Product Description
This section offers a brief description of the Agilent Technologies 53310A Modulation Domain Analyzer. It follows the menu structure of the product and describes its operation. For specifications, see the Product Specifications and Characteristics section.

Function
Frequency
Channel: A, B, or C (Optional)

Time Interval
Measurement: +TI or ±TI
Channel: A and B (Separate) or A only (Common)
Start: f or $\frac{1}{f}$
Stop: f or $\frac{1}{f}$

Input
Channels A and B
Voltage Threshold Range:
 Manual: +10 V to –10 V, settable in 2.5 mV steps
 Auto: Find 50% Threshold
Coupling: ac or dc
Impedance: 1 MΩ or 50 Ω
Hysteresis: Min to Max, settable in ten steps

Channel C (Optional)
Voltage Threshold: 0 volts
Coupling: ac
Impedance: 50 Ω
Hysteresis: Minimum

External Arm
Voltage Threshold: 0V, TTL (1.5 Volts), or ECL (–1.3 Volts)

Vertical/Histogram Display Range
Display measurement range is settable as Center and Span, or Minimum and Maximum. For frequency measurements, the maximum display value can be selected no larger than eight times the minimum display value.

Timebase
Main Timebase
Range:
 Panorama Off: 1 µs/div to 1 s/div
 Panorama On: 1 to 20 times the window timebase setting (standard); 1 to 80 times the window timebase (Option 001)

Window Timebase
Range: 1 µs/div to 1 s/div
Position: Adjustable throughout the panorama

Trigger
Display Position: Left, Center, or Right
Delay: Adjustable

Dual timebases allow you to capture all the information you want, as shown in the panorama, while analyzing measurement details in the window.
Trigger

Mode: Auto or Triggered

Triggered:
- **Edge Trigger**
 - Slope: \(\frac{1}{2} \) or \(\frac{1}{4} \) of External
- **Value Trigger**
 - Source: Frequency or Time Interval measurements, depending on measurement function

Range
- **Frequency:** 80% of minimum display value to 120% of maximum display value
- **Time Interval:** full measurement range
- **Slope:** \(\frac{1}{2} \) or \(\frac{1}{4} \)
- HF Reject: On or Off

Display

Type: “vs Time” or Histogram
- Frame type: Frame, Axes, Grid, or Off

vs Time
- Acquisition Mode: Real Time or Repetitive
- Real Time Persistence: Single or Infinite
- Repetitive Averaging: On or Off

Histogram
- Probability Scale (percent): Log or Linear
- Probability Scaling: Auto or Manual
- Accumulate: On or Off

Markers
- Horizontal and vertical markers are available in “vs Time” and Histogram displays. Markers can be used in conjunction with automated analysis. They may also be used to delimit a portion of the measurement data for detailed analysis.

Histogram
- Histogram Type: Histogram from “vs Time” or Fast Histogram
- Accumulate: On or Off
- Fast Histogram:
 - Acquire Start: Auto, or External Start on \(\frac{1}{2} \) or \(\frac{1}{4} \) edge
 - Number of Measurements: 1 to 16 million per acquisition, \(>10^{14} \) can be accumulated.

Sampling

Modes: Auto, Edge, or Time
- **Auto:** Constant event sampling based on Timebase settings
- **Edge:**
 - Channel A or B: Every 1 to 256 events
 - External: Every event
- **Time:** 400 ns – 1 second

Utility

GPIB/Print setup
- Mode: Addressed or Talk Only
- **Clicker:** On or Off
- **Screen Saver:** On or Off

Calibration and Diagnostic routines

Autoscale
- Setup parameters are automatically determined to display the dynamics of the input signal. Measurement function and input conditioning should be selected prior to pressing Autoscale.

Automated Analysis
- Built-in analysis functions include: Minimum, Maximum, Peak to Peak, Mean, 1/Mean, Standard Deviation, (Modulation) Rate, 1/Rate, and Probability.

Save/Recall
- Ten measurement setups can be stored and recalled.
Product Specifications and Characteristics
Both warranted specifications and operating characteristics of the Agilent 53310A are discussed in this section. To distinguish warranted specifications from operating characteristics, specifications are highlighted throughout in italics.

