MS algorithm on the color values in
the image to form a hierarchical data structure (represented by
the levels in the color pyramid in the second box in Fig. 2).
Intuitively, the FWMS algorithm allows for identification of
color values which are within some specified tolerance of each
other and assigns them to the same mode. Employing the NCuts
operation only on the unique values at each level of the pyramid,
as opposed to all possible color values, allows for a factorization
resulting in significantly fewer computations. An illustration of
the application of the scheme to an OCa TMA, for detecting a
TVM, is illustrated in Fig. 3. We then compute the weight for
each unique mode, which reflects the actual frequency of the
number of pixels associated with it.

Using this pyramid, we can drastically reduce the large seg-
mentation problem in the color space to a set of much smaller
graph partitioning problems (the third box from the left in
Fig. 2), which we show can be solved far more efficiently by
NCut. By starting at the bottom of the pyramid, we partition the
unique values (typically on the order of ten values) into two sets
such that all of the values selected by the user in the first step
are assigned to the first partition. Subsequently, we eliminate the
second partition and map the colors in the first partition to an
immediately higher color resolution level in the pyramid. This
process continues until the entire pyramid is traversed. The last
step involves mapping the color values not eliminated back into
the spatial domain.
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Fig. 3. (a) Original image with desired TVM stain enclosed in red. (b) Image
at the bottom of the color pyramid during FWMS. (c) Image at the bottom of the
color pyramid following application of NCuts. (d) Final segmentation results
obtained by mapping colors not eliminated by HNCut spatially onto the original
image. Note that between (a) and (b), a significant reduction in color resolution
occurs, which allows NCuts to be performed on an image with several orders
of magnitude fewer colors compared to the original image (a). NCut is then
applied at progressively higher color resolutions, while at each pyramid level,
colors not deemed to be part of the swatch are eliminated. The colors retained at
the highest resolution are then spatially mapped onto the corresponding pixels
to yield the final segmentation.

The hierarchical set of operations described previously makes
for an extremely efficient and accurate algorithm; thus, applying
the NCut at the lowest levels of the pyramid is relatively simple
to do and encourages a more sophisticated definition of pixel
affinity. While in this paper only chromatic information was
leveraged, the method is easily and efficiently extensible to
incorporate additional image features (e.g., texture).

Fig. 3 displays an image from our dataset undergoing the HN-
Cut procedure, with the intent of quantification of the vascular
marker stain (brown color). The numbers shown in the boxes in
Fig. 3 represent the reduced number of colors and pixels gen-
erated by the HNCut scheme at different levels of the pyramid
within a single cylinder (1500 × 1500 pixels, 300 000 colors)
from a TMA.

B. Notation

An image scene is defined as C = (C, f) where C is a 2-D
Cartesian grid of N pixels, c ∈ C, where c = (x, y). f is a color
intensity function, where f ∈ R

3 .
We define as F1 ∈ R

3 the vector of colors associated with
all pixels c ∈ C at the full color resolution (top of the color
pyramid). The elements of F1 , namely f1,i , are derived such
that for pixel ci , f1,i = f(ci) and f1,i ∈ R

3 . A list of commonly
used notation and symbols in this paper is summarized in Table I.

C. Integrating Domain Knowledge to Guide NCuts

A user via manual selection defines a color swatch S1 =
{f1,ατ

|ατ , τ ∈ {1, . . . , N}}, where ατ is an index value to the
original color vector. Note that S1 is easily obtained by anno-
tating (manually) a few pixels from the object of interest on a
representative image and may be easily changed based on the
application. As we will describe in further detail later, S1 is
only used to identify which color partition [A or B from (8)]
to retain during NCut. It is important to note that since S1 is a
reference to a subset of the color values in the original image,
it will undergo all of the MS and NCut operations presented

TABLE I
DESCRIPTION OF NOTATION AND SYMBOLS COMMONLY EMPLOYED

IN THIS PAPER

below. Note that S1 is the swatch originally defined by the user
at the full resolution, k = 1.

D. FWMS for Reducing the Number of Colors for NCut

1) Theory: The MS algorithm is used to detect modes in
data using a density gradient estimation. By solving for when the
density gradient is zero and the Hessian is negative semidefinite,
we can identify local maxima. For a more detailed explanation
of the algorithm, we refer the reader to [24].

We start with the fixed point iteration update∀j ∈ {1, . . . , N}
in MS (described in [24]) as

fk+1,j ←
∑N

i=1 fk,iG(fk,j − fk,i)
∑N

i=1 G(fk,j − fk,i)
(1)

where G is a Gaussian function with a bandwidth parameter
σMS , which is used to compute the kernel density estimate at

data point cj , G(fk,j − fk,i) = exp(−‖fk , j −f̂k , i ‖2

σ 2
M S

), with ‖ · ‖2

representing the L2 norm. k ∈ {1, . . . , K} represents various
levels of color resolution produced at each iteration. The overall
computation time for (1) is O(N 2). By employing the IFGT
[25], we can reduce the computation complexity to O(N) with
minimal precision loss.

