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ABSTRACT

The demand for personalized health care requires a wide range of
diagnostic tools for determining patient prognosis and theragnosis
(response to treatment). These tools present us with data that is
both multi-modal (imaging and non-imaging) and multi-scale (pro-
teomics, histology). By utilizing the information in these sources
concurrently, we expect significant improvement in predicting pa-
tient prognosis and theragnosis. However, a prerequisite to realizing
this improvement is the ability to effectively and quantitatively com-
bine information from disparate sources. In this paper, we present a
general fusion framework (GFF) aimed towards a combined knowl-
edge representation predicting disease recurrence. To the best of our
knowledge, GFF represents the first formal attempt to fuse biomed-
ical image and non-image information directly at the data level as
opposed to the decision level, thus preserving more subtle contribu-
tions in the original data. GFF represents the different data streams
in separate embedding spaces via the application of dimensionality
reduction (DR). Data fusion is then implemented by combining the
individual reduced embedding spaces. A proof of concept example
is considered for evaluating the GFF, whereby protein expression
measurements from mass spectrometry are combined with histolog-
ical image signatures to predict prostate cancer (CaP) recurrence in
6 CaP patients, following therapy. Preliminary results suggest that
GFF offers an intelligent way to fuse image and non-image data
structures for making prognostic and theragnostic predictions.

Index Terms— Knowledge representation, data fusion, mass
spectrometry, histopathology, prostate cancer, prognosis

1. INTRODUCTION

There exists an increasing demand for personalized medicine, a sys-
tem which utilizes a patient’s unique physiological and genetic pro-
file to create tailor-made treatment plans. Utilizing a comprehensive
patient profile reduces the likelihood of treatment failure because
patients can be matched up with similar studies showing successful
treatment. These characteristics will be captured via such disparate
data sources as mass spectrometry, radiologic imaging, histology,
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and gene expression. Thus, the success of personalized medicine
will depend greatly upon our ability to integrate multi-modal, multi-
scale and multi-protocol data since 1) each individual source may
contain information unavailable in the others, and 2) important de-
pendencies between the sources can only be identified when they are
considered concomitantly. Unfortunately, the fusion of dissimilar
data is a non-trivial task. For example, consider the complications
with fusing magnetic resonance (MR) imaging (structural informa-
tion) in the form of scalar intensity information with MR spectral
data (metabolic information) in vectorial form; each modality en-
codes different types of information, at different scales. Nonethe-
less, both modalities reflect information regarding the same disease,
and consequently, examining both concurrently is crucial.

Previous attempts at image and non-image fusion have been
geared toward using non-imaging information to aid in object de-
tection, segmentation, and tracking in images, while data fusion for
the purpose of classification has yet to be fully explored. Currently,
information fusing algorithms are categorized as being either com-
bination of data (COD) or combination of interpretations (COI) [1]
methodologies. COD algorithms propose fusion at the feature level
followed by classification. Mandic [2] proposed a COD methodol-
ogy that combined heterogeneous wind speed and directional data
using vector spaces of complex numbers. Lanckriet [3] combined
amino acid sequences, protein complex data, gene expression data,
and protein interactions directly in a kernel space to predict the
functions of yeast proteins. COD methods (Figure 1(a)) aggre-
gate features from each source into a single feature vector before
classification. This has the advantage of retaining any inter-source
dependencies between features. However, CODmethods suffer from
the curse-of-dimensionality (too many features), and consequently,
require a vast amount of training data to produce a classifier that is
extensible beyond the training set. Additionally, aggregating data
from very different sources without accounting for differences in the
number of features and their relative scalings can negatively impact
certain classifiers.

Alternatively, COI methods classify the data from each source
independently and then aggregate the results. Rohlfing [1] applied
COI methods to combine different information sources for the fol-
lowing applications: atlas-based segmentation, image segmentation,
and deformation-base morphometry. Jesneck [4] combined human-
and computer-extracted mammographic feature sets by first classify-
ing them independently and then fusing the binary decisions. Since
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each individual classifier produces a one-dimensional output in COI
algorithms (shown in Figure 1(b)), the curse-of-dimensionality can
be greatly mitigated. Furthermore, the classification results are
implicitly normalized, facilitating the following classification step.
However, all inter-source dependencies among features are lost.

