Title | Multi-field-of-view framework for distinguishing tumor grade in ER+ breast cancer from entire histopathology slides. |
Publication Type | Journal Article |
Year of Publication | 2013 |
Authors | Basavanhally, A, Ganesan S, Feldman MD, Shih N, Mies C, Tomaszewski JE, Madabhushi A |
Journal | IEEE transactions on bio-medical engineering |
Volume | 60 |
Issue | 8 |
Pagination | 2089-99 |
Date Published | 2013 Aug |
ISSN | 1558-2531 |
Abstract | Modified Bloom-Richardson (mBR) grading is known to have prognostic value in breast cancer (BCa), yet its use in clinical practice has been limited by intra- and interobserver variability. The development of a computerized system to distinguish mBR grade from entire estrogen receptor-positive (ER+) BCa histopathology slides will help clinicians identify grading discrepancies and improve overall confidence in the diagnostic result. In this paper, we isolate salient image features characterizing tumor morphology and texture to differentiate entire hematoxylin and eosin (H and E) stained histopathology slides based on mBR grade. The features are used in conjunction with a novel multi-field-of-view (multi-FOV) classifier--a whole-slide classifier that extracts features from a multitude of FOVs of varying sizes--to identify important image features at different FOV sizes. Image features utilized include those related to the spatial arrangement of cancer nuclei (i.e., nuclear architecture) and the textural patterns within nuclei (i.e., nuclear texture). Using slides from 126 ER+ patients (46 low, 60 intermediate, and 20 high mBR grade), our grading system was able to distinguish low versus high, low versus intermediate, and intermediate versus high grade patients with area under curve values of 0.93, 0.72, and 0.74, respectively. Our results suggest that the multi-FOV classifier is able to 1) successfully discriminate low, medium, and high mBR grade and 2) identify specific image features at different FOV sizes that are important for distinguishing mBR grade in H and E stained ER+ BCa histology slides. |
DOI | 10.1109/TBME.2013.2245129 |
PDF Link | http://engineering.case.edu/centers/ccipd/sites/ccipd.case.edu/files/pub... |
Alternate Journal | IEEE Trans Biomed Eng |
*IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.