It becomes possible to exploit the fact that after each iter-
ation of the MS many of the data points, in our case color
values, converge. If we consider what that convergence means
mathematically, essentially two points cβ1 , cβ2 , where β1 , β2 ∈
{1, . . . , N}meet the requirement that |fk,β1 − fk,β2 | ≤ ε where
ε is a predefined tolerance value. We can thus rewrite the nu-
merator of (1), which is

fk,β1 G(fk,j − fk,β1 ) + fk,β2 G(fk,j − fk,β2 )

+
N∑

i=1,i �=β1 ,β2

fk,iG(fk,j − fk,i) (2)

in the form

2fk,β1 G(fk,j − fk,β1 ) +
N∑

i=1,i �=β1 ,β2

fk,iG(fk,j − fk,i) (3)
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thereby avoiding the explicit calculation of G(fk,j − fk,β2 ),
where j, β1 , β2 ∈ {1, . . . , N}, k ∈ {1, . . . , K}. This results in
one less computation for the Gaussian, which is by far the most
expensive operation in the entire MS clustering process. The
formulation in (3) results in a significant computational effi-
ciency improvement. The computational savings apply to the
denominator as well, as it follows the same reduction.

As a result, we may rewrite the update presented in (1)
as a multistep update. Initially, we determine the unique
values in Fk under the constraint that any color values
|fk,i − fk,j | ≤ ε are considered equivalent. Thus, from Fk =
{fk,1 , fk,2 , . . . , fk,|Fk |}, we can construct the vector F̂k , where
F̂k ⊂ Fk and F̂k is a set of only unique values in Fk , with
|F̂k | = Mk . A weight vector wk = {wk,1 , . . . , wk,Mk

} is then
computed for F̂k as

wk,j =
|Fk |∑

i=1,fk , i = f̂k , j

wk−1,i (4)

where j ∈ {1, . . . , Mk}. Equation (4) is summing the weights
from the previous level into the new unique values that resulted
from the next iteration of mean shifting. As a result, wk,j con-
tains a count of the number of original pixels that have migrated
to Fk,j through mean shifting. When k = 1, we define w0 as
a vector of length N , filled with ones, representing that each
color value has equal weighting. Now, the number of points in
the system that have converged to some intensity (color) value
f̂k ,j is represented by wk,j . It is important to note the following
definition of Mk where

|wk | = |F̂k | = |Fk+1 | = Mk (5)

and

Mk∑

i=1

wk,i = N (6)

which leads us to the update of (1):

fk+1,j ←
∑Mk

i=1 wk,i f̂k ,iG(f̂k ,j − f̂k ,i)
∑Mk

i=1 wk,iG(f̂k ,j − f̂k ,i)
(7)

for j ∈ {1, . . . ,Mk}.
A illustration of the steps described in (3)–(7) is presented in

Fig. 4. The images depict a standard probability density function
(pdf in red) computed from the Gaussian contributions (in blue)
from the 1-D data points (red circles). From Fig. 4(a), we can
see that colors fβ1 and fβ2 will converge in the next iteration of
the MS. We exploit the fact that once fβ1 and fβ2 converge, it
becomes possible to factor out fβ2 from the system, and move
its contribution into fβ1 , without altering the distribution [see
Fig. 4(b)].

We call this new approach the FWMS. The FWMS helps us to
produce a pyramidal scene representation Ck = (C,Fk ), where
k ∈ {1, . . . , K} represents K levels of the color pyramid. Note
that M1 ≥ M2 ≥ · · · ≥ MK , indicating level 1 has the most
colors and MK the least. In other words, FWMS results in a
series of scenes Ck , all mutually aligned, but with a smaller

Fig. 4. Visual representation of the pdf illustrating the difference between the
(a) traditional MS and the (b) FWMS. The red circles on the x-axis are the given
values in a 1-D system, the blue arcs are the associated Gaussian contributions,
while the red line above represents the summation of all of the contributions,
i.e., the pdf. In (b), when points fβ 1 and fβ 2 converge, fβ 2 is removed from
the system, and its contribution is moved into fβ 1 as a multiplication, avoiding
an additional expensive step in the computation of the Gaussian pdf.

number of colors in {CK , CK−1 , . . .} compared to {C1 , C2 , . . .},
which allows for NCut to be tractable.