Based on the above, it is apparent that both COI and COD ap-
proaches have inherent drawbacks that are difficult to overcome.
COD methods suffer the curse-of-dimensionality while COI meth-
ods are unable to leverage inter-source dependencies. In this paper
we suggest that the COI/COD dichotomy is a limited paradigm. It is
more appropriate to consider a general fusion framework (GFF) in
which COD and COI exist as two extremes of continuous spectrum.
That is, COI methods reduce the feature sets from each source to a
single dimension (by classification) and then aggregate the classifi-
cation results; CODmethods aggregate the features and then classify
them. We propose a knowledge representation scheme that trans-
forms, instead of classifies, the disparate feature sets. This hybridiza-
tion produces new features, which if the transformations are chosen
correctly, are of lower dimensionality and yet still retain all essential
class discriminatory information. Consequently, GFF offers a usable
combined representation of very different types of data, mitigating
the typical drawbacks inherent in COD and COI algorithms.

S S S S

C

1 2

FCOD

3 4 S S S S

C C C C

1 2 3 4

1 2 3 4

FCOI

(a) (b)
S S S S

T T T T

1 2 3 4

1 2 3 4

FGFF

C

(c)

Fig. 1. (a) COD model: data from disparate sources (S1-S4) is first
aggregated and then classified. (b) COI model: data is classified and
then aggregated. (c) Generalized Fusion Framework: data from indi-
vidual sources is transformed into a common knowledge framework
then aggregated and transformed into a final interpretation.

To further elucidate our framework we will consider the specific
example of fusing image-based features derived from hematoxylin
and eosin (H&E) stained prostate tissue samples with peptide mea-
surements derived from Electrospray Ionization Mass Spectrometry
(ESI-MS). We demonstrate how GFF can be applied to uniformly
represent information from these disparate sources and present pre-
liminary results (intended to show proof of concept) in construct-
ing an integrated meta-classifier for predicting CaP recurrence/non-
recurrence from 6 patients previously treated for CaP.

2. GENERALIZED FUSION FRAMEWORK (GFF)

Our raw data is defined in terms of source Si(x1, x2, ..., xk), where
x1, x2, ..., xk represent the k observations in the study and i rep-

resents one of N data sources i ∈ {1, 2, ..., N}, omitting the
x1, x2, ..., xk in our notation for convenience. GFF (Figure 1(c))
begins by applying separate transformations to each of the N data
sources Si, mapping them into a common knowledge representation
Ti, i ∈ {1, 2, . . . , N} (shown by the dashed box). The features re-
sulting from this transformation Ti are then aggregated into a fused
space F prior to a classification C. Notice that if each transforma-
tion Ti were chosen to be classifier outputs, i.e. Ti =Ci, this would
devolve to the COI model. Conversely, if each Ti simply passed the
data without modification, the COD model would result.

2.1. Data Transformation: Meta-Space Projection (Ti)

The most important attribute of the GFF is its flexibility with respect
to the choice of transformations. This flexibility allows us to tai-
lor each transformation to best accommodate its individual source.
The goal of the selected transformations is to map the data sources
into a common meta-space that preserves inter-source dependencies,
mitigates the curse-of-dimensionality, and is appropriate for visual-
ization and analysis.

Consider the use of dimensionality reduction (DR) methods as
transformations. Having the ability to distill datasets to a few infor-
mative features (i.e. their intrinsic dimensionality)1, DR techniques
can accomplish the goal of minimizing the curse-of-dimensionality
and retaining inter-source dependencies. Since the GFF does not
espouse any single DR technique, but instead contains them all, dif-
ferent DR algorithms can be applied to different sources. For exam-
ple, we have shown that many types of medical data lie on nonlinear
manifolds and are more amenable to manifold learning techniques
such as LLE or ISOMAP [5]. For other sources, or for sparsely
packed datasets, linear DR methods such as Principal Component
Analysis (PCA) may be more appropriate.

