Class-specific weighting for Markov random field estimation: application to medical image segmentation.

TitleClass-specific weighting for Markov random field estimation: application to medical image segmentation.
Publication TypeJournal Article
Year of Publication2012
AuthorsMonaco, JP, Madabhushi A
JournalMedical image analysis
Volume16
Issue8
Pagination1477-89
Date Published2012 Dec
ISSN1361-8423
KeywordsHumans, magnetic resonance imaging, Male, Markov Chains, Monte Carlo Method, Prostatic Neoplasms, ROC Curve
Abstract

Many estimation tasks require Bayesian classifiers capable of adjusting their performance (e.g. sensitivity/specificity). In situations where the optimal classification decision can be identified by an exhaustive search over all possible classes, means for adjusting classifier performance, such as probability thresholding or weighting the a posteriori probabilities, are well established. Unfortunately, analogous methods compatible with Markov random fields (i.e. large collections of dependent random variables) are noticeably absent from the literature. Consequently, most Markov random field (MRF) based classification systems typically restrict their performance to a single, static operating point (i.e. a paired sensitivity/specificity). To address this deficiency, we previously introduced an extension of maximum posterior marginals (MPM) estimation that allows certain classes to be weighted more heavily than others, thus providing a means for varying classifier performance. However, this extension is not appropriate for the more popular maximum a posteriori (MAP) estimation. Thus, a strategy for varying the performance of MAP estimators is still needed. Such a strategy is essential for several reasons: (1) the MAP cost function may be more appropriate in certain classification tasks than the MPM cost function, (2) the literature provides a surfeit of MAP estimation implementations, several of which are considerably faster than the typical Markov Chain Monte Carlo methods used for MPM, and (3) MAP estimation is used far more often than MPM. Consequently, in this paper we introduce multiplicative weighted MAP (MWMAP) estimation-achieved via the incorporation of multiplicative weights into the MAP cost function-which allows certain classes to be preferred over others. This creates a natural bias for specific classes, and consequently a means for adjusting classifier performance. Similarly, we show how this multiplicative weighting strategy can be applied to the MPM cost function (in place of the strategy we presented previously), yielding multiplicative weighted MPM (MWMPM) estimation. Furthermore, we describe how MWMAP and MWMPM can be implemented using adaptations of current estimation strategies such as iterated conditional modes and MPM Monte Carlo. To illustrate these implementations, we first integrate them into two separate MRF-based classification systems for detecting carcinoma of the prostate (CaP) on (1) digitized histological sections from radical prostatectomies and (2) T2-weighted 4 Tesla ex vivo prostate MRI. To highlight the extensibility of MWMAP and MWMPM to estimation tasks involving more than two classes, we also incorporate these estimation criteria into a MRF-based classifier used to segment synthetic brain MR images. In the context of these tasks, we show how our novel estimation criteria can be used to arbitrarily adjust the sensitivities of these systems, yielding receiver operator characteristic curves (and surfaces).

DOI10.1016/j.media.2012.06.007
PDF Link

http://engineering.case.edu/centers/ccipd/sites/ccipd.case.edu/files/pub...

Alternate JournalMed Image Anal

 *IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.