2) Algorithm: The convergence requirement stated in line
two of Algorithm 1 may be specified via three possible crite-
ria. The first is the maximum number of iterations, a number
specified by the user. The second more common approach is to
stop the algorithm when the difference between any two itera-
tions falls below a predefined threshold (i.e., the amplitude of
the migrations associated with each point reduces significantly).
Finally, convergence can be reached when the number of ele-
ments in F̂ becomes small enough that additional clustering
provides no efficiency benefit as the overhead in the NCut starts
to outweigh the computation time. This process was illustrated
in Fig. 3 as the sequence of steps going from (a) to (b). It may
be seen from Fig. 3 that the overall color resolution is signifi-
cantly reduced as the algorithm proceeds from level 1 to level
K. In this example, the original image containing about 300 000
unique color values was reduced to 44 unique values. This sig-
nificantly smaller set of values makes the NCut step tractable
since we operate directly in the color space.

E. NCuts on FWMS Reduced Color Space

1) Theory: NCuts [15] is a graph partitioning method, used
to separate data into disjoint sets. For our problem, the hierar-
chical pyramid created by FWMS at various levels of color res-
olution (F̂1 , F̂2 , . . . , F̂K ) serves as the initial input to the NCut
algorithm. The NCut takes a connected graph G = (E, V ), with
vertices (V ) and edges (E) and partitions the vertices into dis-
joint groups. By setting V equal to the set of color values F̂K ,
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and having the edges represent the similarity (or affinity) be-
tween the color values, we can separate the vertices into groups
of similar color values. The NCut is defined as the process by
which the removal of edges leads to two disjointed partitions
A and B such that the variance of values (in our case colors)
in A and B are minimized and the difference in average value
(intensity of colors) between A and B is maximized. We present
the high-level formulation as described in [15]:

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

(8)

where cut describes the affinity between the sets, encouraging
higher dissimilarity between sets, and assoc describes the affin-
ity between a set and the whole system, encouraging sets of
significant size. The ψ function is used to define the affinity
between two points. Our ψ function is defined as

ψ(f̂k ,i , f̂k ,j ) = exp

(

−‖f̂k ,i − f̂k ,j‖2
2

σNcut

)

(9)

with σNcut as a bandwidth parameter. It is worth noting that in
the traditional NCut paper [15], their affinity calculation took
into account both a spatial and color component. For even small
images, this made the affinity matrix intractable. As a result, the
ψ function had a spatial constraint introduced such that (9) is
set to zero if the associated pixels are farther away than a user-
specified distance. This constraint forced the affinity matrix
Ψ to typically be sparse, making its storage and subsequent
operations applied to it less burdensome. Nevertheless, for large
images, the affinity matrix is still too large (in spite of the
spatial constraints), and as such we choose to operate solely in
a significantly reduced color space, without the imposition of
spatial constraints. In Fig. 3, we can see at the bottom of the
hierarchical pyramid for a color image with original dimensions
of 1200 × 1200, we would have an affinity matrix of only 7 × 7,
and at the highest level a size of 1572 × 1572.

2) Algorithm: The main steps comprising the HNCut tech-
nique are shown in Algorithm 2. We begin by applying NCut on
the lowest image resolution generated in the previous section,
by setting k = K, Vk = {f̂k ,1 , f̂k ,2 , . . . , f̂k ,Mk

}, i.e., the set of
unique color values present at level K from FWMS.

Step 1: We apply NCut to partition the scene into two disjoint
color sets A and B, where A,B ⊂ Vk . To perform
this partition, we compute the affinity matrix ΨK ∈
R

Mk ×Mk using (9) for all i, j ∈ {1, . . . , |Vk |}. σNCut
is a scaling parameter set to some initial value.

Step 2: As a result of the partitioning, we need to identify
if either A or B uniquely contains all colors in Sk .
Hence, if Sk ⊆ A and Sk ∩ B = ∅, then eliminate
all colors in B by setting Vk = A. If Sk ⊆ B and
Sk ∩ A = ∅, similarly eliminate A by setting Vk = B.
However, if Sk is not uniquely contained in either A
or B, we increase σNCut and proceed back to Step 1.
We keep incrementing σNCut until Sk is uniquely
contained within either of A or B, and set Vk to that
partition.

Step 3: Begin the process again with the new Vk until no
further partitioning of the color space at level k
is possible, that is, until Sk cannot be contained
uniquely within a single color partition for any value
of σNCut < σmax .

Step 4: Using this process, we sequentially climb the hierar-
chical data structure F̂k where k ∈ {1, . . . , K}. Thus,
we migrate to the next higher image resolution, level
k − 1 and set Vk−1 to Vk , i.e., the set of colors retained
at resolution level k, and repeat the process again. We
return to Step 1 until k = 1.

