Title | An Integrated Region-, Boundary, Shape-Based Active Contour for Multiple Object Overlap Resolution in Histological Imagery. |
Publication Type | Journal Article |
Year of Publication | 2012 |
Authors | Ali, S, Madabhushi A |
Journal | IEEE transactions on medical imaging |
Volume | 31 |
Issue | 7 |
Pagination | 1448-60 |
Date Published | 2012 |
ISSN | 1558-254X |
Abstract | Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their (a) inability to resolve boundaries of intersecting objects and to (b) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation with automated initialization based on watershed. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term is the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei and lymphocytes reveals that the model easily outperforms two state of the art segmentation schemes (Geodesic Active Contour (GAC) and Rousson shape based model) and on average is able to resolve up to 91% of overlapping/occluded structures in the images. |
PDF Link | http://engineering.case.edu/centers/ccipd/sites/ccipd.case.edu/files/pub... |
Alternate Journal | IEEE Trans Med Imaging |
*IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.