2.2. Data Integration: Fusion of Multi-modal Data (F )

Following data transformation, the modalities Si are now in a trans-
formed space Ti that is more amenable for integration. To minimize
bias from utilizing data of multiple scales, the DR transformed meta-
spaces must first be normalized. We use the normalization

Ti(xa) =
Ti(xa)−minb[Ti(xb)]

maxb[Ti(xb)]−minb[Ti(xb)]
, a, b ∈ {1, 2, ..., k} (1)

for each Ti, i ∈ {1, 2, ..., N}. We then concatenate the modali-
ties represented by the normalized transformations Ti to form fusion
space F = [T1, T2, ..., TN ], which can be reduced again by DR.

3. PREDICTING CAP RECURRENCE BY FUSINGMASS
SPECTROMETRYAND HISTOPATHOLOGY

Prostate cancer is the most commonly diagnosed cancer among men
in the United States, with an incidence of about 200,000 a year
(Source: American Cancer Society). Adequate cancer stratifica-
tion can provide improvements in patient prognosis and theragnosis.
Thus, many studies have been done that use either imaging methods
or gene and protein expression to improve cancer stratification [6].

Our dataset consists of six patients from the Hospital of the
University of Pennsylvania. From each of the six patients, prostate
whole-mount histological slices (WMHSs) with corresponding mass

1Note that there are several algorithms that can be used to estimate intrin-
sic dimensionality, prior to meta-space projection
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Fig. 2. Multi-modal patient data (top row: relapsed case, bottom row: non-relapsed case). (a), (f) Original whole-mount H&E prostate
histology section showing region of interest. (b), (g) Magnified ROI showing gland segmentation boundaries, as well as the (c), (h) Voronoi
Diagram and (d), (i) Delaunay Triangulation depicting gland architecture. (e), (j) Plot of the proteomic mass spectra profile.

spectrometry signals were obtained at the Department of Surgical
Pathology. All patients in this study have been classified either as
a relapsed (R) case, where cancer recurrence was observed follow-
ing treatment, or a non-relapsed (NR) case, where cancer was not
observed. For all 6 patients, CaP treatment involved radical prosta-
tectomy. The motivation of this study was to observe whether the
quantitative integration of image-based signatures acquired from the
histological whole-mount prostate sections with corresponding pep-
tide measurements obtained from mass spectrometry could be used
to discriminate the 3 CaP progressors from the 3 non-progressors.

3.1. Image Feature Extraction from Prostate Histopathology

In prostate whole-mount histology (Figure 2 (a), (f)), the objects of
interest are the glands (shown in Fig. 2 (b), (g)), whose shape and
arrangement are highly correlated with cancer progression [7]. We
briefly describe this process below. Prior to extracting image fea-
tures, we employ an automatic region-growing gland segmentation
algorithm presented by Monaco et al. [8]. The boundaries of the in-
terior gland lumen (see Fig. 2(b)) and the centroids of each gland,
allow for extraction of 1) morphological and 2) architectural features
from histology as described in [7] and also briefly below.

Morphological Features (MF): We extract 25 morphological
features (20 boundary features and 5 gland area features) from each
of the glands within an image and calculate the average, median,
standard deviation, and min-to-max ratio of the values for each fea-
ture to obtain 100 morphological features. These features provide
information such as boundary smoothness, gland area, moment in-
variants, Fourier descriptors, and fractal dimensions.

Architectural Features (AR):We quantify the arrangement of
the glands using a graph-based approach developed in [7]. Using the
centroids of the glands as vertices, we construct three graphs: the
Voronoi Diagram, the Delaunay Triangulation, and the Minimum
Spanning Tree. By measuring statistics related to these graphs, such
as average branch length, polygon or triangular area and perimeter,
we extract 26 graph-based features. In addition, we calculate a set of
architectural features from the spatial arrangement of the centroids,

such as density and compactness, for a total set of 51 architectural
features per image.

