Reimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology.

TitleReimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology.
Publication TypeJournal Article
Year of Publication2020
AuthorsBera, K, Katz I, Madabhushi A
JournalJCO clinical cancer informatics
Date Published2020 11

Tumor stage and grade, visually assessed by pathologists from evaluation of pathology images in conjunction with radiographic imaging techniques, have been linked to outcome, progression, and survival for a number of cancers. The gold standard of staging in oncology has been the TNM (tumor-node-metastasis) staging system. Though histopathological grading has shown prognostic significance, it is subjective and limited by interobserver variability even among experienced surgical pathologists. Recently, artificial intelligence (AI) approaches have been applied to pathology images toward diagnostic-, prognostic-, and treatment prediction-related tasks in cancer. AI approaches have the potential to overcome the limitations of conventional TNM staging and tumor grading approaches, providing a direct prognostic prediction of disease outcome independent of tumor stage and grade. Broadly speaking, these AI approaches involve extracting patterns from images that are then compared against previously defined disease signatures. These patterns are typically categorized as either (1) handcrafted, which involve domain-inspired attributes, such as nuclear shape, or (2) deep learning (DL)-based representations, which tend to be more abstract. DL approaches have particularly gained considerable popularity because of the minimal domain knowledge needed for training, mostly only requiring annotated examples corresponding to the categories of interest. In this article, we discuss AI approaches for digital pathology, especially as they relate to disease prognosis, prediction of genomic and molecular alterations in the tumor, and prediction of treatment response in oncology. We also discuss some of the potential challenges with validation, interpretability, and reimbursement that must be addressed before widespread clinical deployment. The article concludes with a brief discussion of potential future opportunities in the field of AI for digital pathology and oncology.

PDF Link

Alternate JournalJCO Clin Cancer Inform

 *IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.