Step 5: At level 1, V1 contains a subset of values from F̂1 ,
which are considered to be the chromatic values of
the region of interest. Thus, the final image is com-
puted by retaining all pixels j ∈ {1, . . . , N} such that
f1,j ∈ V1 , and eliminating the others.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Dataset Description and Ground-Truth Annotation

Our image database comprises a total of seven digitized
TMAs of OCa, in turn comprising a total of over 500 tissue
cylinders from 100 patients, from which 130 were randomly se-
lected for performing quantitative evaluation (qualitative evalu-
ation was done on all 500). Only 130 of them were submitted to
our pathologist for annotation due to the laborious nature of the
work, which further motivates the utility and clinical motivation
for HNCut.

The TMAs were obtained by sampling OCa tissue and were
stained for the presence of the TVM ESM-1, resulting in vascu-
lar regions with the antibody to ESM-1 staining brown. The
digitized version of the TMAs were obtained by scanning
the slides at 40× resolution on a whole slide digital scanner,
but subsequently these were down-sampled and stored at 20×
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magnification. This resulted in over 500 digital images of in-
dividual cylinders, each of which were approximately 1500 ×
1500 pixels in dimension. An expert pathologist annotated the
precise spatial extent of the TVM on all of the 130 tissue cylin-
ders considered for the test. Care was taken by the pathologist
to include even those instances where only a few isolated pixels
were picked up by the TVM.

B. Implementation

All experiments were run on a 2.8-GHz Linux machine run-
ning MATLAB 2008b with 32-GB of RAM. The setup of HNCut
was as follows. All experiments were performed after converting
the RGB input images to the HSV colorspace, though the algo-
rithm is extensible to scalar valued images (such as grayscale
images) as well. The FWMS was performed using σMS = 0.05.
NCut was subsequently performed using the Silverman func-
tion [29] to determine the value for the initial σNCut , which was
then incremented by a factor of 10 as prescribed in step 9 in
Algorithm 2. The IFGT’s clustering variable, as suggested by
Yang et al. [25], was set to the square root of the number of data
points. When the number of remaining clusters fell below this
value, it was reset to the square root of the number of remaining
clusters.

The procedure that we used to enforce the ε distance require-
ment in (7) was implemented as follows. Since the human visual
system is unable to easily discriminate between subtle variations
of the same color, we can set ε to a relatively large value. The
easiest way to apply this ε requirement in an algorithmic form
is to simply choose the desired precision level (such as 10, 0,
0.01 or 0.001, depending on the format of the data) and then
simply round the value to the right of that place. Since our data
are stored using double precision in the range [0, 1], we have
used the thousandths decimal place. The subsequent procedure
of locating unique values and computing their frequencies is as
simple as generating a histogram of the data values with each
unique value occupying its own bin. This is a significant bene-
fit, as the production of histograms is not only well studied but
easily transformable into a parallel computing problem [30].

C. Evaluation Description

A total of four experiments were conducted to evaluate the ac-
curacy, efficiency, and reproducibility of the HNCut algorithm,
specifically in terms of its ability at 1) identifying pixels whose
colors are within the swatch and also in terms of 2) identifying
contiguous vascular regions annotated by the pathologist. It was
felt that both pixel-level and region-level statistics were required
to comprehensively and reliably evaluate HNCut performance.

1) Region-Level Metric: We define Ra,ς as the regions iden-
tified by HNCut and Rb,z as the corresponding expert annotated
regions, with z ∈ {1, . . . , Z} and ς ∈ {1, . . . , �}. If for any

Rb,z , |Rb , z ∩Ra , ς |
|Rb , z | > 0.3, then Ra,ς is identified as a true positive

(TP). If for any Ra,ς there is no Rb,z for which this condition
is satisfied, then Ra,ς is identified as a false positive (FP). If
there is a Rb,z for which no Ra,ς can be found that satisfies the
aforementioned condition, Rb,z is deemed to be a false negative

(FN). The 0.3 threshold was experimentally determined based
on interactions with our expert pathologist. The complex nature
of the stain shapes necessitated a lower threshold.

2) Pixel-Level Metric: Pixel-level statistics are defined us-
ing the basis of Pa and Pb , a collection of all pixels in the seg-
mented result (∪�

ς=1R
a,ς ) and the ground truth (∪Z

z=1R
b,z ), re-

spectively. From there, we can define the TP rate ( |P
a ∩P b |
|P b | ), posi-

tive predictive rate ( |P b |
|P b |+ |P a −(P a ∩P b )| ), FN rate ( |P

b −(P a ∩P b )|
|P b | ),

and true negative rate ( |C−(P a ∪P b )|
|C−P b | ). In all cases, the | ◦ | nota-

tion defines the cardinality of the set.