3.2. Peptide Measurements via Mass Spectrometry (MS)

In addition to the gold standard of histopathology, recent attempts
have been made to identify a set of biological markers that can pre-
dict whether a patient is susceptible to cancer progression and recur-
rence [6]. Active genes encode proteins that are present in a tissue
sample, and these proteins can be measured and serve as quantitative
markers of cancer activity. For this study, we used Electrospray Ion-
ization Mass Spectrometry (ESI-MS) to measure the relative abun-
dance of peptides (expressed as mass/charge or m/z ratios) in can-
cerous regions of the tissue. Samples of formalin-fixed, paraffin-
embedded (FFPE) prostate tissue measuring approximately 4 mil-
limeters in diameter are digested into a protein lysate, resulting in
the isolation of 8 micro grams of peptide per sample. This material
is separated through high-performance liquid chromatography (C-
18 reverse phase) and injected into a high-resolution, accurate-mass
hybrid ion trap mass spectrometer (Thermo LTQ Orbitrap), where
peptide features are identified from ESI-MS scans using the Hard-
klor/Kronik package [9].

In our study, in-house software was used to identify levels corre-
sponding to 11,752 m/z features for each of the six patients, produc-
ing a high-dimensional feature vector characterizing each patient’s
protein expression profile at the time of treatment. The summed av-
erage of peaks were used to characterize the patient profile, using
only peaks that could be used for all patients in our study, resulting
in a final 570 m/z values used for data fusion.

3.3. Fusion of Image and Non-Image Data

We provide 3 modalities S1-S3 for our patient data: Architectural
features (AR) of dimensionality R

51 and Morphological features
(MF) of dimensionality R

100 extracted from WMHSs and m/z val-
ues from mass spectrometry (MS) of dimensionality R

570. These
are then independently transformed into a common low-dimensional
meta-space projection Ti, i ∈ {1, 2, 3} of dimensionality R

3. In
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Fig. 3. Low-dimensional representations of patient data following application of GFF using PCA. Red triangles indicate Relapsed cases, while
green circles represent Non-Relapsed cases, described using (a) Mass Spectrometry features, (b) Histological (Morphological + Architectural)
features, and (c) Multi-modal fusion of Morphological, Architectural, and Mass Spectrometry features.

our GFF implementation, Principal Component Analysis (PCA) is
used to perform the transformation from Si to Ti. PCA is a linear
DR method that reduces the data to dominant eigenvectors that can
be used to represent high dimensional data. Prior to data fusion,
we also normalize the data for each Ti, i ∈ {1, 2, 3} via Equation
1. This normalized meta-space data Ti is then concatenated to form
fused data F of dimensionality R

9 prior to a second reduction by
PCA to a final dimensionality R

3, representing a low-dimensional
representation of the fused multi-modal CaP data F .

4. PRELIMINARY RESULTS AND DISCUSSION

To determine the interplay between data fusion and data features on
prostate cancer detection, we test out our GFF on the following com-
bination of features: 1) MS, 2) MF + AR, 3) MS + MF + AR. Fig-
ures 3(a), (b), and (c) show the transformations of the mass spec-
trometry (MS), histological (MF+AR), and a combination of both
(MS+MF+AR) into a common space that is ideal for analysis and
visualization. The combined meta-space in Figure 3(c) illustrates
the representation of the patients as determined by both image (i.e.
histology) and non-image (mass spectrometry) feature types. This is
a unique way of integrating two disparate types of features and can
easily be extended to additional information sources independent of
the modality. These preliminary results reflect the applicability of
GFF in fusing imaging and non-imaging information for discrimi-
nating between patients with different prognostic and theragnostic
disease profiles.

5. CONCLUDING REMARKS

The utility of both traditional histology and mass spectrometry has
the chance to produce truly landscape-altering research in the near
future, and the successful fusion of these information rich modali-
ties will be vital for future research in successfully predicting disease
prognosis and theragnosis studies. In this paper we have introduced a
novel general fusion framework (GFF) for knowledge representation
of data from imaging and non-imaging sources that is both easily
implemented and extensible. While previous work has focused on
decision-level fusion, our method combines these disparate sources
at the data level while avoiding direct data concatenation, thus avoid-
ing the drawbacks associated with the COI and COD methods. In

spite of a small sample size, we have been able to show via prelim-
inary results of the efficacy of our knowledge representation frame-
work for fusing disparate data types for classification. Future work
utilizing the GFF may explore other DR methods beyond PCA (in-
cluding non-linear schemes), the optimal dimensionality of each data
source, additional implementations of meta-space fusion apart from
concatenation, and expansion to the fusion of several disparate data
sources beyond histopathology and peptide features.
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