Frequency Measurements
Range
Channel A: 10 Hz to 200 MHz
Channel B: 10 Hz to 100 MHz
Channel C: 50 MHz to 2.5 GHz

Maximum Measurement Rate
Fast Histogram: 1.5 MHz
Other Modes: 1 MHz

Resolution
Maximum available measurement resolution or display resolution, whichever is greater

Maximum Available Measurement Resolution (Auto Sampling):
See Graph 1 for Channels A and B
See Graph 2 for Option 030 Channel C

Note: Option 031 High Resolution 2.5 GHz Channel C offers superior measurement resolution. Refer to "Dynamic Frequency and Jitter Analysis at the Touch of a Button," Agilent 53310A brochure.

Display Resolution:
vs Time, or Histogram of vs Time
Window Off: Display Span/256
Window On: Display Span/224
Fast Histogram: Display Span/450

Accuracy: $\pm [\text{Resolution} + (\text{Frequency} \times \text{Reference Error})]$

Graph 1. Maximum available frequency resolution for Channels A and B. Larger timebase settings and averaging will reduce the effects of random noise and improve resolution.

Legend for Graphs 1 and 2

<table>
<thead>
<tr>
<th>Timebase Setting (Interval at Center: Auto)</th>
<th>Interval at Center Setting (Interval at Center: Manual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 20 μs/Div</td>
<td>1 μs</td>
</tr>
<tr>
<td>B: 200 μs/Div</td>
<td>10 μs</td>
</tr>
<tr>
<td>C: 2 ms/Div</td>
<td>100 μs</td>
</tr>
<tr>
<td>D: 20 ms/Div</td>
<td>1 ms</td>
</tr>
<tr>
<td>E: 200 ms/Div</td>
<td>10 ms</td>
</tr>
<tr>
<td>F: 100 ms</td>
<td>100 ms</td>
</tr>
<tr>
<td>G: 0.5 s</td>
<td>0.5 s</td>
</tr>
</tbody>
</table>

Graph 2. Maximum available frequency resolution for Option 030 2.5 GHz Channel C. Larger timebase settings and averaging will reduce the effects of random noise and improve resolution.

† Refer to Graph 3.
Time Interval Measurements

+ Time Interval
Range: +20 ns to +1 second
Maximum Measurement Rate:
- Fast Histogram: 2.5 MHz
- Other Modes: 1.25 MHz

± Time Interval
Range: −0.5 s to +0.5 second
Maximum Measurement Rate:
- Fast Histogram: 2.0 MHz
- Other Modes: 1.25 MHz

Resolution
Maximum available measurement resolution or display resolution, whichever is greater

Maximum Available Measurement Resolution:

\[\sqrt{(200 \text{ps rms} \times \text{Threshold Trigger Errors}^{\dagger\dagger\dagger})^2} \]

Notes
1) Threshold trigger errors are usually negligible for input slew rates > 5V/µs.
2) Through averaging, maximum available measurement resolution can be significantly improved.

Display Resolution:
vs Time, or Histogram of vs Time
- Panorama Off: Display Span/256
- Panorama On: Display Span/224
- Fast Histogram: Display Span/450

Accuracy: ± Resolution
±(Time Interval x Reference Error) †
±Start Threshold Level Timing Error ‡
±Stop Threshold Level Timing Error ‡
±1 ns Systematic Error

* 125 ps rms typical
††† Refer to Graph 4.
†† Refer to Graph 5.
† Refer to Graph 6.
Time Axis in vs Time
Resolution
Main Timebase Setting/45, with panorama off
Window Timebase Setting/45, with panorama on
Accuracy: Resolution

Note: Time aliasing can occur when time between measurements exceeds 360 divisions.