D. Comparative Strategies

PBT was implemented as described in [12] using suggested
default values for both of PBT’s variables θ and ε (0.45 and
0.4, respectively). PBT iteratively generates a hierarchical tree
structure in the training stage where each node of the tree is
converted into an Adaboost classifier [31] constituting seven
weak classifiers. During testing, the conditional probability of
the sample belonging to the target class is calculated at each
node based on the learned hierarchical tree. The discriminative
model is obtained at the top of the tree by combining the proba-
bilities associated with probability propagation of the sample at
various nodes. Unlike other commonly used classifiers, such as
AdaBoost [31] and decision trees [32], which provide a hard bi-
nary classification, PBT generates a posterior conditional prob-
ability value p(1|c), p(−1|c) ∈ [0, 1], for each sample c as be-
longing to one of the two classes. The feature vector was created
by taking a 3 × 3 window around every c ∈ C, across all three
color channels in HSV space, resulting in a 27 dimensional vec-
tor. 1000 random positive (stained) samples and 1000 random
negative (unstained and spuriously stained) samples were se-
lected from 25 randomly selected images, resulting in a total
training vector of size 27 × 50 000. Training and testing was
done via 50 runs of cross validation. This consisted of randomly
selecting 25 images and training the classifier as described ear-
lier, followed by testing on the other 105 images. The probabil-
ities returned by the PBT were subjected to thresholds at 92%
and 97% (represented via the first two columns in Fig. 6). The
choice of thresholds was determined as follows. During each run
of the randomized cross validation, a receiver operating charac-
teristic curve (representing the trade off between sensitivity and
specificity) was generated and the threshold was set at the deter-
mined operating point. This value was found to range between
92% and 97%.

E. Experiment 1: Comparison of HNCut to PBT and k-Means

1) Design: We compared the detection performance of HN-
Cut with k-means and PBT. A standard k-means algorithm [33]
was performed using ten clusters. Since k-means is not deter-
ministic and is notoriously sensitive to the choice of cluster
centers, offline experiments were performed to identify initial
cluster centers (cluster centers being identified both within and
outside of the target object of interest), which were qualitatively
determined as being optimal.
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Fig. 5. (a), (e), (i), (m) Ground-truth annotations of the vascular stained areas
on four different cylinders. Corresponding segmentation results from HNCut
[(b), (f), (j), (n)] for σM S = 0.05, PBT [(c), (g), (k), (o)] at the 97% threshold,
and k-means [(d), (h), (l), (p)] using ten clusters. It can be seen that k-means
always overestimates the stain extent, resulting in a large number of FPs. While
PBTs perform better compared to k-means, (g) and (k) show how the PBT can
occasionally retain spuriously stained pixels. On the other hand, HNCut’s results
closely resemble the ground truth. Note, however, that none of the algorithms
are able to correctly identify the faintly stained regions in the upper portion of
(m), since the stain there is barely discernible.

A subset of qualitative segmentation results are presented in
Fig. 5. The first column represents the original stained TVM
OCa image cropped to an area of interest, with the boundary
of the ground truth highlighted by the pathologist labeled in
red. The first row illustrates a case where all of the algorithms
performed comparatively. The second and third rows illustrate
instances where the HNCut algorithm performs better compared
to PBT and k-means, both of which yield several FPs. The final
row is used to illustrate a scenario where FNs occur for all
three methods. The middle region for the image in Fig. 5(m)
is correctly segmented in all algorithms, while the three other
regions are incorrectly rejected. This specific image is a very
difficult case where the stain in those regions is only barely
visible to an expert. k-means results in the largest number of

positives compared to the two other methods; a consequence of
k-means requiring all pixels to be assigned to a cluster.

Fig. 6 quantitatively illustrates the mean and variance of the
region-level metric for the different configurations across ten
runs. The red line indicates the mean value across all ten runs,
the blue box marks the positions where 25% of the ten values
on either side of the mean are encapsulated, and the black line
extends to where 75% of the values that are on either side of the
mean are contained. Thus, the closer the blue and black markers
are to the red mean line, the more consistent the algorithm was
able to perform. HNCut provides a similar mean for FNs, while
still providing a similar percentage for TPs. The FP rate for
HNCut versus PBT reveals that HNCut on average yields better
performance, with a much smaller variance. The threshold of
92% for the PBT encourages few FNs at the cost of many FPs.

Interestingly, randomly generating the training set for the
PBT from the ground truths provided by the expert seems to
lead to a larger variance in the FP metric. This can be as a result
of human error in performing the ground-truth annotation, or in
the selection of pixels that are not truly representative of the rest
of the desired class.

It is also worth noting that k-means does quite poorly. There is
no variance associated with the algorithm since we determined
the optimal centers offline, thus removing the nondeterministic
aspect of the scheme. Figs. 5 and 7 reveal the reason for the
large number of FPs associated with k-means since it tends to
retain many spuriously stained pixels as being part of the target
class.

