Integration of architectural and cytologic driven image algorithms for prostate adenocarcinoma identification.

TitleIntegration of architectural and cytologic driven image algorithms for prostate adenocarcinoma identification.
Publication TypeJournal Article
Year of Publication2012
AuthorsHipp, J, Monaco JP, Kunju LP, Cheng J, Yagi Y, Rodriguez-Canales J, Emmert-Buck M, Hewitt S, Feldman MD, Tomaszewski JE, Toner M, Tompkins RG, Flotte T, Lucas D, Gilbertson JR, Madabhushi A, Balis U
JournalAnalytical cellular pathology
Date Published2012

Introduction: The advent of digital slides offers new opportunities within the practice of pathology such as the use of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new levels of decision support and allow for additional layers of quality assurance and consistency in rendered diagnoses. However, the development and testing of prostate cancer CAD solutions requires a ground truth map of the cancer to enable the generation of receiver operator characteristic (ROC) curves. This requires a pathologist to annotate, or paint, each of the malignant glands in prostate cancer with an image editor software - a time consuming and exhaustive process. Recently, two CAD algorithms have been described: probabilistic pairwise Markov models (PPMM) and spatially- invariant vector quantization (SIVQ). Briefly, SIVQ operates as a highly sensitive and specific pattern matching algorithm, making it optimal for the identification of any epithelial morphology, whereas PPMM operates as a highly sensitive detector of malignant perturbations in glandular lumenal architecture. Methods: By recapitulating algorithmically how a pathologist reviews prostate tissue sections, we created an algorithmic cascade of PPMM and SIVQ algorithms as previously described by Doyle el al. [1] where PPMM identifies the glands with abnormal lumenal architecture, and this area is then screened by SIVQ to identify the epithelium. Results: The performance of this algorithm cascade was assessed qualitatively (with the use of heatmaps) and quantitatively (with the use of ROC curves) and demonstrates greater performance in the identification of malignant prostatic epithelium. Conclusion: This ability to semi-autonomously paint nearly all the malignant epithelium of prostate cancer has immediate applications to future prostate cancer CAD development as a validated ground truth generator. In addition, such an approach has potential applications as a pre-screening/quality assurance tool.

PDF Link



 *IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.