Hiremath, A., Shiradkar, R., Fu, P., Mahran, A., Rastinehad, A., Tewari, A., Tirumani, S., Purysko, A., Ponsky, L., & Madabhushi, A.(2021).An integrated nomogram combining deep learning, Prostate Imaging–Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study.The Lancet Digital Health,3(7),E445 - E454.
Shiradkar, R., Mahran, A., Sharma, S., Conroy, B., Tirumani, S., Ponsky, L., & Madabhushi, A.(2020).MP81-06 RADIOMIC FEATURES OF PROSTATE CANCER PATIENTS (GLEASON GRADE GROUP = 2) SHOW DIFFERENCES BETWEEN AFRICAN AMERICAN AND CAUCASIAN POPULATIONS ON BI-PARAMETRIC MRI: PRELIMINARY FINDINGS.The Journal of Urology,203
Hiremath, A., Shiradkar, R., Merisaari, H., Li, L., Prasanna, P., Ettala, O., Taimen, P., Aronen, H., Boström, P., Pierce, J., Tirumani, S., Rastinehad, A., Jambor, I., Purysko, A., & Madabhushi, A.(2020).PD57-05 A DEEP LEARNING NETWORK ALONG WITH PIRADS CAN DISTINGUISH CLINICALLY SIGNIFICANT AND INSIGNIFICANT PROSTATE CANCER ON BI-PARAMETRIC MRI: A MULTI-CENTER STUDY.The Journal of Urology,203