2) Pixel-Level Performance Measure: Table II quantita-
tively illustrates the mean and variance of the pixel-level perfor-
mance measure for the different setups across 10 runs. HNCut’s
mean TP rate (59%) places it in between the two PBT setups
(63%, 51%), while still outperforming (99%) the TP rate asso-
ciated with the PBT on the two trials (98%, 98.3%). HNCut was
intermediate in performance to the two runs of PBT in terms
of positive predictive (36% versus 35% and 46%) and FN rates
(40% versus 36% and 47%). HNCut, thus, appears to provide a
good balance between precision and recall.

F. Experiment 2: Reproducibility of HNCut With Respect to
Swatch and Parameter Sensitivity

The results produced by HNCut are dependent upon the selec-
tion of the swatch and the size of the σMS bandwidth parameter.
Clearly, if there is a great deal of heterogeneity within the tar-
get class and the choice of swatch is not representative of the
target class, the quality of the segmentation will be subopti-
mal. Consequently, the user has the choice of either 1) sampling
additional values corresponding to the target class, or 2) repeat-
ing the segmentation with HNCut a few times with different
swatches until the desired target class segmentation is obtained.
Note that both tuning procedures are only made possible by the
superior computational efficiency of HNCut.

1) Swatch Selection: Fig. 8 shows qualitative results reflect-
ing the sensitivity of the segmentation as a function of the choice
of the swatch. A small patch was randomly selected from the
desired class by a nonexpert user. The resulting segmentation
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Fig. 6. Mean and variance of the region-based performance measure for (a) FNs, (b) TPs, and (c) FPs over ten runs for the PBT classifier (92% and 97%
threshold), PBT classifier trained using HNCut (97% and 99% threshold), HNCut and k-means over 130 images. In the case of PBT, this involved ten runs using
different training and testing sets, while for HNCut, we selected ten different swatches. The red line indicates the mean value, the blue box represents the 25th
percentile of values on either side of the mean, and the black line encompasses the 75th percentile of values on either side of the mean. The plots in (a)–(c) reveal
that HNcut outperforms k-means and PBT (92% and 97% thresholds) and performs comparably to a PBT trained with HNCut(97% and 99% thresholds) in terms
of FPs, FNs, and TPs. (d) reveals that HNCut significantly outperforms both the PBT and k-means algorithms in terms of execution time.

Fig. 7. Two bands across selected TMA cylinders are presented. (a), (b) original input, with the annotated ground truth in red, is presented on the top, followed
by (c), (d) HNCut with σM S = 0.05, (e), (f) PBT at the 97% threshold, and (g), (h) k-means using ten clusters.
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TABLE II
QUANTITATIVE RESULTS PRESENTED FOR THE PIXEL-LEVEL PERFORMANCE MEASURE ACROSS ALL OF THE ALGORITHMS

Fig. 8. (a) Ground-truth annotation of stain extent obtained from an expert
pathologist. The segmentation result shown in (b) was created using a swatch
comprising seven selected pixels. The next column (c) contains the same values
as (b) with the addition of another five values. The final column (d) has 18
values selected from the original image. The red line encapsulates the results
of the segmentation algorithm. We can see that the first set of results (b) are
reasonable, but as more class representative samples are used to construct the
swatch, the results improve [(c), (d)].

was overlaid using a red boundary on the original image. Sub-
sequently, a few additional pixels were added to the swatch, and
the segmentation repeated. In Fig. 8(b), we can see that when the
user selects dark pixels within the swatch, the segmentation fo-
cuses on the darker aspects of the stain. When the swatch shown
in Fig. 8(d) was used (a true representation of the variance in
the target class), the results approached the annotations of the
expert. Note that a nonexpert user could easily determine which
areas of the target class were not sampled from, and include
those in the swatch. This iterative process could be repeated un-
til the nonexpert user observes the results that match the exact
desired output. Once the domain swatch is selected, it can safely
be used for the rest of the images in the TMA set.

2) Parameter Sensitivity: σMS is a parameter used in FWMS
that is sensitive to the dataset considered. In Fig. 9, the impor-
tance of selecting the correct σMS becomes apparent. In the
case where the σMS value is too large, the FWMS aggregates
together pixels not contained within the swatch. As a result,
they can never be pruned away as shown in (b). The highlighted
blue section is dark enough in color that it becomes associated
with the stain due to the large bandwidth selection. On the other
hand, when the appropriate swatch representative of the desired
target class is selected, almost any σMS value becomes accept-
able, as shown with σMS = 0.01 in Fig. 9(c). Unfortunately, in
the case where a swatch that is not representative of the target
class is selected, as in Figs. 9(d)–(f), the results tend to be more
sensitive to the choice of value for σMS .

