Title | Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. |
Publication Type | Journal Article |
Year of Publication | 2017 |
Authors | Wang, X, Janowczyk A, Zhou Y, Thawani R, Fu P, Schalper K, Velcheti V, Madabhushi A |
Journal | Scientific reports |
Volume | 7 |
Issue | 1 |
Pagination | 13543 |
Date Published | 2017 Oct 19 |
ISSN | 2045-2322 |
Abstract | Identification of patients with early stage non-small cell lung cancer (NSCLC) with high risk of recurrence could help identify patients who would receive additional benefit from adjuvant therapy. In this work, we present a computational histomorphometric image classifier using nuclear orientation, texture, shape, and tumor architecture to predict disease recurrence in early stage NSCLC from digitized H&E tissue microarray (TMA) slides. Using a retrospective cohort of early stage NSCLC patients (Cohort #1, n = 70), we constructed a supervised classification model involving the most predictive features associated with disease recurrence. This model was then validated on two independent sets of early stage NSCLC patients, Cohort #2 (n = 119) and Cohort #3 (n = 116). The model yielded an accuracy of 81% for prediction of recurrence in the training Cohort #1, 82% and 75% in the validation Cohorts #2 and #3 respectively. A multivariable Cox proportional hazard model of Cohort #2, incorporating gender and traditional prognostic variables such as nodal status and stage indicated that the computer extracted histomorphometric score was an independent prognostic factor (hazard ratio = 20.81, 95% CI: 6.42-67.52, P < 0.001). |
DOI | 10.1038/s41598-017-13773-7 |
PDF Link | |
Alternate Journal | Sci Rep |
*IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.