Inputs
Channel A and B
Sensitivity (minimum hysteresis): 20 mV rms sine wave to 100 MHz (25 mV rms sine wave for Freq A from 100 MHz to 200 MHz)
Minimum Pulse Width: 5 ns at 60 mV p-p (2.5 ns at 75 mV p-p for Frequency A measurements above 50 MHz)
Input Amplifier Noise: 600 µV rms
Threshold Drift: ±3 mV after warm-up at 25°C
Voltage Threshold Accuracy: ±(25 mV + 1% of Threshold Value)

Maximum Hysteresis: Increases the minimum input signal amplitude required by a factor of three, providing additional noise immunity.
Impedance: 50 Ω or 1 MΩ (500 kΩ in common)
ac Coupling: 100 Hz cutoff frequency
Capacitance (1 MΩ): <20 pF (<30 pF in common)
Dynamic Range (ac): 60 mV p-p to 5 V p-p
Signal Operating Range (dc):

1 MΩ: ±10 volts
50 Ω: ±5 volts

Damage Level:
1 MΩ: 40 V rms for <5 kHz, 5 V rms for >5 kHz
50 Ω: 5 V rms

Graph 5. Noise on the input signal will add error to time-interval measurements. Error is associated with both start and stop edges.

Graph 6. Voltage Threshold Level Timing Error varies with input slew rate. Error is associated with both start and stop edges.
Channel C (Option 030)
Sensitivity: –25 dBm to 1.5 GHz, –20 dBm from >1.5 GHz to 2.0 GHz, –15 dBm from >2.0 GHz to 2.5 GHz
Maximum Input Level: +7 dBm
Damage Level: +15 dBm
Note: For specifications on the Option 031 High Resolution 2.5 GHz Channel C, refer to “Dynamic Frequency and Jitter Analysis at the Touch of a Button,” 53310A brochure.

External Arm
Impedance: 1 MΩ
Delay: <10 ns
Note: Sensitivity, Minimum Pulse Width, Signal Operating Range, and Damage Level of the External input are the same as that of Channel B.

Frequency Reference
Standard Crystal
Temperature Stability: <8 x 10⁻⁶, referenced to 25°C
Short Term Stability: <4 x 10⁻⁹ for 1 second average
Aging Rate: <3 x 10⁻⁷/month

Option 010 High Stability Oven Reference
Temperature Stability: <7 x 10⁻⁶, referenced to 25°C
Short Term Stability: <4 x 10⁻¹¹ for 1 second average
Aging Rate: <5 x 10⁻¹⁰/day, <1 x 10⁻⁸/year
Warmup: Within 5 x 10⁻¹ of final value*, 10 minutes after turn-on**
When:
1) 53310A is operated in a 25°C environment
2) Oscillator off-time** was less than 24 hours
3) Oscillator aging rate was <5 x 10⁻¹⁰ per day prior to turn-off**

Rear Panel Connectors
GPIB

Data Acquisition and Transfer Rate: A 450 point data record can be acquired and transferred to a computer at a rate ~17 times per second, as tested with an HP 9000, Series 300 controller. For this test, a 1-MHz carrier was applied to the analyzer with a timebase setting of 40 µs/division.

Data Transfer Rates: ~175 kByte/s
Interface Capabilities: SH1, AH1, T5, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C0, E2

Test Limit Output
The Test Limit Output will go high when measurements fall outside the display range of the Fast Histogram. In “vs Time” mode, it will indicate each time the Value Trigger condition is met following the pre-trigger delay.
Operating Range: Low <0.6 V and High >1.5 V into 50 Ω

Frequency Standard Input
Frequency: 5 MHz or 10 MHz
Operating Range: 1 V p-p to 5 V p-p, into 1 kΩ
Damage Level: 10 V rms

Frequency Standard Output
Frequency: 10 MHz, or the External Reference if the Frequency Standard Input is used.
Operating Range (ac coupled):
50 Ω: >1 V p-p square wave
1 MΩ: >2 V p-p square wave

Power Requirements
Voltage: 115/230 Vac (–25% to +15%)
Frequency: 48 to 66 Hz
Maximum Power: 300 VA

General
Operating Temperature: 0 to 55°C
Weight: 10 kg net, 18 kg shipping
Dimensions: 425 mm W x 194 mm H x 363 mm D (440 mm D with handle extended)

Warranty
The Agilent 53310A Modulation Domain Analyzer comes with a one-year return-for-service warranty.