In our specific application, using HNCut on 500 discs, about
ten of them failed to converge properly (as determined by qual-
itative, visual inspection), resulting in very poor segmentations.
Interestingly, these ten images all had little to no stain present.
By computing the variance of the color pixels in the segmented
output against the domain swatch, we can assess the perfor-
mance of HNCut and make relevant adjustments in an unsuper-
vised manner. For instance, if the variance is larger then desired,
adjusting σMS to a smaller value will produce new output that
is more similar to the domain swatch. For all ten images consid-
ered in this experiment, the scheme for automatically adjusting
σMS resulted in excellent results.

G. Experiment 3: Efficiency and Speed Considerations
of HNCut

A crucially important property of HNCut is the efficiency of
FWMS compared to the traditional MS. To quantitatively eval-
uate the computational savings in using FWMS compared to
MS, the MS and FWMS procedures were executed over a total
of 20 iterations and the corresponding iteration times graphed.
Additionally, we compared the time it took for PBT, k-means,
and HNCut to segment the 130 tissue cylinders for which quan-
titative evaluation was performed.

In order to clearly illustrate the high-throughput capabili-
ties of HNCut, we compared its runtime to PBT and k-means.
Fig. 6(d) illustrates a graphical representation of the results.
From the onset, we can see that PBT’s training time of 181 s
accounts for 25% of HNCuts 643 s run time. Typically, this
training time is divided amongst all of the tested samples; thus,
the more samples that are tested, the cheaper it becomes to train
the system. Regardless, even upon excluding the training time
for PBT, HNCut still performs significantly faster. The average
of 16 s per sample by PBT is easily beaten by the runtime of 6 s
per sample by HNCut (for each 1500 × 1500 cylinder on the
TMA). This implies that HNCut is roughly 62% faster compared
to PBT.

In Table III, we can see the expected time taken to perform
the classification task on different size images. On much larger
images, the difference in execution time becomes even more
apparent. When we compare the time needed for HNCut versus
that of a human expert performing the same task, the need for a
technological approach becomes apparent.

Fig. 10 shows the numerical advantages to using FWMS over
MS. When the initial number of points is large, after each iter-
ation, fewer computations need to be performed. The larger ε
is selected, the faster FWMS will converge; on the other hand,
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Fig. 9. (a) Ground-truth (pathologist) segmentation of stain extent. (b) and (c) Segmentation outputs for two different σM S values (σM S = 0.01, 0.3). The
algorithm rarely experiences unacceptable segmentations except in the case when an intentionally inappropriate value of σM S for the domain swatch is chosen.
(d)–(f) are illustrated with σM S values of 0.01, 0.3, and 0.05, respectively, except that for these cases, a nonrepresentative swatch for the target class was deliberately
selected.

TABLE III
RUN TIMES FOR SEGMENTATION OF IMAGES OF VARIOUS SIZES. WE CAN SEE IN

ALL CASES THE HNCUT ALGORITHM PROVIDES THE BEST RUN TIMES. ALL

TIMINGS WERE PERFORMED ON A 2-GHZ DUAL-CORE LAPTOP

HAVING 8 GB OF RAM.

Fig. 10. Graph showing the typical time for each iteration of the MS and
FWMS procedures. The original IFGT (MS) mean shift (top, in blue) has
constant time for each iteration. The benefits of the FWMS algorithm (bottom,
in red) become apparent within a few iterations of the clustering procedure as
each additional iteration requires significantly less time as additional data points
converge to the cluster mean.

when ε is selected to be extremely small the execution time for
FWMS begins to approach that of MS.

H. Experiment 4: Using the Turing Test to Evaluate HNCut

The original Turing test [34] is a test of a machine’s abil-
ity to demonstrate intelligence. A human judge is blinded and
attempts to differentiate between a human and a machine us-
ing only a natural language conversation. If the judge cannot
differentiate reliably between the machine and the human, the
machine is said to have passed the Turing test. The question that
we pose is similar: Is it possible to differentiate a supervised
classifier trained with human annotated data from a supervised
classifier trained with HNCut segmented data? In general, su-

pervised methods are viewed as more dependable because they
rely on training data. However, the question we pose via the
Turing test is whether it is possible to use a minimally super-
vised method to train a supervised method and obtain on par
or better results to a supervised classifier trained with manually
annotated data. Toward this end, we performed ten iterations
of the training/testing procedure using the HNCut output as the
ground truth for training in the PBT, and compared it against
the PBT output resulting from the pathologist annotated data.
The choice of thresholds was determined in a similar fashion
as Experiment 1, except the operating point was found to range
between 97% and 99%, and thus we chose those two values.