* “Final value” is defined as oscillator frequency 24 hours after turn-on.
** “Turn-off”, “turn-on”, and “off-time” apply to periods when power is disconnected from the 53310A rear panel.
Specifications — Option 031
Both warranted specifications and operating characteristics of the Agilent 53310A are discussed in this section. To distinguish warranted specifications from operating characteristics, specifications are highlighted throughout in italics.

Input Conditions
Range: 50 MHz to 2.5 GHz
Sensitivity:
-13 dBm 50 MHz to 200 MHz
-17 dBm 200 MHz to 2 GHz
-12 dBm 2 GHz to 2.5 GHz
Maximum Input Level: +20 dBm
Damage Level: +23 dBm
Impedance: 50 Ω
Coupling: ac
RF Burst Width: 50 µs to CW

Maximum Measurement Rate
Fast Histogram: 1.5 MHz
Other Modes: 1 MHz
Fast Sampling: 8 MHz (repetitive)

External Local Oscillator Input
Level: +6 dBm (±1 dB)
Impedance: 50 Ω
Frequency Range: 150 MHz to 2.5 GHz

Resolution
Maximum available measurement resolution or display resolution, whichever is greater

Maximum Available Measurement Resolution
(Auto Sampling): see Graph A
Display Resolution:
vs Time or Histogram of vs Time
Window Off: Display Span/256
Window On: Display Span/224
Fast Histogram: Display Span/450

Accuracy: ±[(Resolution + (Frequency x Reference Error*)]

RF Envelope Trigger
Level: Adjustable in 100 steps (e.g., –25 dBm to 0 dBm @ 1 GHz)
Output: 0 to 0.4 volt into 50 Ω or TTL level into high impedance

Graph A. Maximum available frequency resolution for Option 031 Channel C. Larger timebase setting and averaging will reduce the effects of random noise and improve resolution. Please refer to Graph 2 on page 4 for resolution over the 50 MHz – 200 MHz band.
Specifications — Option 305
Minimum System Requirements
Agilent 53310A:
 Works with any option, but Fast (repetitive) Sample Rate is not supported.
IBM-compatible PC:
 386-based with coprocessor
 4 Mbyte RAM
 2 Mbyte hard disk space
 MS-DOS® 5.0
 Windows® 3.1
IEEE 488.2 Interface:
 HP 82335A or HP 82341A
 National Instruments
 AT-GPIB or AT-GPIB/TNT
 with NI-488.2 version 2.1.1
drivers for Windows

Performance Characteristics

Typical Performance (1 GHz Carrier)

<table>
<thead>
<tr>
<th>Off. Freq</th>
<th>IF</th>
<th>Noise Floor</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 Hz</td>
<td>20 Hz</td>
<td>–180 dB</td>
</tr>
<tr>
<td>100 Hz</td>
<td>200 Hz</td>
<td>–170 dB</td>
</tr>
<tr>
<td>1 kHz</td>
<td>2 kHz</td>
<td>–160 dB</td>
</tr>
<tr>
<td>10 kHz</td>
<td>20 kHz</td>
<td>–150 dB</td>
</tr>
<tr>
<td>100 kHz</td>
<td>200 kHz</td>
<td>–140 dB</td>
</tr>
<tr>
<td>500 kHz</td>
<td>1 MHz</td>
<td>–130 dB</td>
</tr>
</tbody>
</table>

MS-DOS® and Windows® are U.S. registered trademarks of Microsoft Corporation.
Agilent Technologies’ Test and Measurement
Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
“Our Promise” means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
“Your Advantage” means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test and measurement needs.

Online Assistance
www.agilent.com/find/assist

Phone or Fax
United States:
(tel) 1 800 452 4844
Canada:
(tel) 1 877 894 4414
(fax) (905) 206 4120
Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390
Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840
Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599
Australia:
(tel) 1 800 629 485
(fax) (61 3) 9272 0749
New Zealand:
(tel) 0 800 738 378
(fax) (64 4) 495 8950
Asia Pacific:
(tel) (852) 3197 7777
(fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 1998, 2000 Agilent Technologies
Printed in U.S.A. 8/00
5966-4092E