The results presented in Fig. 6 (using the “PBT With HNCut”
label) suggest that when a PBT is trained with the results from
the HNCut, the results are actually superior to all other clas-
sifier configurations considered (including PBT, k-means, and
HNCut), with a much smaller standard deviation. In the case of
FP, the variance at the 99% threshold is almost negligible, giving
a high confidence of reproducibility. As a result, the output sug-
gests that it is possible to use HNCuts layman’s initialization to
produce data that is of a similar quality to the expert’s laborious
annotation work, minimizing user interaction. This is especially
interesting because it means that the combination of the two
outperforms a supervised method trained with expert data. This
result suggests that supervised classifier methods can be em-
ployed for accurate quantification of biomarker extent by using
HNCut to create the training set. This would be highly benefi-
cial, avoiding the extremely expensive overhead of laboriously
and manually annotating the target class. Based on these results,
HNCut would appear to pass the Turing test for segmentation.

V. DISCUSSION OF SEGMENTATION ERRORS

As with any segmentation algorithm, HNCut is also subject
to FP and FN errors. Below, we briefly discuss some of these
errors and possible reasons for these errors.

Since the stain severity is proportional to the quantity of the
biomarker, the stain will vary greatly in intensity of color across
not only all cylinders but also across all stained areas themselves.
This high variance is one of the reasons why thresholding and
k-means type algorithms tend to do poorly. Additionally, the rim
of the cylinders are often corrupted with noise which manifests
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as a dark stain. The removal of these artifacts could be done
by simply choosing to ignore pixels that lie on or very close
to the cylinder boundary. In the situation where the disc is not
well formed, either on account of tissue tearing or an absence of
cells, there is the possibility for large scale pooling of FP stain
within the void. Since the chromatic qualities of the FP regions
are very similar to TP areas, this specific type of error is difficult
to identify and eliminate.

Psammomas are calcified material within the center of a lam-
inated whorl of elongated fibroblastic cells [14]. Unfortunately,
psammomas are exactly the same in color and texture as the
TPs, making it difficult for all save an expert reader to identify.
In the absence of additional domain knowledge, it would be
impossible for any segmentation algorithm (let alone HNCut)
to distinguish these FP errors from the TPs.

VI. CONCLUDING REMARKS

In this paper, we have presented a minimally supervised
segmentation scheme termed HNCuts for precise and accurate
quantification of extent of vascular staining of OCa TMAs. The
extent and severity of this vascular stain has been predicted to
be an important prognostic marker in predicting outcome of
women with OCa. The strength of HNCut is derived from the
fact that it integrates the best of both an FWMS clustering and
the NCut algorithm. While other schemes have been previously
proposed in an attempt to combine both mean shift and NCuts,
we believe that HNCut is the only approach which provides
the flexibility to be able to extract different target classes based
on user input. Additionally, the HNCut algorithm’s hierarchical
usage of the color space, a novel feature, allows it to operate
faster compared to other similar approaches. By using our newly
presented combination of FWMS and NCuts, and by operating
in the color space, HNCut is able to handle large images ef-
ficiently. HNCut was found to be 62% faster compared to a
state-of-the-art supervised classification scheme. A major ad-
vantage of HNCut, apart from its efficiency and accuracy, is that
it is not encumbered by the need for precisely annotated training
data. The quantitative evaluation of HNCut on 130 images cor-
responding to OCa TMAs (and qualitative, visual inspection on
a total of 500 images), stained to identify a vascular biomarker,
reveals that HNCut performs better than two popular classifier
and clustering techniques—PBT and k-means. Over ten differ-
ent runs of the HNCut with different swatches, it was shown
that the HNCut results had lower variance compared to PBT.
Additionally, when using the output from HNCut to train PBT,
the results were comparable to a supervised classifier trained
directly with expert annotations. Hence, HNCut its highly flex-
ible, allowing for a lay person (nonexpert) to specify a swatch
comprising a few pixels representative of the target class. Thus
HNCut is ideally suited for applications in digital histopathol-
ogy and biomaker discovery where the need is for an image seg-
mentation tool to rapidly identify different types of structures or
classes of interest. While HNCut had a sensitivity of over 80%
in identifying the vascular regions, the question of whether this
level of accuracy is acceptable for predicting disease outcome
can only be answered in a clinical trial setting. In other words,

only if a quantitative metric derived from the HNCut segmen-
tation results can be correlated with patient outcome, can the
HNCut results be deemed to have acceptable accuracy. Clearly,
such a validation would only be possible under the auspices of
a clinical trial. Since HNCut operates in the color space, and is
thus highly efficient, the only limitation in the size of the im-
age that can be analyzed by HNCut is the amount of computer
memory available to read in the image data. In future work, we
intend to explore the applicability of HNCut to other biomarker
quantification and digital pathology problems.
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